1
|
Peng W, Wang J, Du J, Xu B, Li W, Huang S. Integration of metabolomics and transcriptomics to reveal metabolic characteristics and key targets associated with lncRNA Vof-16 in H19-7 cells. Biochem Biophys Res Commun 2024; 736:150855. [PMID: 39461005 DOI: 10.1016/j.bbrc.2024.150855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Cognitive disorders represent one of the most common chronic complications of diabetes. Our previous study has demonstrated that long non-coding RNA (lncRNA) Vof-16 is upregulated in the hippocampal tissue of streptozotocin (STZ)-induced diabetic rats. Despite this finding, the specific roles and underlying mechanisms of lncRNA Vof-16 in diabetes-related cognitive dysfunction remain largely unexplored. To elucidate the mechanism involved, lncRNA Vof-16 was overexpressed in rat hippocampal cell line H19-7 through lentivirus transfection. We integrated metabolomics and transcriptomics approaches to identify potential targets and metabolic pathways influenced by lncRNA Vof-16. Key proteins and pathways were subsequently validated using western blotting and immunofluorescence staining. Transcriptomics indicated that lncRNA Vof-16 overexpression may modulate autophagic activity in H19-7 cells. Metabolomic profiling revealed that the primary differential metabolic pathways included trehalose degradation, tryptophan metabolism, vitamin B6 metabolism, glycolysis, pterine biosynthesis, and the pentose phosphate pathway. Ingenuity Pathway Analysis (IPA) of gene-metabolite networks demonstrated that the high lncRNA Vof-16 expression group exhibited a significantly higher association with autophagy compared to the low lncRNA Vof-16 expression group. Western blot results confirmed that lncRNA Vof-16 overexpression led to decreased protein expression levels of ATG3 and ATG12. Specifically, lncRNA Vof-16 reduces autophagy in hippocampal neurons by targeting the elevated levels of phospho-p70S6K, a downstream effector of mTORC1, potentially contributing to the pathogenesis of diabetic cognitive impairment. The construction of gene-metabolite networks may offer promising new strategies for addressing the growing issue of diabetic cognitive impairment.
Collapse
Affiliation(s)
- Wenfang Peng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China
| | - Jiajia Wang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China
| | - Juan Du
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China
| | - Bojin Xu
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China
| | - Wenyi Li
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China.
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Xianxia Street, 200050, Shanghai, China.
| |
Collapse
|
2
|
Wang X, Kang J, Li X, Wu P, Huang Y, Duan Y, Feng J, Wang J. Codonopsis pilosula water extract delays D-galactose-induced aging of the brain in mice by activating autophagy and regulating metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118016. [PMID: 38462027 DOI: 10.1016/j.jep.2024.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codonopsis pilosula (C. pilosula), also called "Dangshen" in Chinese, is derived from the roots of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. Modesta (Nannf.) L.D.Shen (C. pilosula var. modesta) or Codonopsis pilosula subsp. Tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), is a well-known traditional Chinese medicine. It has been regularly used for anti-aging, strengthening the spleen and tonifying the lungs, regulating blood sugar, lowering blood pressure, strengthening the body's immune system, etc. However, the mechanism, by which, C. pilosula exerts its therapeutic effects on brain aging remains unclear. AIM OF THE STUDY This study aimed to investigate the underlying mechanisms of the protective effects of C. pilosula water extract (CPWE) on the hippocampal tissue of D-galactose-induced aging mice. MATERIALS AND METHODS In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). First, an aging mouse model was established through the intraperitoneal injections of D-galactose solution, and low-, medium-, and high-dose CPWE were administered to mice by gavage for 42 days. Then, the learning and memory abilities of the mice were examined using the Morris water maze tests and step-down test. Hematoxylin and eosin staining was performed to visualize histopathological damage in the hippocampus. A transmission electron microscope was used to observe the ultrastructure of hippocampal neurons. Immunohistochemical staining was performed to examine the expression of glial fibrillary acidic protein (GFAP), the marker protein of astrocyte activation, and autophagy-related proteins, including microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1)/p62, in the hippocampal tissues of mice. Moreover, targeted metabolomic analysis was performed to assess the changes in polar metabolites and short-chain fatty acids in the hippocampus. RESULTS First, CPWE alleviated cognitive impairment and ameliorated hippocampal tissue damage in aging mice. Furthermore, CPWE markedly alleviated mitochondrial damage, restored the number of autophagosomes, and activated autophagy in the hippocampal tissue of aging mice by increasing the expression of LC3 protein and reducing the expression of p62 protein. Meanwhile, the expression levels of the brain injury marker protein GFAP decreased. Moreover, quantitative targeted metabolomic analysis revealed that CPWE intervention reversed the abnormal levels of L-asparagine, L-glutamic acid, L-glutamine, serotonin hydrochloride, succinic acid, and acetic acid in the hippocampal tissue of aging mice. CPWE also significantly regulated pathways associated with D-glutamine and D-glutamate metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartate, and glutamate metabolisms, and aminoacyl-tRNA biosynthesis. CONCLUSIONS CPWE could improve cognitive and pathological conditions induced by D-galactose in aging mice by activating autophagy and regulating metabolism, thereby slowing down brain aging.
Collapse
Affiliation(s)
- Xuewen Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Jiachao Kang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xuechan Li
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Pingmin Wu
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yong Huang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yongqiang Duan
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Jing Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
4
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
5
|
Szlachcic E, Dańko MJ, Czarnoleski M. Rapamycin supplementation of Drosophila melanogaster larvae results in less viable adults with smaller cells. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230080. [PMID: 37351490 PMCID: PMC10282583 DOI: 10.1098/rsos.230080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
The intrinsic sources of mortality relate to the ability to meet the metabolic demands of tissue maintenance and repair, ultimately shaping ageing patterns. Anti-ageing mechanisms compete for resources with other functions, including those involved in maintaining functional plasma membranes. Consequently, organisms with smaller cells and more plasma membranes should devote more resources to membrane maintenance, leading to accelerated intrinsic mortality and ageing. To investigate this unexplored trade-off, we reared Drosophila melanogaster larvae on food with or without rapamycin (a TOR pathway inhibitor) to produce small- and large-celled adult flies, respectively, and measured their mortality rates. Males showed higher mortality than females. As expected, small-celled flies (rapamycin) showed higher mortality than their large-celled counterparts (control), but only in early adulthood. Contrary to predictions, the median lifespan was similar between the groups. Rapamycin administered to adults prolongs life; thus, the known direct physiological effects of rapamycin cannot explain our results. Instead, we invoke indirect effects of rapamycin, manifested as reduced cell size, as a driver of increased early mortality. We conclude that cell size differences between organisms and the associated burdens of plasma membrane maintenance costs may be important but overlooked factors influencing mortality patterns in nature.
Collapse
Affiliation(s)
- Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Maciej J. Dańko
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
Fu M, Liang X, Zhang X, Yang M, Ye Q, Qi Y, Liu H, Zhang X. Astaxanthin delays brain aging in senescence-accelerated mouse prone 10: inducing autophagy as a potential mechanism. Nutr Neurosci 2023; 26:445-455. [PMID: 35385370 DOI: 10.1080/1028415x.2022.2055376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain aging is a complex biological process often associated with a decline in cognitive functions and motility. Astaxanthin (AST) is a strong antioxidant capable of crossing the blood-brain barrier. The effect of AST on brain aging and its physiological and molecular mechanism are still unclear. The study aimed to investigate whether AST from AstaReal A1010 improved brain aging by inducing autophagy in SAMP10 mice. Different concentrations of AstaReal A1010 were intragastrically administered to 6-month-old SAMP10 mice for 3 months. The results demonstrated that AST delayed age-related cognitive decline, motor ability and neurodegeneration, upregulated the expression levels of autophagy-related genes beclin-1 and LC3 in the brain. It may induce autophagy by regulating IGF-1/Akt/mTOR and IGF-1/Akt/FoxO3a signaling. Treatment with autophagy inhibitor 3-methyladenine (3MA) partly reversed the anti-aging effect of AST. In conclusion, our findings suggest that AST may induce autophagy by regulating IGF-1/Akt/mTOR and IGF-1/Akt/FoxO3a signaling, thereby delaying age-related neurodegeneration and cognitive decline in SAMP10 mice.
Collapse
Affiliation(s)
- Min Fu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiaoshan Liang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xuguang Zhang
- BYHEALTH Institute of Nutrition & Health, Guangzhou, People's Republic of China
| | - Mingzhe Yang
- BYHEALTH Institute of Nutrition & Health, Guangzhou, People's Republic of China
| | - Qi Ye
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuxuan Qi
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Wen JH, Li DY, Liang S, Yang C, Tang JX, Liu HF. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol 2022; 13:946832. [PMID: 36275654 PMCID: PMC9583253 DOI: 10.3389/fimmu.2022.946832] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
As the essential regulators of organ fibrosis, macrophages undergo marked phenotypic and functional changes after organ injury. These changes in macrophage phenotype and function can result in maladaptive repair, causing chronic inflammation and the development of pathological fibrosis. Autophagy, a highly conserved lysosomal degradation pathway, is one of the major players to maintain the homeostasis of macrophages through clearing protein aggregates, damaged organelles, and invading pathogens. Emerging evidence has shown that macrophage autophagy plays an essential role in macrophage polarization, chronic inflammation, and organ fibrosis. Because of the high heterogeneity of macrophages in different organs, different macrophage types may play different roles in organ fibrosis. Here, we review the current understanding of the function of macrophage autophagy in macrophage polarization, chronic inflammation, and organ fibrosis in different organs, highlight the potential role of macrophage autophagy in the treatment of fibrosis. Finally, the important unresolved issues in this field are briefly discussed. A better understanding of the mechanisms that macrophage autophagy in macrophage polarization, chronic inflammation, and organ fibrosis may contribute to developing novel therapies for chronic inflammatory diseases and organ fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Xin Tang
- *Correspondence: Ji-Xin Tang, ; Hua-Feng Liu,
| | | |
Collapse
|
8
|
Carvalho C, Correia SC, Seiça R, Moreira PI. WWOX inhibition by Zfra1-31 restores mitochondrial homeostasis and viability of neuronal cells exposed to high glucose. Cell Mol Life Sci 2022; 79:487. [PMID: 35984507 PMCID: PMC11071800 DOI: 10.1007/s00018-022-04508-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
Diabetes has been associated with an increased risk of cognitive decline and dementia. However, the mechanisms underlying this association remain unclear and no effective therapeutic interventions exist. Accumulating evidence demonstrates that mitochondrial defects are a key feature of diabetes contributing to neurodegenerative events. It has also been demonstrated that the putative tumor suppressor WW domain-containing oxidoreductase 1 (WWOX) can interact with mitochondria in several pathological conditions. However, its role in diabetes-associated neurodegeneration remains unknown. So, this study aimed to evaluate the role of WWOX activation in high glucose-induced neuronal damage and death. Our experiments were mainly performed in differentiated SH-SY5Y neuroblastoma cells exposed to high glucose and treated (or not) with Zfra1-31, the specific inhibitor of WWOX. Several parameters were analyzed namely cell viability, WWOX activation (tyrosine 33 residue phosphorylation), mitochondrial function, reactive oxygen species (ROS) production, biogenesis, and dynamics, autophagy and oxidative stress/damage. The levels of the neurotoxic proteins amyloid β (Aβ) and phosphorylated Tau (pTau) and of synaptic integrity markers were also evaluated. We observed that high glucose increased the levels of activated WWOX. Interestingly, brain cortical and hippocampal homogenates from young (6-month old) diabetic GK rats showed increased levels of activated WWOX compared to older GK rats (12-month old) suggesting that WWOX plays an early role in the diabetic brain. In neuronal cells, high glucose impaired mitochondrial respiration, dynamics and biogenesis, increased mitochondrial ROS production and decreased mitochondrial membrane potential and ATP production. More, high glucose augmented oxidative stress/damage and the levels of Aβ and pTau proteins and affected autophagy, contributing to the loss of synaptic integrity and cell death. Of note, the activation of WWOX preceded mitochondrial dysfunction and cell death. Importantly, the inhibition of WWOX with Zfra1-31 reversed, totally or partially, the alterations promoted by high glucose. Altogether our observations demonstrate that under high glucose conditions WWOX activation contributes to mitochondrial anomalies and neuronal damage and death, which suggests that WWOX is a potential therapeutic target for early interventions. Our findings also support the efficacy of Zfra1-31 in treating hyperglycemia/diabetes-associated neurodegeneration.
Collapse
Affiliation(s)
- Cristina Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Sónia C Correia
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal.
| |
Collapse
|
9
|
Pan S, Guo S, Dai J, Gu Y, Wang G, Wang Y, Qin Z, Luo L. Trehalose ameliorates autophagy dysregulation in aged cortex and acts as an exercise mimetic to delay brain aging in elderly mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Yang FR, Zhu XX, Kong MW, Zou XJ, Ma QY, Li XJ, Chen JX. Xiaoyaosan Exerts Antidepressant-Like Effect by Regulating Autophagy Involves the Expression of GLUT4 in the Mice Hypothalamic Neurons. Front Pharmacol 2022; 13:873646. [PMID: 35784760 PMCID: PMC9243304 DOI: 10.3389/fphar.2022.873646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Many studies have proven that autophagy plays a pivotal role in the development of depression and it also affects the expression of GLUT4 in the hypothalamus. Xiaoyaosan has been shown to exert antidepressant effects in a variety of ways, but its underlying mechanism by which Xiaoyaosan regulates autophagy as well as GLUT4 in the hypothalamus remains unclear. Thus, in this study, we established a mouse model of depression induced by chronic unpredictable mild stress (CUMS), and set up autophagy blockade as a control to explore whether Xiaoyaosan exerts antidepressant effect by affecting autophagy. We examined the effects of Xiaoyaosan on behaviors exhibited during the open field test, tail suspension test and sucrose preference test, and the changes in autophagy in hypothalamic neurons as well as changes in GLUT4 and the related indicators of glucose metabolism in CUMS-induced depressive mouse model. We found that CUMS- and 3-MA-induced mice exhibited depressive-like behavioral changes, with decreased LC3 expression and increased p62 expression, suggesting decreased levels of autophagy in the mouse hypothalamus. The expression of GLUT4 was also decreased, and it was closely related to the level of autophagy through Rab8 and Rab10. Nevertheless, after the intervention of Xiaoyaosan, the above changes were effectively reversed. These results show that Xiaoyaosan can regulate the autophagy in hypothalamic neurons and the expression of GLUT4 in depressed mice.
Collapse
Affiliation(s)
- Fu-Rong Yang
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, China
| | - Xiao-Xu Zhu
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Ming-Wang Kong
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiao-Juan Zou
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing-Yu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiao-Juan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| |
Collapse
|
11
|
Zhu M, Shen W, Li J, Jia N, Xiong Y, Miao J, Xie C, Chen Q, Shen K, Meng P, Li X, Wu Q, Zhou S, Wang M, Kong Y, Zhou L. AMPK Activator O304 Protects Against Kidney Aging Through Promoting Energy Metabolism and Autophagy. Front Pharmacol 2022; 13:836496. [PMID: 35308246 PMCID: PMC8924548 DOI: 10.3389/fphar.2022.836496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is an important risk factor for kidney injury. Energy homeostasis plays a key role in retarding aging, and mitochondria are responsible for energy production. In the kidney, renal tubular cells possess high abundance of mitochondria to meet the high energy consumption. AMPK is an evolutionarily conserved serine/threonine kinase which plays a central role in maintaining energy homeostasis and mitochondrial homeostasis. Besides that, AMPK also commands autophagy, a clearing and recycling process to maintain cellular homeostasis. However, the effect of AMPK activators on kidney aging has not been fully elucidated. To this end, we testified the effects of O304, a novel direct AMPK activator, in naturally aging mice model and D-Galactose (D-Gal)-treated renal tubular cell culture. We identified that O304 beneficially protects against cellular senescence and aged-related fibrosis in kidneys. Also, O304 restored energy metabolism, promoted autophagy and preserved mitochondrial homeostasis. Transcriptomic sequencing also proved that O304 induced fatty acid metabolism, mitochondrial biogenesis and ATP process, and downregulated cell aging, DNA damage response and collagen organization. All these results suggest that O304 has a strong potential to retard aged kidney injury through regulating AMPK-induced multiple pathways. Our results provide an important therapeutic approach to delay kidney aging.
Collapse
Affiliation(s)
- Mingsheng Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Nephrology, The People's Hospital of Gaozhou, Maoming, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jia
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yabing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Xie
- Department of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Qiyan Chen
- Department of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Kunyu Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Central Laboratory, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Maosheng Wang
- The Cardiovascular Center, The People's Hospital of Gaozhou, Maoming, China
| | - Yaozhong Kong
- Department of Nephrology, The First People's Hospital of Foshan, Foshan, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Rothermel BA, Diwan A. Introduction. AUTOPHAGY IN HEALTH AND DISEASE 2022:3-8. [DOI: 10.1016/b978-0-12-822003-0.00029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Theaflavin 3, 3'-Digallate Delays Ovarian Aging by Improving Oocyte Quality and Regulating Granulosa Cell Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7064179. [PMID: 34925699 PMCID: PMC8674650 DOI: 10.1155/2021/7064179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
Ovarian aging refers to the gradual decline of ovarian function with increasing physiological age, manifested as decreased ovarian reserve, elevated aging-related markers, and reduced oocyte quality. With a declining female fertility and a growing aging population, it is urgent to delay ovarian aging to maintain fertility and improve the life quality of women. Theaflavin 3, 3′-digallate (TF3) is a naturally bioactive polyphenol compound extracted from black tea, and its antioxidant properties play an important role in maintaining human health and delaying aging; however, the effects of TF3 on female reproduction and ovarian function are not yet clear. Here, we show that TF3 can preserve primordial follicle pool, partially restore the estrous cycle, and increase the offspring number of aged mice. Meanwhile, TF3 gavage increased the number of oocytes retrieved, decreased the level of reactive oxygen species, increased the level of glutathione, and decreased the abnormal rate of oocyte spindle after ovulation induction. Moreover, TF3 inhibited human granulosa cell apoptosis and improved their antioxidative stress ability. High-throughput sequencing and small-molecule-targeted pharmacological prediction show that TF3 affects multiple pathways and gene expression levels, mainly involved in reproductive and developmental processes. It may also affect cellular function by targeting mTOR to regulate the autophagic pathway, thereby delaying the process of ovarian aging. This study shows that TF3 can be used as a potential dietary supplement to protect ovary function from aging and thereby improving the life quality of advanced-age women.
Collapse
|
14
|
Kim HJ, Kim B, Byun HJ, Yu L, Nguyen TM, Nguyen TH, Do PA, Kim EJ, Cheong KA, Kim KS, Huy Phùng H, Rahman M, Jang JY, Rho SB, Kang GJ, Park MK, Lee H, Lee K, Cho J, Han HK, Kim SG, Lee AY, Lee CH. Resolvin D1 Suppresses H 2O 2-Induced Senescence in Fibroblasts by Inducing Autophagy through the miR-1299/ARG2/ARL1 Axis. Antioxidants (Basel) 2021; 10:1924. [PMID: 34943028 PMCID: PMC8750589 DOI: 10.3390/antiox10121924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022] Open
Abstract
ARG2 has been reported to inhibit autophagy in vascular endothelial cells and keratinocytes. However, studies of its mechanism of action, its role in skin fibroblasts, and the possibility of promoting autophagy and inhibiting cellular senescence through ARG2 inhibition are lacking. We induced cellular senescence in dermal fibroblasts by using H2O2. H2O2-induced fibroblast senescence was inhibited upon ARG2 knockdown and promoted upon ARG2 overexpression. The microRNA miR-1299 suppressed ARG2 expression, thereby inhibiting fibroblast senescence, and miR-1299 inhibitors promoted dermal fibroblast senescence by upregulating ARG2. Using yeast two-hybrid assay, we found that ARG2 binds to ARL1. ARL1 knockdown inhibited autophagy and ARL1 overexpression promoted it. Resolvin D1 (RvD1) suppressed ARG2 expression and cellular senescence. These data indicate that ARG2 stimulates dermal fibroblast cell senescence by inhibiting autophagy after interacting with ARL1. In addition, RvD1 appears to promote autophagy and inhibit dermal fibroblast senescence by inhibiting ARG2 expression. Taken together, the miR-1299/ARG2/ARL1 axis emerges as a novel mechanism of the ARG2-induced inhibition of autophagy. Furthermore, these results indicate that miR-1299 and pro-resolving lipids, including RvD1, are likely involved in inhibiting cellular senescence by inducing autophagy.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hyung Jung Byun
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Lu Yu
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Tuan Minh Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Thi Ha Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Phuong Anh Do
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kyung Ah Cheong
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (K.A.C.); (G.J.K.); (A.Y.L.)
| | - Kyung Sung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hiệu Huy Phùng
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Mostafizur Rahman
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Ji Yun Jang
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Mi Kyung Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Ho Lee
- National Cancer Center, Goyang 10408, Korea; (S.B.R.); (H.L.)
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Jungsook Cho
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Hyo Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| | - Ai Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 10326, Korea; (K.A.C.); (G.J.K.); (A.Y.L.)
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Korea; (H.J.K.); (B.K.); (H.J.B.); (L.Y.); (T.M.N.); (T.H.N.); (P.A.D.); (K.S.K.); (H.H.P.); (M.R.); (J.Y.J.); (M.K.P.); (K.L.); (J.C.); (H.K.H.); (S.G.K.)
| |
Collapse
|
15
|
Yang L, Ye Q, Zhang X, Li K, Liang X, Wang M, Shi L, Luo S, Zhang Q, Zhang X. Pyrroloquinoline quinone extends Caenorhabditis elegans' longevity through the insulin/IGF1 signaling pathway-mediated activation of autophagy. Food Funct 2021; 12:11319-11330. [PMID: 34647561 DOI: 10.1039/d1fo02128a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aging is the leading cause of human morbidity and death worldwide. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound that has strong anti-oxidant capacity. Beneficial effects of PQQ on lifespan have been discovered in the model organism Caenorhabditis elegans (C. elegans), yet the underlying mechanisms remain unclear. In the current study, we hypothesized that the longevity-extending effect of PQQ may be linked to autophagy and insulin/IGF1 signaling (IIS) in C. elegans. Our data demonstrate that PQQ at a concentration of 1 mM maximally extended the mean life of C. elegans by 33.1%. PQQ increased locomotion and anti-stress ability, and reduced fat accumulation and reactive oxygen species (ROS) levels. There was no significant lifespan extension in PQQ-treated daf-16, daf-2, and bec-1 mutants, suggesting that these IIS- and autophagy-related genes may mediate the anti-aging effects of the PQQ. Furthermore, PQQ raised mRNA expression and the nuclear localization of the pivotal transcription factor daf-16, and then activated its downstream targets sod-3, clt-1, and hsp16.2. Enhanced activity of the autophagy pathway was also observed in PQQ-fed C. elegans, as evidenced by increased expression of the key autophagy genes including lgg-1, and bec-1, and also by an increase in the GFP::LGG-1 puncta. Inactivation of the IIS pathway-related genes daf-2 or daf-16 by RNAi partially blocked the increase in autophagy activity caused by PQQ treatment, suggesting that autophagy may be regulated by IIS. This study demonstrates that anti-aging properties of PQQ, in the C. elegans model, may be mediated via the IIS pathway and autophagy.
Collapse
Affiliation(s)
- Liu Yang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qi Ye
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xuguang Zhang
- Science and Technology Centre, By-Health Co. Ltd, Guangzhou, China
| | - Ke Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoshan Liang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Meng Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Linran Shi
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Suhui Luo
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China.,Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
16
|
Abstract
BACKGROUND The serum and glucocorticoid-induced kinase-1 (SGK1) belonging to the AGC protein kinase family phosphorylates serine and threonine residues of target proteins. It regulates numerous ion channels and transporters and promotes survival under cellular stress. Unique to SGK1 is a tight control at transcriptional and post-transcriptional levels. SGK1 regulates multiple signal transduction pathways related to tumor development. Several studies have reported that SGK1 is upregulated in different types of human malignancies and induces resistance against inhibitors, drugs, and targeted therapies. RESULTS AND CONCLUSION This review highlights the cellular functions of SGK1, its crucial role in cancer development, and clinical insights for SGK1 targeted therapies. Furthermore, the role of SGK1-mediated autophagy as a potential therapeutic target for cancer has been discussed.
Collapse
|
17
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|
18
|
Bulk autophagy induction and life extension is achieved when iron is the only limited nutrient in Saccharomyces cerevisiae. Biochem J 2021; 478:811-837. [DOI: 10.1042/bcj20200849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/21/2023]
Abstract
We have investigated the effects that iron limitation provokes in Saccharomyces cerevisiae exponential cultures. We have demonstrated that one primary response is the induction of bulk autophagy mediated by TORC1. Coherently, Atg13 became dephosphorylated whereas Atg1 appeared phosphorylated. The signal of iron deprivation requires Tor2/Ypk1 activity and the inactivation of Tor1 leading to Atg13 dephosphorylation, thus triggering the autophagy process. Iron replenishment in its turn, reduces autophagy flux through the AMPK Snf1 and the subsequent activity of the iron-responsive transcription factor, Aft1. This signalling converges in Atg13 phosphorylation mediated by Tor1. Iron limitation promotes accumulation of trehalose and the increase in stress resistance leading to a quiescent state in cells. All these effects contribute to the extension of the chronological life, in a manner totally dependent on autophagy activation.
Collapse
|
19
|
Rottenberg H, Hoek JB. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021; 10:cells10010079. [PMID: 33418876 PMCID: PMC7825081 DOI: 10.3390/cells10010079] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge street, New Hope, PA 18938, USA
- Correspondence: ; Tel.: +1-267-614-5588
| | - Jan B. Hoek
- MitoCare Center, Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
20
|
Pang K, Li B, Tang Z, Yang W, Hao L, Shi Z, Zhang J, Cai L, Li R, Liu Y, Lv Q, Ding J, Han C. Resveratrol inhibits hypertrophic scars formation by activating autophagy via the miR-4654/Rheb axis. Mol Med Rep 2020; 22:3440-3452. [PMID: 32945452 PMCID: PMC7453609 DOI: 10.3892/mmr.2020.11407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Hypertrophic scars (HSs) are a type of pathological scar which are induced by surgery, burn injuries or trauma during the healing process. Due to the high recurrence rates and strong invasive properties, HSs have become a major clinical issue. Resveratrol has been identified as a potential agent to suppress scar formation; however, the underlying mechanism of action remains unclear. Therefore, the present study aimed to investigate the effect of resveratrol on HS-derived fibroblasts (HSFBs) in vitro. MTT assay was performed to evaluate cell viability following the resveratrol treatment. Western blot and RT-qPCR analysis was used to identify the expression levels and the relationship among autophagic markers, miR-4654 and resveratrol treatment. Finally, GFP-LC3 stable HSFBs cells were generated to further assess the effect of resveratrol. The results revealed that resveratrol significantly induced cell death in a dose-dependent manner and induced autophagy by downregulating the expression levels of Rheb in HSFBs. Notably, microRNA-4654 (miR-4654) was significantly decreased in the HSFBs and re-upregulated by resveratrol treatment dose-dependently. Through the bioinformatic analysis and luciferase assay, miR-4654 was identified to directly target Rheb. Transfection studies showed that miR-4654 negative correlated with Rheb expression, suggesting that the autophagic process may be altered by the miR-4654/Rheb axis under the control of resveratrol. In conclusion, the results of the present study suggested that resveratrol may promote autophagy by upregulating miR-4654, which in turn may suppress Rheb expression via directly binding to the 3′-untranslated region of Rheb. These findings provided a novel insight into the development of potential therapeutic targets for HSs.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Bibo Li
- Department of Urology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Zhiming Tang
- Department of Dermatology, Xuzhou Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen Yang
- Department of Renal Disease, Shandong First Medical University, Tai'an, Shandong 271016, P.R. China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Jianjun Zhang
- Department of Urology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Longjun Cai
- Department of Urology, Suqian People's Hospital of Nanjing Drum-Tower Hospital Group, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu 223800, P.R. China
| | - Rui Li
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Ying Liu
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Qian Lv
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Jicun Ding
- Department of Burns and Plastic Surgery, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical College Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
21
|
Maestro I, Boya P, Martinez A. Serum- and glucocorticoid-induced kinase 1, a new therapeutic target for autophagy modulation in chronic diseases. Expert Opin Ther Targets 2020; 24:231-243. [PMID: 32067528 DOI: 10.1080/14728222.2020.1730328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Autophagy, a basic cellular degradation pathway essential for survival, is altered both in aging and in many chronic human diseases, including infections, cancer, heart disease, and neurodegeneration. Identifying new therapeutic targets for the control and modulation of autophagy events is therefore of utmost importance in drug discovery. Serum and glucocorticoid activated kinase 1 (SGK1), known for decades for its role in ion channel modulation, is now known to act as a switch for autophagy homeostasis, and has emerged as a novel and important therapeutic target likely to attract considerable research attention in the coming years.Areas covered: In this general review of SGK1 we describe the kinase's structure and its roles in physiological and pathological contexts. We also discuss small-molecule modulators of SGK1 activity. These modulators are of particular interest to medicinal chemists and pharmacists seeking to develop more potent and selective drug candidates for SGK1, which, despite its key role in autophagy, remains relatively understudied.Expert opinion: The main future challenges in this area are (i) deciphering the role of SGK1 in selective autophagy processes (e.g. mitophagy, lipophagy, and aggrephagy); (ii) identifying selective allosteric modulators of SGK1 with specific biological functions; and (iii) conducting first-in-man clinical studies.
Collapse
Affiliation(s)
- Inés Maestro
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Patricia Boya
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|