1
|
Alabed D, Tibebu R, Ariyaratne M, Shao M, Milner MJ, Thomson JG. Novel Agrobacterium fabrum str. 1D1416 for Citrus Transformation. Microorganisms 2024; 12:1999. [PMID: 39458308 PMCID: PMC11509345 DOI: 10.3390/microorganisms12101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Citrus is one of the world's most important and widely produced fruit crops, with over a 100 million metric tons harvested from nearly 10 million hectares in 2023. Challenges in crop maintenance, production, and fruit quality necessitate developing new traits through Agrobacterium-mediated genetic transformation. While a few Agrobacterium strains (EHA105, GV3101, LBA4404) are known to transform citrus, many wild strains remain untested. We screened forty-one wild-type Agrobacterium strains isolated from various woody species and identified five capable of DNA transfer into citrus cells. Strain 1D1416 demonstrated the highest transient transformation frequency in Carrizo epicotyl explants (88%), outperforming the control EHA105 (84%) with comparable shoot regeneration rates (32% and 42%, respectively). Notably, 1D1416 exhibited no overgrowth and had the lowest necrosis and mortality rates in transformed tissues. It efficiently transferred the DsRed gene and induced galls in mature tissues of Mexican lime (70%), lemon (48%), Washington navel orange (25%), and clementine (6%). Genome sequencing of 1D1416 allowed for the disarming of the native T-DNA and addition of GAANTRY technology. This novel strain, combined with an optimized transformation procedure, make it a valuable tool for advancing citrus transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - James G. Thomson
- USDA-ARS Crop Improvement and Genetics, Western Regional Research Center, Albany, CA 94710, USA; (D.A.); (R.T.); (M.A.); (M.S.); (M.J.M.)
| |
Collapse
|
2
|
Otten L. T-DNA regions from 350 Agrobacterium genomes: maps and phylogeny. PLANT MOLECULAR BIOLOGY 2021; 106:239-258. [PMID: 33826062 DOI: 10.1007/s11103-021-01140-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/12/2021] [Indexed: 05/27/2023]
Abstract
Analysis of 350 Agrobacterium wgs sequences reveals complex evolutionary history of T-DNA regions Virulent Agrobacterium strains transfer one or more plasmid DNA fragments to plant cells during a well-characterized transformation process. The transferred DNA sequences (T-DNA regions) are delimited by 25 nucleotide long conserved border sequences. Until recently, relatively few T-DNA regions were known. However, due to increased whole genome sequencing efforts, about 400 Agrobacterium sequences have now become available, 350 of which contain T-DNA regions. Detailed analysis identified 92 different T-DNA regions and several new T-DNA genes. T-DNA regions can be divided into three groups. I. Typical Agrobacterium rhizogenes T-DNA regions with rol genes. II. A large group of T-DNA regions with iaa and ipt genes, which can be further subdivided into seven subgroups. III. A small group of unusual T-DNA regions. The evolutionary relation between the T-DNA regions could not be completely elucidated, because of the lack of evolutionary intermediates. Several clusters of highly related structures suggest that evolution of T-DNA regions proceeds by slow, progressive evolution of gene sequences, accompanied by rapid changes in overall structure, due to recombination between T-DNA regions of different origins, and insertion of bacterial insertion sequences (IS). Divergence values for T-DNA genes suggest that they were recruited at different times in evolution. An attempt was made to link T-DNA region evolution to plasmid evolution. The present study provides a solid basis for further studies on T-DNA region diversity and evolution.
Collapse
Affiliation(s)
- Léon Otten
- Institut de Biologie Moléculaire des Plantes, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
3
|
Shao S, van Heusden GPH, Hooykaas PJJ. Complete Sequence of Succinamopine Ti-Plasmid pTiEU6 Reveals Its Evolutionary Relatedness with Nopaline-Type Ti-Plasmids. Genome Biol Evol 2020; 11:2480-2491. [PMID: 31386108 PMCID: PMC6733357 DOI: 10.1093/gbe/evz173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
Agrobacterium tumefaciens is the etiological agent of plant crown gall disease, which is induced by the delivery of a set of oncogenic genes into plant cells from its tumor-inducing (Ti) plasmid. Here we present the first complete sequence of a succinamopine-type Ti-plasmid. Plasmid pTiEU6 is comprised of 176,375 bp with an overall GC content of 56.1% and 195 putative protein-coding sequences could be identified. This Ti-plasmid is most closely related to nopaline-type Ti-plasmids. It contains a single T-region which is somewhat smaller than that of the nopaline-type Ti-plasmids and in which the gene for nopaline synthesis is replaced by a gene (sus) for succinamopine synthesis. Also in pTiEU6 the nopaline catabolic genes are replaced by genes for succinamopine catabolism. In order to trace the evolutionary origin of pTiEU6, we sequenced six nopaline Ti-plasmids to enlarge the scope for comparison to this class of plasmids. Average nucleotide identity analysis revealed that pTiEU6 was most closely related to nopaline Ti-plasmids pTiT37 and pTiSAKURA. In line with this traces of several transposable elements were present in all the nopaline Ti plasmids and in pTiEU6, but one specific transposable element insertion, that of a copy of IS1182, was present at the same site only in pTiEU6, pTiT37, and pTiSAKURA, but not in the other Ti plasmids. This suggests that pTiEU6 evolved after diversification of nopaline Ti-plasmids by DNA recombination between a pTiT37-like nopaline Ti-plasmid and another plasmid, thus introducing amongst others new catabolic genes matching a new opine synthase gene for succinamopine synthesis.
Collapse
Affiliation(s)
- Shuai Shao
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, The Netherlands
| | - G Paul H van Heusden
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, The Netherlands
| | - Paul J J Hooykaas
- Molecular and Developmental Genetics, Institute of Biology, Leiden University, The Netherlands
| |
Collapse
|
4
|
Mary C, Baron C. Bases moléculaires de l’infection de plantes parAgrobacterium tumefaciensvia un système de sécrétion de type IV. Biochem Cell Biol 2018; 97:215-223. [PMID: 30142282 DOI: 10.1139/bcb-2018-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agrobacterium tumefaciens is a well studied phytopathogen given its various applications for deciphering host-pathogen interactions, bacterial communication, and capacity to transfer DNA fragments into host cells via a membrane protein system, the type IV secretion system (T4SS). T4SS mechanism is similar to the one responsible for antibiotic resistance gene transmission, and new knowledge gained could be applied to other organisms using such a mechanism. As well, A. tumefaciens is of economic importance in biotechnology due to its capacity to generate genetically modified plants. Agrobacterium tumefaciens harbours a plasmid known as Ti plasmid encoding T4SS function genes used for transferring genetic information and plant colonization. In this review, the authors describe the molecular basis of infection, from detection of host signals, to the description of different regions of Ti plasmid key to infection, ending with substrate transfer through bacterial wall. [Journal translation].
Collapse
Affiliation(s)
- Charline Mary
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Christian Baron
- Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
5
|
Abstract
The transfer of T-DNA sequences from Agrobacterium to plant cells is a well-understood process of natural genetic engineering. The expression of T-DNA genes in plants leads to tumors, hairy roots, or transgenic plants. The transformed cells multiply and synthesize small molecules, called opines, used by Agrobacteria for their growth. Several T-DNA genes stimulate or influence plant growth. Among these, iaaH and iaaM encode proteins involved in auxin synthesis, whereas ipt encodes a protein involved in cytokinin synthesis. Growth can also be induced or modified by other T-DNA genes, collectively called plast genes (for phenotypic plasticity). The plast genes are defined by their common ancestry and are mostly found on T-DNAs. They can influence plant growth in different ways, but the molecular basis of their morphogenetic activity remains largely unclear. Only some plast genes, such as 6b, rolB, rolC, and orf13, have been studied in detail. Plast genes have a significant potential for applied research and may be used to modify the growth of crop plants. In this review, I summarize the most important findings and models from 30 years of plast gene research and propose some outlooks for the future.
Collapse
|
6
|
Opine-based Agrobacterium competitiveness: dual expression control of the agrocinopine catabolism (acc) operon by agrocinopines and phosphate levels. J Bacteriol 2008; 190:3700-11. [PMID: 18344359 DOI: 10.1128/jb.00067-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens strain C58 can transform plant cells to produce and secrete the sugar-phosphate conjugate opines agrocinopines A and B. The bacterium then moves in response to the opines and utilizes them as exclusive sources of carbon, energy, and phosphate via the functions encoded by the acc operon. These privileged opine-involved activities contribute to the formation of agrobacterial niches in the environment. We found that the expression of the acc operon is induced by agrocinopines and also by limitation of phosphate. The main promoter is present in front of the first gene, accR, which codes for a repressor. This operon structure enables efficient repression when opine levels are low. The promoter contains two putative operators, one overlapping the -10 sequence and the other in the further upstream from it; two partly overlapped putative pho boxes between the two operators; and two consecutive transcription start sites. DNA fragments containing either of the operators bound purified repressor AccR in the absence of agrocinopines but not in the presence of the opines, demonstrating the on-off switch of the promoter. Induction of the acc operon can occur under low-phosphate conditions in the absence of agrocinopines and further increases when the opines also are present. Such opine-phosphate dual regulatory system of the operon may ensure maximum utilization of agrocinopines when available and thereby increase the chances of agrobacterial survival in the highly competitive environment with limited general food sources.
Collapse
|
7
|
Moriuchi H, Okamoto C, Nishihama R, Yamashita I, Machida Y, Tanaka N. Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:260-75. [PMID: 15078329 DOI: 10.1111/j.1365-313x.2004.02041.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The rooting-locus gene B (rolB) on the T-DNA of the root-inducing (Ri) plasmid in Agrobacterium rhizogenes is responsible for the induction of transformed adventitious roots, although the root induction mechanism is unknown. We report here that the RolB protein of pRi1724 (1724RolB) is associated with Nicotianatabacum14-3-3-like protein omegaII (Nt14-3-3 omegaII) in tobacco bright yellow (BY)-2 cells. Nt14-3-3 omegaII directly interacts with 1724RolB protein. Green fluorescent protein (GFP)-fused 1724RolB is localized to the nucleus. GFP-fused mutant 1724RolB proteins having a deletion or amino acid substitution are unable to interact with Nt14-3-3 omegaII and also show impaired nuclear localization. Moreover, these 1724RolB mutants show decreased capacity for adventitious root induction. These results suggest that adventitious root induction by 1724RolB protein correlates with its interaction with Nt14-3-3 omegaII and the nuclear localization of 1724RolB protein.
Collapse
Affiliation(s)
- Hiroshi Moriuchi
- Center for Gene Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Ullrich CI, Aloni R. Vascularization is a general requirement for growth of plant and animal tumours. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51:1951-1960. [PMID: 11141169 DOI: 10.1093/jexbot/51.353.1951] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Solid-tumour growth in animals as in humans depends on angiogenesis. Tumours that fail to induce the formation of new blood vessels do not enlarge beyond a few millimetres in diameter. Plant tumours induced by Agrobacterium tumefaciens can reach diameters of more than 100 mm, thus raising the question of how they are sufficiently supplied with nutrients and water. Until recently, these rapidly growing tumours were considered unorganized or partly organized masses. However, in analogy to animal and human tumours, growth of leaf and stem tumours depends on neovascularization. Plant tumour cells induce the formation of a sophisticated vascular network consisting of water-conducting vessels and assimilate-transporting sieve elements. Similar to animal and human tumours that overexpress angiogenic growth factors, plant tumours overexpress the T-DNA-encoded vascularization-promoting growth factors auxin and cytokinin upon AGROBACTERIUM: infection. High auxin levels induce ethylene emission from the tumours, which has a strong impact on tumour and host stem, as well as on root structure and function. Ethylene apparently stimulates abscisic acid synthesis in the leaves above the tumour, which reduces transpiration and thus protects the host plant from rapid wilting. Hence, for the elucidation of phytohormone-dependent vascular development in plants, such tumours are regarded as an excellent model system. The comparison of analogous requirement of neovascularization for tumour growth in plants, as in animals and humans, is discussed in terms of interdisciplinary strategies of possible prevention and therapy.
Collapse
Affiliation(s)
- C I Ullrich
- Institut für Botanik, Technische Universität, D-64287 Darmstadt, Germany.
| | | |
Collapse
|
9
|
Burr TJ, Otten L. CROWN GALL OF GRAPE: Biology and Disease Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 1999; 37:53-80. [PMID: 11701817 DOI: 10.1146/annurev.phyto.37.1.53] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Not until 1973 was it reported that strains of Agrobacterium that cause crown gall disease of grape form a specific group (later characterized as Agrobacterium vitis). Tumorigenic and nontumorigenic A. vitis have since been isolated from infected and symptomless grapes worldwide. Research on the genetic makeup of A. vitis has led to an improved understanding of pathogen biology and bacterial evolution. In addition, the identification of significant gene sequences has facilitated the development of PCR and RFLP-based identification procedures that continue to improve the detection of A. vitis in plants and soil. Current control practices rely on the use of disease-resistant cultivars, cultural practices that minimize plant injury, and the production of pathogen-free vines. Promising future controls include employment of biological control agents and development of crown gall-resistant transgenic grapevines.
Collapse
Affiliation(s)
- Thomas J. Burr
- Department of Plant Pathology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | | |
Collapse
|
10
|
Otten L, Schmidt J. A T-DNA from the Agrobacterium tumefaciens limited-host-range strain AB2/73 contains a single oncogene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:335-342. [PMID: 9574502 DOI: 10.1094/mpmi.1998.11.5.335] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Agrobacterium tumefaciens strain AB2/73 isolated from Lippia canescens has been described as a limited-host-range strain. Its tumor-inducing (Ti) plasmid has been found to lack DNA homology to known T-DNAs (L. Unger, S. F. Ziegler, G. A. Huffman, V. C. Knauf, R. Peet, L. W. Moore, M. P. Gordon, and E. W. Nester. J. Bacteriol. 164:723-730, 1985). We have isolated a T-DNA from AB2/73 by using a heterologous border sequence as a probe. The AB2/73 T-DNA sequence (3,504 bp) is flanked by canonical border sequences, has no detectable DNA homology with other T-DNAs, and contains only two genes: lsn (Lippia strain nopaline synthaselike gene) and lso (Lippia strain oncogene). The lso gene induces nondifferentiating tumors on a limited number of hosts when transferred by a Ti plasmid from a wide-host-range strain. Part of the predicted Lso protein is weakly homologous to other Agrobacterium oncoproteins encoded by rolB, rolB, orf13, gene e, gene 5, and gene 3'. A 28-kb fragment corresponding to the virA to virE region was cloned by using a heterologous vir fragment as probe. The AB2/73 vir region is homologous to most of the C58 virulence region; however, the virA gene is most related to the virA gene of the Agrobacterium vitis limited-host-range strain Ag162.
Collapse
Affiliation(s)
- L Otten
- Department of Cell Biology, Plant Molecular Biology Institute of the C.N.R.S., Strasbourg, France.
| | | |
Collapse
|
11
|
Kim H, Farrand SK. Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84. J Bacteriol 1997; 179:7559-72. [PMID: 9393724 PMCID: PMC179710 DOI: 10.1128/jb.179.23.7559-7572.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The acc locus from the Ti plasmid pTiC58 confers utilization of and chemotaxis toward agrocinopines A and B (A+B), as well as susceptibility to a highly specific antiagrobacterial antibiotic, agrocin 84. DNA sequence analyses revealed that acc is composed of eight open reading frames, accR and accA through accG. Previous work showed that accR encodes the repressor which regulates this locus, and accA codes for the periplasmic binding protein of the agrocinopine transport system (S. Beck Von Bodman, G. T. Hayman, and S. K. Farrand, Proc. Natl. Acad. Sci. USA 89:643-647, 1992; G. T. Hayman, S. Beck Von Bodman, H. Kim, P. Jiang, and S. K. Farrand, J. Bacteriol. 175:5575-5584, 1993). The predicted proteins from accA through accE, as a group, have homology to proteins that belong to the ABC-type transport system superfamily. The predicted product of accF is related to UgpQ of Escherichia coli, which is a glycerophosphoryl diester phosphodiesterase, and also to agrocinopine synthase coded for by acs located on the T-DNA. The translated product of accG is related to myoinositol 1 (or 4) monophosphatases from various eucaryotes. Analyses of insertion mutations showed that accA through accE are required for transport of both agrocin 84 and agrocinopines A+B, while accF and accG are required for utilization of the opines as the sole source of carbon. Mutations in accF or accG did not abolish transport of agrocin 84, although we observed slower removal of the antibiotic from the medium by the accF mutant compared to the wild type. However, the insertion mutation in accF abolished detectable uptake of agrocinopines A+B. A mutation in accG had no effect on transport of the opines. The accF mutant was not susceptible to agrocin 84 although it took up the antibiotic. This finding suggests that agrocin 84 is activated by AccF after being transported into the bacterial cell.
Collapse
Affiliation(s)
- H Kim
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | |
Collapse
|