1
|
Lu M, Dai S, Dai G, Wang T, Zhang S, Wei L, Luo M, Zhou X, Wang H, Xu D. Dexamethasone induces developmental axon damage in the offspring hippocampus by activating miR-210-3p/miR-362-5p to target the aberrant expression of Sonic Hedgehog. Biochem Pharmacol 2024; 226:116330. [PMID: 38815627 DOI: 10.1016/j.bcp.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Given the extensive application of dexamethasone in both clinical settings and the livestock industry, human exposure to this drug can occur through various sources and pathways. Prior research has indicated that prenatal exposure to dexamethasone (PDE) heightens the risk of cognitive and emotional disorders in offspring. Axonal development impairment is a frequent pathological underpinning for neuronal dysfunction in these disorders, yet it remains unclear if it plays a role in the neural damage induced by PDE in the offspring. Through RNA-seq and bioinformatics analysis, we found that various signaling pathways related to nervous system development, including axonal development, were altered in the hippocampus of PDE offspring. Among them, the Sonic Hedgehog (SHH) signaling pathway was the most significantly altered and crucial for axonal development. By using miRNA-seq and targeting miRNAs and glucocorticoid receptor (GR) expression, we identified miR-210-3p and miR-362-5p, which can target and suppress SHH expression. Their abnormal high expression was associated with GR activation in PDE fetal rats. Further testing of PDE offspring rats and infant peripheral blood samples exposed to dexamethasone in utero showed that SHH expression was significantly decreased in peripheral blood mononuclear cells (PBMCs) and was positively correlated with SHH expression in the hippocampus and the expression of the axonal development marker growth-associated protein-43. In summary, PDE-induced hippocampal GR-miR-210-3p/miR-362-5p-SHH signaling axis changes lead to axonal developmental damage. SHH expression in PBMCs may reflect axonal developmental damage in PDE offspring and could serve as a warning marker for fetal axonal developmental damage.
Collapse
Affiliation(s)
- Mengxi Lu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shiyun Dai
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; National Health Commission Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gaole Dai
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuai Zhang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Liyi Wei
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mingcui Luo
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinli Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
2
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
3
|
Affrald R J, Narayan S. A review: oligodendrocytes in neuronal axonal conduction and methods for enhancing their performance. Int J Neurosci 2024:1-22. [PMID: 38850232 DOI: 10.1080/00207454.2024.2362200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES This review explores the vital role of oligodendrocytes in axon myelination and efficient neuronal transmission and the impact of dysfunction resulting from neurotransmitter deficiencies related disorders. Furthermore, the review also provides insight into the potential of bionanotechnology for addressing neurodegenerative diseases by targeting oligodendrocytes. METHODS A review of literature in the field was conducted using Google scholar. Systematic searches were performed to identify relevant studies and reviews addressing the role of oligodendrocytes in neural function, the influence of neurotransmitters on oligodendrocyte differentiation, and the potential of nanotechnology-based strategies for targeted therapy of oligodendrocytes. RESULTS This review indicates the mechanisms underlying oligodendrocyte differentiation and the influence of neurotransmitters on this process. The importance of action potentials and neurotransmission in neural function and the susceptibility of damaged nerve axons to ischemic or toxic damage is provided in detail. The potential of bionanotechnology for targeting neurodegenerative diseases using nanotechnology-based strategies, including polymeric, lipid-based, inorganic, organic, and biomimetic nanoparticles, suggests better management of neurodegenerative disorders. CONCLUSION While nanotechnology-based biomaterials show promise for targeted oligodendrocyte therapy in addressing neurodegenerative disorders linked to oligodendrocyte dysfunction, encapsulating neuroprotective agents within nanoparticles offers additional advantages. Nano-based delivery systems effectively protect drugs from degradation and prolong their therapeutic effects, holding promise in overcoming the blood-brain barrier by facilitating drug transport. However, a multifaceted approach is essential to enhance oligodendrocyte differentiation, promote myelin repair, and facilitate myelin dynamics with reduced toxicity. Further research is needed to elucidate the optimal therapeutic approaches and enhance patient outcomes.
Collapse
Affiliation(s)
- Jino Affrald R
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| |
Collapse
|
4
|
Funk D, Araujo J, Slassi M, Lanthier J, Atkinson J, Feng D, Lau W, Lê A, Higgins GA. Effect of a single psilocybin treatment on Fos protein expression in male rat brain. Neuroscience 2024; 539:1-11. [PMID: 38184069 DOI: 10.1016/j.neuroscience.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Psilocybin has received attention as a treatment for depression, stress disorders and drug and alcohol addiction. To help determine the mechanisms underlying its therapeutic effects, here we examined acute effects of a range of behaviourally relevant psilocybin doses (0.1-3 mg/kg SC) on regional expression of Fos, the protein product of the immediate early gene, c-fos in brain areas involved in stress, reward and motivation in male rats. We also determined the cellular phenotypes activated by psilocybin, in a co-labeling analysis with NeuN, a marker of mature neurons, or Olig1, a marker of oligodendrocytes. In adult male Sprague-Dawley rats, psilocybin increased Fos expression dose dependently in several brain regions, including the frontal cortex, nucleus accumbens, central and basolateral amygdala and locus coeruleus. These effects were most marked in the central amygdala. Double labeling experiments showed that Fos was expressed in both neurons and oligodendrocytes. These results extend previous research by determining Fos expression in multiple brain areas at a wider psilocybin dose range, and the cellular phenotypes expressing Fos. The data also highlight the amygdala, especially the central nucleus, a key brain region involved in emotional processing and learning and interconnected with other brain areas involved in stress, reward and addiction, as a potentially important locus for the therapeutic effects of psilocybin. Overall, the present findings suggest that the central amygdala may be an important site through which the initial brain activation induced by psilocybin is translated into neuroplastic changes, locally and in other regions that underlie its extended therapeutic effects.
Collapse
Affiliation(s)
- Douglas Funk
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto M5S 2S1, Canada.
| | - Joseph Araujo
- Transpharmation Ltd., Fergus N1M 2W8, Canada; Mindset Pharma, Toronto M5V 0R2, Canada
| | | | | | | | - Daniel Feng
- Transpharmation Ltd., Fergus N1M 2W8, Canada
| | - Winnie Lau
- Transpharmation Ltd., Fergus N1M 2W8, Canada
| | - Anh Lê
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto M5S 2S1, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| | - Guy A Higgins
- Transpharmation Ltd., Fergus N1M 2W8, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| |
Collapse
|
5
|
Shim G, Romero-Morales AI, Sripathy SR, Maher BJ. Utilizing hiPSC-derived oligodendrocytes to study myelin pathophysiology in neuropsychiatric and neurodegenerative disorders. Front Cell Neurosci 2024; 17:1322813. [PMID: 38273973 PMCID: PMC10808804 DOI: 10.3389/fncel.2023.1322813] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Oligodendrocytes play a crucial role in our central nervous system (CNS) by myelinating axons for faster action potential conduction, protecting axons from degeneration, structuring the position of ion channels, and providing nutrients to neurons. Oligodendrocyte dysfunction and/or dysmyelination can contribute to a range of neurodegenerative diseases and neuropsychiatric disorders such as Multiple Sclerosis (MS), Leukodystrophy (LD), Schizophrenia (SCZ), and Autism Spectrum Disorder (ASD). Common characteristics identified across these disorders were either an inability of oligodendrocytes to remyelinate after degeneration or defects in oligodendrocyte development and maturation. Unfortunately, the causal mechanisms of oligodendrocyte dysfunction are still uncertain, and therapeutic targets remain elusive. Many studies rely on the use of animal models to identify the molecular and cellular mechanisms behind these disorders, however, such studies face species-specific challenges and therefore lack translatability. The use of human induced pluripotent stem cells (hiPSCs) to model neurological diseases is becoming a powerful new tool, improving our understanding of pathophysiology and capacity to explore therapeutic targets. Here, we focus on the application of hiPSC-derived oligodendrocyte model systems to model disorders caused by oligodendrocyte dysregulation.
Collapse
Affiliation(s)
- Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Alejandra I. Romero-Morales
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Srinidhi R. Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Brady J. Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Wu L, Tang H. The role of N6-methyladenosine modification in rodent models of neuropathic pain: from the mechanism to therapeutic potential. Biomed Pharmacother 2023; 166:115398. [PMID: 37647691 DOI: 10.1016/j.biopha.2023.115398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
Neuropathic pain (NP) is a common chronic pain condition resulted from lesions or diseases of somatosensory nervous system, but the pathogenesis remains unclear. A growing body of evidence supports the relationship between pathogenesis and N6-methyladenosine (m6A) modifications of RNA. However, studies on the role of m6A modifications in NP are still at an early stage. Elucidating different etiologies is important for understanding the specific pathogenesis of NP. This article provides a comprehensive review on the role of m6A methylation modifications including methyltransferases ("writers"), demethylases ("erasers"), and m6A binding proteins ("readers") in NP models. Further analysis of the pathogenic mechanism relationship between m6A and NP provided novel theoretical and practical significance for clinical treatment of NP.
Collapse
Affiliation(s)
- Liping Wu
- Guangxi University of Traditional Chinese Medicine, Nanning, China; The First Clinical Medical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Hongliang Tang
- Guangxi Traditional Chinese Medicine University Affiliated Fangchenggang Hospital.
| |
Collapse
|
7
|
Chen L, Ren SY, Li RX, Liu K, Chen JF, Yang YJ, Deng YB, Wang HZ, Xiao L, Mei F, Wang F. Chronic Exposure to Hypoxia Inhibits Myelinogenesis and Causes Motor Coordination Deficits in Adult Mice. Neurosci Bull 2021; 37:1397-1411. [PMID: 34292513 PMCID: PMC8490606 DOI: 10.1007/s12264-021-00745-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/06/2021] [Indexed: 12/18/2022] Open
Abstract
Exposure to chronic hypoxia is considered to be a risk factor for deficits in brain function in adults, but the underlying mechanisms remain largely unknown. Since active myelinogenesis persists in the adult central nervous system, here we aimed to investigate the impact of chronic hypoxia on myelination and the related functional consequences in adult mice. Using a transgenic approach to label newly-generated myelin sheaths (NG2-CreERTM; Tau-mGFP), we found that myelinogenesis was highly active in most brain regions, such as the motor cortex and corpus callosum. After exposure to hypoxia (10% oxygen) 12 h per day for 4 weeks, myelinogenesis was largely inhibited in the 4-month old brain and the mice displayed motor coordination deficits revealed by the beam-walking test. To determine the relationship between the inhibited myelination and functional impairment, we induced oligodendroglia-specific deletion of the transcription factor Olig2 by tamoxifen (NG2-CreERTM; Tau-mGFP; Olig2 fl/fl) in adult mice to mimic the decreased myelinogenesis caused by hypoxia. The deletion of Olig2 inhibited myelinogenesis and consequently impaired motor coordination, suggesting that myelinogenesis is required for motor function in adult mice. To understand whether enhancing myelination could protect brain functions against hypoxia, we treated hypoxic mice with the myelination-enhancing drug-clemastine, which resulted in enhanced myelogenesis and improved motor coordination. Taken together, our data indicate that chronic hypoxia inhibits myelinogenesis and causes functional deficits in the brain and that enhancing myelinogenesis protects brain functions against hypoxia-related deficits.
Collapse
Affiliation(s)
- Lin Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Shu-Yu Ren
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Rui-Xue Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Kun Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Jing-Fei Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Yu-Jian Yang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Yong-Bin Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University, Chongqing, 400014, China
| | - Han-Zhi Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China
| | - Feng Mei
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China.
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
8
|
Yamazaki Y, Abe Y, Fujii S, Tanaka KF. Oligodendrocytic Na +-K +-Cl - co-transporter 1 activity facilitates axonal conduction and restores plasticity in the adult mouse brain. Nat Commun 2021; 12:5146. [PMID: 34446732 PMCID: PMC8390751 DOI: 10.1038/s41467-021-25488-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 08/13/2021] [Indexed: 11/30/2022] Open
Abstract
The juvenile brain presents plasticity. Oligodendrocytes are the myelinating cells of the central nervous system and myelination can be adaptive. Plasticity decreases from juvenile to adulthood. The mechanisms involving oligodendrocytes underlying plasticity are unclear. Here, we show Na+-K+-Cl– co-transporter 1 (NKCC1), highly expressed in the juvenile mouse brain, regulates the oligodendrocyte activity from juvenile to adulthood in mice, as shown by optogenetic manipulation of oligodendrocytes. The reduced neuronal activity in adults was restored by Nkcc1 overexpression in oligodendrocytes. Moreover, in adult mice overexpressing Nkcc1, long-term potentiation and learning were facilitated compared to age-matched controls. These findings demonstrate that NKCC1 plays a regulatory role in the age-dependent activity of oligodendrocytes, furthermore inducing activation of NKCC1 in oligodendrocytes can restore neuronal plasticity in the adult mouse brain. Brain plasticity declines with age. Here, the authors show that NKCC1 regulates oligodendrocyte activity, facilitating neuronal plasticity during juvenile. Inducing activation of oligodendrocytic NKCC1 results in restoration of neuronal plasticity in the adult mouse brain.
Collapse
Affiliation(s)
- Yoshihiko Yamazaki
- Department of Physiology, Yamagata University School of Medicine, Yamagata, Japan.
| | - Yoshifumi Abe
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Fujii
- Department of Physiology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Patient-Derived Induced Pluripotent Stem Cells (iPSCs) and Cerebral Organoids for Drug Screening and Development in Autism Spectrum Disorder: Opportunities and Challenges. Pharmaceutics 2021; 13:pharmaceutics13020280. [PMID: 33669772 PMCID: PMC7922555 DOI: 10.3390/pharmaceutics13020280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) represents a group of neurodevelopmental diseases characterized by persistent deficits in social communication, interaction, and repetitive patterns of behaviors, interests, and activities. The etiopathogenesis is multifactorial with complex interactions between genetic and environmental factors. The clinical heterogeneity and complex etiology of this pediatric disorder have limited the development of pharmacological therapies. The major limit to ASD research remains a lack of relevant human disease models which can faithfully recapitulate key features of the human pathology and represent its genetic heterogeneity. Recent advances in induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of patients into all types of patient-specific neural cells, have provided a promising cellular tool for disease modeling and development of novel drug treatments. The iPSCs technology allowed not only a better investigation of the disease etiopathogenesis but also opened up the potential for personalized therapies and offered new opportunities for drug discovery, pharmacological screening, and toxicity assessment. Moreover, iPSCs can be differentiated and organized into three-dimensional (3D) organoids, providing a model which mimics the complexity of the brain’s architecture and more accurately recapitulates tissue- and organ-level disease pathophysiology. The aims of this review were to describe the current state of the art of the use of human patient-derived iPSCs and brain organoids in modeling ASD and developing novel therapeutic strategies and to discuss the opportunities and major challenges in this rapidly moving field.
Collapse
|
10
|
Saw G, Tang FR. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. Int J Mol Sci 2020; 21:ijms21249514. [PMID: 33327654 PMCID: PMC7765140 DOI: 10.3390/ijms21249514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.
Collapse
|
11
|
Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast 2020; 2020:8861903. [PMID: 33293948 PMCID: PMC7718046 DOI: 10.1155/2020/8861903] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a common neurological disease that seriously affects human health. There are many hypotheses about the pathogenesis of depression, and the most widely recognized and applied is the monoamine hypothesis. However, no hypothesis can fully explain the pathogenesis of depression. At present, the brain-derived neurotrophic factor (BDNF) and neurogenesis hypotheses have highlighted the important role of plasticity in depression. The plasticity of neurons and glial cells plays a vital role in the transmission and integration of signals in the central nervous system. Plasticity is the adaptive change in the nervous system in response to changes in external signals. The hippocampus is an important anatomical area associated with depression. Studies have shown that some antidepressants can treat depression by changing the plasticity of the hippocampus. Furthermore, caloric restriction has also been shown to affect antidepressant and hippocampal plasticity changes. In this review, we summarize the latest research, focusing on changes in the plasticity of hippocampal neurons and glial cells in depression and the role of BDNF in the changes in hippocampal plasticity in depression, as well as caloric restriction and mitochondrial plasticity. This review may contribute to the development of antidepressant drugs and elucidating the mechanism of depression.
Collapse
|