1
|
Gao D, Abdullah S, Baldwin T, Caspersen A, Williams E, Carlson A, Petersen M, Hu G, Klos KE, Bregitzer P. Agrobacterium-mediated transfer of the Fusarium graminearum Tri6 gene into barley using mature seed-derived shoot tips as explants. PLANT CELL REPORTS 2024; 43:40. [PMID: 38244048 PMCID: PMC10799836 DOI: 10.1007/s00299-023-03129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024]
Abstract
KEY MESSAGE We transferred the Tri6 gene into the elite barley GemCraft via new transformation method through shoot organogenesis and identified the rearrangements of transgenes and phenotypic variations in the transgenic plants. Despite its agronomic and economic importance, barley transformation is still very challenging for many elite varieties. In this study, we used direct shoot organogenesis to transform the elite barley cultivar GemCraft with the RNAi constructs containing Tri6 gene of Fusarium graminearum, which causes fusarium head blight (FHB). We isolated 4432 shoot tips and co-cultured these explants with Agrobacterium tumefaciens. A total of 25 independent T0 transgenic plants were generated including 15 events for which transgene-specific PCR amplicons were observed. To further determine the presence of transgenes, the T1 progenies of all 15 T0 plants were analyzed, and the expected PCR products were obtained in 10 T1 lines. Droplet digital (dd) PCR analysis revealed various copy numbers of transgenes in the transgenic plants. We determined the insertion site of transgenes using long-read sequencing data and observed the rearrangements of transgenes. We found phenotypic variations in both T1 and T2 generation plants. FHB disease was evaluated under growth chamber conditions, but no significant differences in disease severity or deoxynivalenol accumulation were observed between two Tri6 transgenic lines and the wildtype. Our results demonstrate the feasibility of the shoot tip transformation and may open the door for applying this system for genetic improvement and gene function research in other barley genotypes.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA.
| | - Sidrat Abdullah
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Ann Caspersen
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Edward Williams
- Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI, 53562, USA
| | - Alvar Carlson
- Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI, 53562, USA
| | - Mike Petersen
- Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI, 53562, USA
| | - Gongshe Hu
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Kathy Esvelt Klos
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Phil Bregitzer
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| |
Collapse
|
2
|
Chen X, He S, Wang Z, Zhai Y, Guo W, Li X. Production of transgenic periclinal chimeras in pumpkin - a tool for revealing cell fates of L1 meristem. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:126-139. [PMID: 37975550 DOI: 10.1111/plb.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Genetic engineering is commonly used to improve the agronomic traits of crops. However, genetic transformation in pumpkin remains a challenge. Conducting transformation trials, we accidentally created transgenic L1 periclinal chimeras in pumpkins. Using our modified Agrobacterium-mediated transformation, we generated transgenic L1 periclinal chimeras which have high value in research on development of the meristem. Fluorescence observations of transformed L1 cells enabled us to reveal cell fates. These L1 cells can develop into stomata, epidermal hairs, seed coat, and epidermis of the root, stem, leaf, flower, and fruit. These periclinal chimeras can be propagated vegetatively with minimal risk of transgene flow. This study offers new perspectives on development of the meristem and a promising technique for creating transgenic periclinal chimeras in plants.
Collapse
Affiliation(s)
- X Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - S He
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Z Wang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Y Zhai
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - W Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - X Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| |
Collapse
|
3
|
Yuan G, Liu Y, Yao T, Muchero W, Chen JG, Tuskan GA, Yang X. eYGFPuv-Assisted Transgenic Selection in Populus deltoides WV94 and Multiplex Genome Editing in Protoplasts of P. trichocarpa × P. deltoides Clone '52-225'. PLANTS (BASEL, SWITZERLAND) 2023; 12:1657. [PMID: 37111880 PMCID: PMC10145771 DOI: 10.3390/plants12081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Although CRISPR/Cas-based genome editing has been widely used for plant genetic engineering, its application in the genetic improvement of trees has been limited, partly because of challenges in Agrobacterium-mediated transformation. As an important model for poplar genomics and biotechnology research, eastern cottonwood (Populus deltoides) clone WV94 can be transformed by A. tumefaciens, but several challenges remain unresolved, including the relatively low transformation efficiency and the relatively high rate of false positives from antibiotic-based selection of transgenic events. Moreover, the efficacy of CRISPR-Cas system has not been explored in P. deltoides yet. Here, we first optimized the protocol for Agrobacterium-mediated stable transformation in P. deltoides WV94 and applied a UV-visible reporter called eYGFPuv in transformation. Our results showed that the transgenic events in the early stage of transformation could be easily recognized and counted in a non-invasive manner to narrow down the number of regenerated shoots for further molecular characterization (at the DNA or mRNA level) using PCR. We found that approximately 8.7% of explants regenerated transgenic shoots with green fluorescence within two months. Next, we examined the efficacy of multiplex CRISPR-based genome editing in the protoplasts derived from P. deltoides WV94 and hybrid poplar clone '52-225' (P. trichocarpa × P. deltoides clone '52-225'). The two constructs expressing the Trex2-Cas9 system resulted in mutation efficiency ranging from 31% to 57% in hybrid poplar clone 52-225, but no editing events were observed in P. deltoides WV94 transient assay. The eYGFPuv-assisted plant transformation and genome editing approach demonstrated in this study has great potential for accelerating the genome editing-based breeding process in poplar and other non-model plants species and point to the need for additional CRISPR work in P. deltoides.
Collapse
Affiliation(s)
- Guoliang Yuan
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Yang Liu
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
| | - Tao Yao
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
4
|
Raldugina GN, Hoang TZ, Ngoc HB, Karpichev IV. An increased proportion of transgenic plants in the progeny of rapeseed (Brassica napus L.) transformants. Vavilovskii Zhurnal Genet Selektsii 2021; 25:147-156. [PMID: 34901712 PMCID: PMC8627876 DOI: 10.18699/vj21.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
Cotyledon and leaf explants of two spring rapeseed varieties were transformed with Agrobacterium
tumefaciens harboring a genetic construct with the gfp marker gene. In order to reduce the proportion of hyperhydrated shoots, which appeared during regenerant formation, we optimized sucrose content in the regeneration media. Analysis of the progeny obtained from T0 regenerants showed that in a number of lines the distribution of the gfp marker did not follow Mendelian segregation of a monogenic trait in self-pollinated plants, while in
the progeny of the other lines of transgenic plants, the gfp marker was completely absent, although its presence
had been confirmed in all selected T0 plants. We also found that in individual transformants gfp is randomly
inherited throughout the central peduncle; its presence in the genome of seedlings does not depend on the location of the pod. Thus, both transformed and non-transformed cells were involved in the formation of gametes in
T0 plants. In addition, marker segregation was different in plants of the T1 line obtained by nodal cuttings of a
primary transformant, depending on the location of the cuttings on the stem of the original plant, indicating that
the nature of T1 generation plants was also chimeric. Furthermore, we showed that propagation of plants by cutting followed by propagation by seeds formed as a result of self-pollination led to an increase in the proportion
of transgenic plants in subsequent generations. The results obtained during the course of this study show that
the transformants were chimeric, i. e. their tissues contained both transgenic and non-transgenic cells, and this
chimeric nature was passed on to subsequent generations. We found that, in addition to nutrient media composition, other factors such as plant genotype and explant type also contribute to the rising of chimeric plants during
transformation. Based on these results, we developed a simplified method, which consists of several rounds of a
combination of cutting, seed production by self-pollination, and subsequent culling of wild-type plants, which
significantly enriched descendent populations of the original rapeseed transformants with plants transgenic for
the gfp marker
Collapse
Affiliation(s)
- G N Raldugina
- Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow, Russia
| | - T Z Hoang
- Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow, Russia NKLPCB, Agricultural Genetics Institute, Hanoi, Vietnam
| | - H B Ngoc
- Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow, Russia
| | - I V Karpichev
- Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Favero BT, Tan Y, Lin Y, Hansen HB, Shadmani N, Xu J, He J, Müller R, Almeida A, Lütken H. Transgenic Kalanchoë blossfeldiana, Containing Individual rol Genes and Open Reading Frames Under 35S Promoter, Exhibit Compact Habit, Reduced Plant Growth, and Altered Ethylene Tolerance in Flowers. FRONTIERS IN PLANT SCIENCE 2021; 12:672023. [PMID: 34025708 PMCID: PMC8138453 DOI: 10.3389/fpls.2021.672023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Reduced growth habit is a desirable trait for ornamental potted plants and can successfully be obtained through Rhizobium rhizogenes transformation in a stable and heritable manner. Additionally, it can also be obtained by transformation with Agrobacterium tumefaciens harboring specific genes from R. rhizogenes. The bacterial T-DNA harbors four root oncogenic loci (rol) genes and 14 less known open reading frames (ORFs). The four rol genes, i.e., rolA, rolB, rolC, and rolD, are conceived as the common denominator for the compact phenotype and the other less characterized ORFs seem auxiliary but present a potential breeding target for less aberrant and/or more tailored phenotypes. In this study, Kalanchoë blossfeldiana 'Molly' was transformed with individual rol genes and selected ORFs in 35S overexpressing cassettes to comprehensively characterize growth traits, gene copy and expression, and ethylene tolerance of the flowers. An association of reduced growth habit, e.g. height and diameter, was observed for rolB2 and ORF14-2 when a transgene single copy and high gene expression were detected. Chlorophyll content was reduced in overexpressing lines compared to wild type (WT), except for one ΔORF13a (a truncated ORF13a, where SPXX DNA-binding motif is absent). The flower number severely decreased in the overexpressing lines compared to WT. The anthesis timing showed that WT opened the first flower at 68.9 ± 0.9 days and the overexpressing lines showed similar or up to 24 days delay in flowering. In general, a single or low relative gene copy insertion was correlated to higher gene expression, ca. 3 to 5-fold, in rolB and ΔORF13a lines, while in ORF14 such relation was not directly linked. The increased gene expression observed in rolB2 and ΔORF13a-2 contributed to reducing plant growth and a more compact habit. Tolerance of detached flowers to 0.5 μl L-1 ethylene was markedly higher for ORF14 with 66% less flower closure at day 3 compared to WT. The subcellular localization of rolC and ΔORF13a was investigated by transient expression in Nicotiana benthamiana and confocal images showed that rolC and ΔORF13a are soluble and localize in the cytoplasm being able to enter the nucleus.
Collapse
Affiliation(s)
- Bruno Trevenzoli Favero
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Yi Tan
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Yan Lin
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Hanne Bøge Hansen
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Nasim Shadmani
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Jiaming Xu
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Junou He
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Renate Müller
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Aldo Almeida
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik Lütken
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
6
|
Aida R, Sasaki K, Yoshioka S, Noda N. Distribution of cell layers in floral organs of chrysanthemum analyzed with periclinal chimeras carrying a transgene encoding fluorescent protein. PLANT CELL REPORTS 2020; 39:609-619. [PMID: 32060603 DOI: 10.1007/s00299-020-02518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
A fluorescent protein visualized distributions of cell layers in floral organs of chrysanthemum using transgenic periclinal chimeras carrying a gene encoding a fluorescent compound. Plant meristems have three cell layers: the outermost layer (L1), the second layer (L2), and the inner layer (L3). The layers are maintained during development but there is limited knowledge of the details of cell layer patterns within floral organs. In this study, we visualized the distributions of cell layers in floral organs of chrysanthemum using periclinal chimeras carrying a gene encoding a fluorescent compound in the L1 or the L2/L3 layers. The L1 layer contributed most of the epidermal cells of organs including the receptacle, petal, anther, filament, style, stigma, and ovule. The transmitting tissue in the pistil and most of the internal area of the ovule were also derived from the L1. In crossing experiments, no progeny of the L1-chimeric plants showed fluorescence, indicating that the germ cells of chrysanthemum are not derived from the L1 layer. Since anthocyanin pigment is present only in the L1-derived epidermal cells of petals, L1-specific gene integration could be used to alter flower color in commercial cultivars, with a reduced risk of transgene flow from the transgenic chrysanthemums to wild relatives.
Collapse
Affiliation(s)
- Ryutaro Aida
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-0852, Japan.
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-0852, Japan
| | - Satoshi Yoshioka
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-0852, Japan
| | - Naonobu Noda
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-0852, Japan
| |
Collapse
|
7
|
Yang GL, Fang Y, Xu YL, Tan L, Li Q, Liu Y, Lai F, Jin YL, Du AP, He KZ, Ma XR, Zhao H. Frond transformation system mediated by Agrobacterium tumefaciens for Lemna minor. PLANT MOLECULAR BIOLOGY 2018; 98:319-331. [PMID: 30298427 DOI: 10.1007/s11103-018-0778-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
The Lemnaceae, known as duckweed, the smallest flowering aquatic plant, shows promise as a plant bioreactor. For applying this potential plant bioreactor, establishing a stable and efficient genetic transformation system is necessary. The currently favored callus-based method for duckweed transformation is time consuming and genotype limited, as it requires callus culture and regeneration, which is inapplicable to many elite duckweed strains suitable for bioreactor exploitation. In this study, we attempted to establish a simple frond transformation system mediated by Agrobacterium tumefaciens for Lemna minor, one of the most widespread duckweed species in the world. To evaluate the feasibility of the new transformation system, the gene CYP710A11 was overexpressed to improve the yield of stigmasterol, which has multiple medicinal purposes. Three L. minor strains, ZH0055, D0158 and M0165, were transformed by both a conventional callus transformation system (CTS) and the simple frond transformation system (FTS). GUS staining, PCR, quantitative PCR and stigmasterol content detection showed that FTS can produce stable transgenic lines as well as CTS. Moreover, compared to CTS, FTS can avoid the genotype constraints of callus induction, thus saving at least half of the required processing time (CTS took 8-9 months while FTS took approximately 3 months in this study). Therefore, this transformation system is feasible in producing stable transgenic lines for a wide range of L. minor genotypes.
Collapse
Affiliation(s)
- Gui-Li Yang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Fang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Ya-Liang Xu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Qi Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Lai
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Ling Jin
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - An-Ping Du
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Kai-Ze He
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Xin-Rong Ma
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Hai Zhao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
8
|
Abstract
The transfer of T-DNA sequences from Agrobacterium to plant cells is a well-understood process of natural genetic engineering. The expression of T-DNA genes in plants leads to tumors, hairy roots, or transgenic plants. The transformed cells multiply and synthesize small molecules, called opines, used by Agrobacteria for their growth. Several T-DNA genes stimulate or influence plant growth. Among these, iaaH and iaaM encode proteins involved in auxin synthesis, whereas ipt encodes a protein involved in cytokinin synthesis. Growth can also be induced or modified by other T-DNA genes, collectively called plast genes (for phenotypic plasticity). The plast genes are defined by their common ancestry and are mostly found on T-DNAs. They can influence plant growth in different ways, but the molecular basis of their morphogenetic activity remains largely unclear. Only some plast genes, such as 6b, rolB, rolC, and orf13, have been studied in detail. Plast genes have a significant potential for applied research and may be used to modify the growth of crop plants. In this review, I summarize the most important findings and models from 30 years of plast gene research and propose some outlooks for the future.
Collapse
|
9
|
Schedel S, Pencs S, Hensel G, Müller A, Rutten T, Kumlehn J. RNA-Guided Cas9-Induced Mutagenesis in Tobacco Followed by Efficient Genetic Fixation in Doubled Haploid Plants. FRONTIERS IN PLANT SCIENCE 2017; 7:1995. [PMID: 28101094 PMCID: PMC5209389 DOI: 10.3389/fpls.2016.01995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/16/2016] [Indexed: 05/08/2023]
Abstract
Customizable endonucleases are providing an effective tool for genome engineering. The resulting primary transgenic individuals (T0) are typically heterozygous and/or chimeric with respect to any mutations induced. To generate genetically fixed mutants, they are conventionally allowed to self-pollinate, a procedure which segregates individuals into mutant heterozygotes/homozygotes and wild types. The chances of recovering homozygous mutants among the progeny depend not only on meiotic segregation but also on the frequency of mutated germline cells in the chimeric mother plant. In Nicotiana species, the heritability of Cas9-induced mutations has not been demonstrated yet. RNA-guided Cas9 endonuclease-mediated mutagenesis was targeted to the green fluorescent protein (GFP) gene harbored by a transgenic tobacco line. Upon retransformation using a GFP-specific guide RNA/Cas9 construct, the T0 plants were allowed to either self-pollinate, or were propagated via regeneration from in vitro cultured embryogenic pollen which give rise to haploid/doubled haploid plants or from leaf explants that form plants vegetatively. Single or multiple mutations were detected in 80% of the T0 plants. About half of these mutations proved heritable via selfing. Regeneration from in vitro cultured embryogenic pollen allowed for homozygous mutants to be produced more efficiently than via sexual reproduction. Consequently, embryogenic pollen culture provides a convenient method to rapidly generate a variety of genetically fixed mutants following site-directed mutagenesis. The recovery of a mutation not found among sexually produced and analyzed progeny was shown to be achievable through vegetative plant propagation in vitro, which eventually resulted in heritability when the somatic clones were selfed. In addition, some in-frame mutations were associated with functional attenuation of the target gene rather than its full knock-out. The generation of mutants with compromised rather than abolished gene functionality holds promise for future approaches to the conclusive functional validation of genes which are indispensible for the plant.
Collapse
Affiliation(s)
- Sindy Schedel
- Plant Reproductive Biology, Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Stefanie Pencs
- Plant Reproductive Biology, Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Götz Hensel
- Plant Reproductive Biology, Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Andrea Müller
- Plant Reproductive Biology, Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Twan Rutten
- Structural Cell Biology, Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| |
Collapse
|
10
|
Filippis I, Lopez-Cobollo R, Abbott J, Butcher S, Bishop GJ. Using a periclinal chimera to unravel layer-specific gene expression in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:1039-1049. [PMID: 23725542 PMCID: PMC4223383 DOI: 10.1111/tpj.12250] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/18/2013] [Accepted: 05/24/2013] [Indexed: 05/29/2023]
Abstract
Plant organs are made from multiple cell types, and defining the expression level of a gene in any one cell or group of cells from a complex mixture is difficult. Dicotyledonous plants normally have three distinct layers of cells, L1, L2 and L3. Layer L1 is the single layer of cells making up the epidermis, layer L2 the single cell sub-epidermal layer and layer L3 constitutes the rest of the internal cells. Here we show how it is possible to harvest an organ and characterise the level of layer-specific expression by using a periclinal chimera that has its L1 layer from Solanum pennellii and its L2 and L3 layers from Solanum lycopersicum. This is possible by measuring the level of the frequency of species-specific transcripts. RNA-seq analysis enabled the genome-wide assessment of whether a gene is expressed in the L1 or L2/L3 layers. From 13 277 genes that are expressed in both the chimera and the parental lines and with at least one polymorphism between the parental alleles, we identified 382 genes that are preferentially expressed in L1 in contrast to 1159 genes in L2/L3. Gene ontology analysis shows that many genes preferentially expressed in L1 are involved in cutin and wax biosynthesis, whereas numerous genes that are preferentially expressed in L2/L3 tissue are associated with chloroplastic processes. These data indicate the use of such chimeras and provide detailed information on the level of layer-specific expression of genes.
Collapse
Affiliation(s)
- Ioannis Filippis
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
| | | | - James Abbott
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
| | - Sarah Butcher
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
| | - Gerard J Bishop
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
- East Malling ResearchEast Malling, Kent, ME19 6BJ, UK
| |
Collapse
|
11
|
Nanasato Y, Konagaya KI, Okuzaki A, Tsuda M, Tabei Y. Agrobacterium-mediated transformation of kabocha squash (Cucurbita moschata Duch) induced by wounding with aluminum borate whiskers. PLANT CELL REPORTS 2011; 30:1455-64. [PMID: 21400224 PMCID: PMC3135834 DOI: 10.1007/s00299-011-1054-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/16/2011] [Accepted: 02/24/2011] [Indexed: 05/08/2023]
Abstract
An efficient genetic transformation method for kabocha squash (Cucurbita moschata Duch cv. Heiankogiku) was established by wounding cotyledonary node explants with aluminum borate whiskers prior to inoculation with Agrobacterium. Adventitious shoots were induced from only the proximal regions of the cotyledonary nodes and were most efficiently induced on Murashige-Skoog agar medium with 1 mg/L benzyladenine. Vortexing with 1% (w/v) aluminum borate whiskers significantly increased Agrobacterium infection efficiency in the proximal region of the explants. Transgenic plants were screened at the T(0) generation by sGFP fluorescence, genomic PCR, and Southern blot analyses. These transgenic plants grew normally and T(1) seeds were obtained. We confirmed stable integration of the transgene and its inheritance in T(1) generation plants by sGFP fluorescence and genomic PCR analyses. The average transgenic efficiency for producing kabocha squashes with our method was about 2.7%, a value sufficient for practical use.
Collapse
Affiliation(s)
- Yoshihiko Nanasato
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Ken-ichi Konagaya
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- Present Address: Forest Bio-Research Center, Forestry and Forest Products Research Institute, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301 Japan
| | - Ayako Okuzaki
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Mai Tsuda
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Yutaka Tabei
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
12
|
Padilla IMG, Burgos L. Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. PLANT CELL REPORTS 2010; 29:1203-13. [PMID: 20644935 DOI: 10.1007/s00299-010-0900-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 05/12/2023]
Abstract
Plant transformation protocols generally involve the use of selectable marker genes for the screening of transgenic material. The bacterial gene nptII, coding for a neomycin phosphotransferase, and the hpt gene, coding for a hygromycin phosphotransferase, are frequently used. These enzymes detoxify aminoglycoside antibiotics by phosphorylation, thereby permitting cell growth in the presence of antibiotics. Nevertheless, the screening for transgenic regenerated shoots is often partial and difficult due to regeneration of escapes and chimeras. These difficulties can be caused, in part, by an incorrect assumption about the mode of action of antibiotics in bacterial and eukaryotic cells and in in vitro tissue culture. The information contained in this review could be useful to establish better selection strategies by taking into account factors such as explant complexity, transformation and selection protocols that allow better accessibility to cells of Agrobacterium and antibiotics, and faster regeneration methods that avoid collateral effects of antibiotics on recovered, putative transgenic shoots.
Collapse
Affiliation(s)
- I M G Padilla
- Grupo de Biotecnología de Frutales, Departamento de Mejora, CEBAS-CSIC, Campus Universitario de Espinardo, Apartado de correos 164, 30100, Murcia, Spain.
| | | |
Collapse
|
13
|
Faize M, Faize L, Burgos L. Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation. BMC Biotechnol 2010; 10:53. [PMID: 20637070 PMCID: PMC2912785 DOI: 10.1186/1472-6750-10-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 07/16/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The routine generation of transgenic plants involves analysis of transgene integration into the host genome by means of Southern blotting. However, this technique cannot distinguish between uniformly transformed tissues and the presence of a mixture of transgenic and non-transgenic cells in the same tissue. On the other hand, the use of reporter genes often fails to accurately detect chimerical tissues because their expression can be affected by several factors, including gene silencing and plant development. So, new approaches based on the quantification of the amount of the transgene are needed urgently. RESULTS We show here that chimeras are a very frequent phenomenon observed after regenerating transgenic plants. Spatial and temporal analyses of transformed tobacco and apricot plants with a quantitative, real-time PCR amplification of the neomycin phosphotransferase (nptII) transgene as well as of an internal control (beta-actin), used to normalise the amount of target DNA at each reaction, allowed detection of chimeras at unexpected rates. The amount of the nptII transgene differed greatly along with the sub-cultivation period of these plants and was dependent on the localisation of the analysed leaves; being higher in roots and basal leaves, while in the apical leaves it remained at lower levels. These data demonstrate that, unlike the use of the gus marker gene, real-time PCR is a powerful tool for detection of chimeras. Although some authors have proposed a consistent, positive Southern analysis as an alternative methodology for monitoring the dissociation of chimeras, our data show that it does not provide enough proof of uniform transformation. In this work, however, real-time PCR was applied successfully to monitor the dissociation of chimeras in tobacco plants and apricot callus. CONCLUSIONS We have developed a rapid and reliable method to detect and estimate the level of chimeras in transgenic tobacco and apricot plants. This method can be extended to monitor the dissociation of chimeras and the recovery of uniformly-transformed plants.
Collapse
Affiliation(s)
- Mohamed Faize
- Laboratoire de Biologie et Biotechnologie Végétales. Faculté des Sciences, Université Chouaib Doukkali, 24000 El Jadida, Morocco
| | - Lydia Faize
- Grupo de Biotecnología, Departamento de Mejora de Frutales. CEBAS-CSIC, P.O. Box 164, 30.100 Murcia, Spain
| | - Lorenzo Burgos
- Grupo de Biotecnología, Departamento de Mejora de Frutales. CEBAS-CSIC, P.O. Box 164, 30.100 Murcia, Spain
| |
Collapse
|
14
|
Li B, Xie C, Qiu H. Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency. PLANT CELL REPORTS 2009; 28:373-86. [PMID: 19018535 DOI: 10.1007/s00299-008-0640-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 05/03/2023]
Abstract
Public concern and metabolic drain were the main driving forces for the development of a selectable marker-free transformation system. We demonstrated here the production of transgenic tobacco plants using a non-selection approach by Agrobacterium tumefaciens-mediated transformation. A. tumefaciens-infected leaf explants were allowed to produce shoots on a shoot induction medium (SIM) containing no selective compounds. Up to 35.1% of the A. tumefaciens-infected leaf explants produced histochemically GUS(+) shoots, 3.1% of regenerated shoots were GUS(+), and 72% of the GUS(+) shoots were stably transformed by producing GUS(+) T1 seedlings. When polymerase chain reaction (PCR) was used to screen the regenerated shoots, 4% of the shoots were found to be PCR(+) for the transgene and 65% of the PCR(+) shoots were stable transformants. Also, generation of PCR(+) escapes decreased linearly as the number of subculture increased from one to three on SIM containing the antibiotic that kills the Agrobacterium. Twenty-five to 75% of the transformants were able to transmit transgene activity to the T1 generation in a Mendelian 3:1 ratio, and a transformation efficiency of 2.2-2.8% was achieved for the most effective binary vector. These results indicated that majority of the GUS(+) or PCR(+) shoots recovered under no selection were stable transformants, and only one-third of them were chimeric or escapes. Transgenes in these transgenic plants were able to transmit the transgene into progeny in a similar fashion as those recovered under selection.
Collapse
Affiliation(s)
- Baochun Li
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | |
Collapse
|
15
|
Singh S, Rajam MV. Citrus biotechnology: Achievements, limitations and future directions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2009; 15:3-22. [PMID: 23572908 PMCID: PMC3550383 DOI: 10.1007/s12298-009-0001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Citrus is one of the most important commercial and nutritional fruit crops in the world, hence it needs to be improved to cater to the diverse needs of consumers and crop breeders. Genetic manipulation through conventional techniques in this genus is invariably a difficult task for plant breeders as it poses various biological limitations comprising long juvenile period, high heterozygosity, sexual incompatibility, nucellar polyembryony and large plant size that greatly hinder cultivar improvement. Hence, several attempts were made to improve Citrus sps. by using various in vitro techniques. Citrus sps are widely known for their recalcitrance to transformation and subsequent rooting, but constant research has led to the establishment of improved protocols to ensure the production of uniformly transformed plants, albeit with relatively low efficiency, depending upon the genotype. Genetic modification through Agrobacterium-mediated transformation has emerged as an important tool for introducing agronomically important genes into Citrus sps. Somatic hybridization has been applied to overcome self and cross-incompatibility barriers and generated inter-specific and inter-generic hybrids. Encouraging results have been achieved through transgenics for resistance against viruses and bacteria, thereby augmenting the yield and quality of the fruit. Now, when major transformation and regeneration protocols have sufficiently been standardized for important cultivars, ongoing citrus research focuses mainly on incorporating such genes in citrus genotypes that can combat different biotic and abiotic stresses. This review summarizes the advances made so far in Citrus biotechnology, and suggests some future directions of research in this fruit crop.
Collapse
Affiliation(s)
- Sandeepa Singh
- Department of Genetics, University of Delhi — South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Manchikatla V. Rajam
- Department of Genetics, University of Delhi — South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
16
|
Misztal LH, Mostowska A, Skibinska M, Bajsa J, Musial WG, Jarmolowski A. Expression of modified Cry1Ac gene of Bacillus thuringiensis in transgenic tobacco plants. Mol Biotechnol 2004; 26:17-26. [PMID: 14734820 DOI: 10.1385/mb:26:1:17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several mutations were introduced into the Cry1Ac toxin gene, resulting in four variants with altered sequences that were responsible for low expression of the toxin in transgenic plants. These variants were as follows: V1, with modified three A/T-rich regions, including the first signal of transcription termination; V2, with modified five putative polyadenylation signals (polyadenylation signals PAS) and the second signal of transcription termination; V3, with four initial AUUUA motifs; V4, with modification of six PASs, four AUUUA motifs, as well as the first and the second signals of transcription termination. The modified variants and the initial WT gene were cloned into the binary vector pBI121 and introduced into tobacco plants (Nicotiana tabacum) by Agrobacterium tumefaciens-mediated transformation. The presence of transgenes in the tobacco plants was confirmed by the polymerase chain reaction (PCR) method. The expression of particular variants of the Cry1Ac gene in tobacco was assayed using Western blotting with antibodies against the domain II of the Cry1Ac toxin. The average expression of WT was estimated to be 0.0025% of soluble proteins, and the expression levels of modified variants were 0.004%, 0.0098%, 0.0125%, and 0.0043% for V1, V2, V3, and V4, respectively. In this article we described the construction of a variant of the Cry1Ac gene (V3) with 12 point mutations leading to an average level of expression in transgenic plants five times higher than that observed in the case of the WT gene. Our results have shown for the first time that the modification of AUUUA sequences has a significant effect on the expression of the Cry1Ac gene in transgenic plants.
Collapse
Affiliation(s)
- Lucyna Honorata Misztal
- Adam Mickiewicz University, Department of Biotechnology, 5 Miedzychodzka Street, 60-371 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
17
|
Gidoni D, Bar M, Gilboa N. FLP/FRT-mediated restoration of normal phenotypes and clonal sectors formation in rolC transgenic tobacco. Transgenic Res 2001; 10:317-28. [PMID: 11592711 DOI: 10.1023/a:1016603627254] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Site-specific recombination systems have been shown to excise transgene DNA sequences positioned between their cognate target sites, and thus be used to generate clonal sectors in transgenic plants. Here we characterized clonal sectors derived from genetic reversion of rolC (A. rhizogenes)--induced vegetative and reproductive phenotypes, mediated by FLP recombinase from S. cerevisiae, in tobacco. The constitutive expression of rolC induces pleiotropic effects including reduced apical dominance and plant height, lanceolate and pale green leaves and small, male-sterile flowers. Two transgenic male-sterile tobacco lines (N. tabacum, Samsun NN) expressing a 35sP-rolC gene construct flanked by two FRT (FLP recombinase target) sites, were cross-pollinated with pollen from a constitutive 35sP-FLP expressing line. Three main phenotypes were generated in result of recombinase-mediated excision of the 35sP-rolC locus in the F1 (FLP x FRT-35sP-rolC-FRT) hybrid progenies: (a) restoration of male fertility, associated with reversion to normal leaf phenotypes prior to flower bud formation, (b) development of normal and fertile lateral shoot sectors on the background of rolC-type plants, (c) restoration of partially fertile flowers, associated with display of peripheral normal leaf sectors surrounding rolC-type inner-leaf tissues, consistent with periclinal chimeras. These results, supported by DNA molecular analysis, indicate that site-specific recombination might be used as a relatively efficient tool for generation of transgenic periclinal chimeric plants.
Collapse
Affiliation(s)
- D Gidoni
- Department of Plant Genetics, Institute of Field and Garden Crops, ARO, The Volcani Center, Bet Dagan, Israel.
| | | | | |
Collapse
|
18
|
Aoki S, Syno K. Horizontal gene transfer and mutation: ngrol genes in the genome of Nicotiana glauca. Proc Natl Acad Sci U S A 1999; 96:13229-34. [PMID: 10557303 PMCID: PMC23930 DOI: 10.1073/pnas.96.23.13229] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1999] [Indexed: 11/18/2022] Open
Abstract
Ngrol genes (NgrolB, NgrolC, NgORF13, and NgORF14) that are similar in sequence to genes in the left transferred DNA (TL-DNA) of Agrobacterium rhizogenes have been found in the genome of untransformed plants of Nicotiana glauca. It has been suggested that a bacterial infection resulted in transformation of Ngrol genes early in the evolution of the genus Nicotiana. Although the corresponding four rol genes in TL-DNA provoked hairy-root syndrome in plants, present-day N. glauca and plants transformed with Ngrol genes did not exhibit this phenotype. Sequenced complementation analysis revealed that the NgrolB gene did not induce adventitious roots because it contained two point mutations. Single-base site-directed mutagenesis at these two positions restored the capacity for root induction to the NgrolB gene. When the NgrolB, with these two base substitutions, was positioned under the control of the cauliflower mosaic virus 35S promoter (P35S), transgenic tobacco plants exhibited morphological abnormalities that were not observed in P35S-RirolB plants. In contrast, the activity of the NgrolC gene may have been conserved after an ancient infection by bacteria. Discussed is the effect of the horizontal gene transfer of the Ngrol genes and mutations in the NgrolB gene on the phenotype of ancient plants during the evolution of N. glauca.
Collapse
Affiliation(s)
- S Aoki
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 Japan.
| | | |
Collapse
|
19
|
Abstract
▪ Abstract The generation and analysis of plant chimeras and other genetic mosaics have been used to deduce patterns of cell division and cell fate during plant development and to demonstrate the existence of clonally distinct cell lineages in the shoot meristems of higher plants. Cells derived from these lineages do not have fixed developmental fates but rely on positional information to determine their patterns of division and differentiation. Chimeras with cells that differ genetically for specific developmental processes have been experimentally generated by a variety of methods. This review focuses on studies of intercellular interactions during plant development as well as of the coordination of cells during meristem function and organogenesis. Recent experiments combining mosaic analysis with molecular analysis of developmental mutants have begun to shed light on the nature of the signals involved in these processes and the mechanisms by which they are transmitted and received among cells.
Collapse
Affiliation(s)
- Eugene J. Szymkowiak
- Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52242; , Department of Plant Biology, University of California, Berkeley, California 94720
| | | |
Collapse
|
20
|
Schmülling T, Röhrig H. Gene silencing in transgenic tobacco hybrids: frequency of the event and visualization of somatic inactivation pattern. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:375-90. [PMID: 8552042 DOI: 10.1007/bf00287099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have investigated the stability of the expression of different T-DNA-borne genes in hybrid tobacco lines. These lines were constructed to rescue rolC-induced male sterility in kanamycin-resistant P35s-rolC transgenic tobacco plants by expression of rolC antisense genes. Using five different tester lines, a total of 158 hybrids was obtained. We observed inactivation of transgene expression in 20% of the F1 progeny and in 35% of the backcrossed F2 progeny, as indicated by the loss of kanamycin resistance. In 3% of all crosses complete loss of antibiotic resistance was noted, while in most affected hybrid progeny only part of the population became kanamycin sensitive. Single genes could be selectively inactivated on T-DNAs harboring several genes. Gene inactivation was not restricted to one of the two T-DNAs examined. Somatic silencing, visualized by a cell-specific 35SGUSINT marker gene, occurred in a random fashion or exhibited an inherited specific pattern. The type of somatic silencing pattern observed indicated developmental control of the process. Two phenotypic classes could be distinguished with respect to frequency and timing of the inactivation process. Rapid gene inactivation, occurring within a few weeks after germination of hybrid seedlings, was characterized by complete methylation of restriction sites in the promoter of the silenced gene, resetting of gene expression during meiosis, heredity of the developmentally controlled program of gene silencing in subsequent generations, and rapid reactivation of gene expression after genetic separation of the different T-DNAs. In contrast, a slow type of gene inactivation was of a more stochastic nature and was recognized only in hybrids of the backcrossed F2 generation. In this case the degree of promoter methylation, which could extend beyond the T-DNA borders, was not correlated with the reduction in steady-state poly(A)+ mRNA levels, the silenced state was transmitted through meiosis and reactivation lasted several generations. The implications of the observations for our understanding of the gene inactivation process are discussed.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Southern
- Cinnamates
- Crosses, Genetic
- DNA, Bacterial/genetics
- Drug Resistance/genetics
- Gene Expression Regulation, Plant
- Genotype
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Histocytochemistry
- Hygromycin B/analogs & derivatives
- Hygromycin B/pharmacology
- Kanamycin/metabolism
- Kanamycin/pharmacology
- Methylation
- Phenotype
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- Nicotiana/drug effects
- Nicotiana/genetics
- Transcription, Genetic/genetics
- Transgenes
Collapse
Affiliation(s)
- T Schmülling
- Universität Tübingen, Lehrstuhl für Allgemeine Genetik, Germany
| | | |
Collapse
|
21
|
Schmülling T, Röhrig H, Pilz S, Walden R, Schell J. Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:385-94. [PMID: 8483453 DOI: 10.1007/bf00279442] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transgenic tobacco plants (Nicotiana tabacum L.) expressing the rolC gene of Agrobacterium rhizogenes under the transcriptional control of the 35S RNA promoter are male sterile. When these plants are genetically crossed with others containing the rolC gene linked in antisense orientation to the 35S RNA promoter, hybrid progeny display restoration of male fertility. Moreover, hybrid progeny are revertant for other features of the rolC phenotype, such as restoration of plant height, leaf pigment content and female fertility. The level of restoration of the characteristics of untransformed tobacco appeared to be independent of the steady-state level of antisense RNA. Addition of six transcriptional enhancer sequences upstream of the 35S transcriptional start region in the antisense construct led to a higher steady-state level of antisense RNA than that produced using a promoter linked to a single enhancer sequence. However no significant difference was observed in the level of attenuation of the rolC phenotype in the progeny of crosses with either one or six transcriptional enhancers linked to the antisense rolC gene. Antisense constructs comprising only 189 bp of the rolC 5' coding region appeared less efficient in attenuating the rolC phenotype than those including the whole rolC coding region as well as its 3' untranslated region. Furthermore, results from experiments on light-controlled rolC gene expression indicate that microsporogenesis is sensitive to rolC gene action during the early stages of flower development.
Collapse
Affiliation(s)
- T Schmülling
- Universität Tübingen, Lehrstuhl für Allgemeine Genetik, FRG
| | | | | | | | | |
Collapse
|