1
|
Rêgo MJBM, Santos PB, Carvalho-Junior LB, Stirling J, Beltrão EIC. Evaluation of Parkia pendula lectin mRNA differentially expressed in seedlings. BRAZ J BIOL 2014; 74:489-92. [PMID: 25166336 DOI: 10.1590/1519-6984.18512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/01/2013] [Indexed: 11/21/2022] Open
Abstract
Parkia pendula (Willd.) Walp. (Fabaceae) is a neotropical species of the genus Parkia more abundantly distributed in Central to South America. From the seeds of P. pendula a glucose/mannose specific lectin (PpeL) was isolated that has been characterised and used as a biotechnological tool but until now this is the first manuscript to analyse P. pendula mRNA expression in seedlings. For this porpoise a Differential display reverse transcription polimerase chain reaction (DDRT-PCR) was used to evaluate the expression of P. pendula lectin mRNAs in non-rooted seedlings. No bands were observed in the agarose gel, indicating the absence of mRNA of PpeL seedlings. our findings confirm that lectins mRNAs are differently regulated among species even if they are grouped in the same class.
Collapse
Affiliation(s)
- M J B M Rêgo
- Laboratory of Immunopathology Keizo Asami, Department of Pathology, Federal University of Pernambuco ? UFPE, Recife, PE, Brazil
| | - P B Santos
- Laboratory of Immunopathology Keizo Asami, Department of Pathology, Federal University of Pernambuco ? UFPE, Recife, PE, Brazil
| | - L B Carvalho-Junior
- Laboratory of Immunopathology Keizo Asami, Department of Pathology, Federal University of Pernambuco ? UFPE, Recife, PE, Brazil
| | - J Stirling
- Laboratory of Molecular Genetics, Division of Life Sciences, King's College London, London, United Kingdom
| | - E I C Beltrão
- Laboratory of Immunopathology Keizo Asami, Department of Pathology, Federal University of Pernambuco ? UFPE, Recife, PE, Brazil
| |
Collapse
|
2
|
Zörb C, Brunner KD, Perbandt M, Betzel C, Wagner G. Cloning, Recombinant Expression and Characterization of Wild Type-105-Trp-Calmodulin of the Green AlgaMougeotia scalaris. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1998.tb00719.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Meller Harel HY, Fontaine V, Chen H, Jones IM, Millner PA. Display of a maize cDNA library on baculovirus infected insect cells. BMC Biotechnol 2008; 8:64. [PMID: 18700036 PMCID: PMC2527309 DOI: 10.1186/1472-6750-8-64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/12/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. RESULTS We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. CONCLUSION The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.
Collapse
Affiliation(s)
| | - Veronique Fontaine
- UMR INRA/USTL 1281, Stress Abiotiques et Différenciation des Végétaux cultivés 2, Chaussée Brunehaut, Estrées-Mons BP 50136, 80203 Péronne cedex, France
| | - Hongying Chen
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berks, RG6 6AJ, UK
| | - Ian M Jones
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berks, RG6 6AJ, UK
| | - Paul A Millner
- Faculty of biological sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants. Cell Res 2008; 18:577-88. [DOI: 10.1038/cr.2008.39] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
5
|
Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. THE NEW PHYTOLOGIST 2007; 173:27-38. [PMID: 17176391 DOI: 10.1111/j.1469-8137.2006.01888.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
* Using pharmacological and biochemical approaches, the role of calmodulin (CaM) and the relationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Treatment with ABA or H(2)O(2) led to significant increases in the concentration of cytosolic Ca(2+) in the protoplasts of mesophyll cells and in the expression of the calmodulin 1 (CaM1) gene and the content of CaM in leaves of maize plants, and enhanced the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes. The up-regulation of the antioxidant enzymes was almost completely blocked by pretreatments with two CaM antagonists. * Pretreatments with CaM antagonists almost completely inhibited ABA-induced H(2)O(2) production throughout ABA treatment, but pretreatment with an inhibitor or scavenger of reactive oxygen species (ROS) did not affect the initial increase in the contents of CaM induced by ABA. * Our results suggest that Ca(2+)-CaM is involved in ABA-induced antioxidant defense, and that cross-talk between Ca(2+)-CaM and H(2)O(2) plays a pivotal role in ABA signaling.
Collapse
Affiliation(s)
- Xiuli Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
6
|
Duval FD, Renard M, Jaquinod M, Biou V, Montrichard F, Macherel D. Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:481-93. [PMID: 12445120 DOI: 10.1046/j.1365-313x.2002.01409.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Implication of the ubiquitous, highly conserved, Ca2+ sensor calmodulin (CaM) in pea seed germination has been investigated. Mass spectrometry analysis of purified CaM revealed the coexistence in seeds of three protein isoforms, diverging from each other by single amino acid substitution in the N-terminal alpha-helix. CaM was shown to be encoded by a small multigenic family, and full-length cDNAs of the three isoforms (PsCaM1, 2 and 3) were isolated to allow the design of specific primers in more divergent 5' and 3' untranslated regions. Expression studies, performed by semiquantitative RT-PCR, demonstrated differential expression patterns of the three transcripts during germination. PsCaM1 and 2 were detected at different levels in dry axes and cotyledons, and they accumulated during imbibition and prior to radicle protrusion. In contrast, PsCaM3 appeared only upon radicle protrusion, then gradually increased in both tissues. To characterise the biochemical properties of the CaM isoforms, functional analyses were conducted in vitro using recombinant Strep-tagged proteins (CaM1-ST, CaM2-ST and CaM3-ST) expressed in Escherichia coli. Gel mobility shift assays revealed that CaM1-ST exhibited a stoichiometric binding of a synthetic amphiphilic CaM kinase II peptide while CaM2-ST and CaM3-ST affinities for the same peptide were reduced. Affinity differences were also observed for CaM isoform binding to Trp-3, an idealised helical CaM-binding peptide. However, the three proteins activated in the same way the CaM-dependent pea NAD kinase. Finally, the significance of the single substitutions upon CaM interaction with its targets is discussed in a structural context.
Collapse
Affiliation(s)
- Frédéric D Duval
- UMR 1191 Physiologie Moléculaire des Semences, LRPV, 16 bd Lavoisier, 49045 Angers Cedex 01, France
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
|
9
|
Gao J, Yin DH, Yao Y, Sun H, Qin Z, Schöneich C, Williams TD, Squier TC. Loss of conformational stability in calmodulin upon methionine oxidation. Biophys J 1998; 74:1115-34. [PMID: 9512014 PMCID: PMC1299464 DOI: 10.1016/s0006-3495(98)77830-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have used electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and fluorescence spectroscopy to investigate the secondary and tertiary structural consequences that result from oxidative modification of methionine residues in wheat germ calmodulin (CaM), and prevent activation of the plasma membrane Ca-ATPase. Using ESI-MS, we have measured rates of modification and molecular mass distributions of oxidatively modified CaM species (CaMox) resulting from exposure to H2O2. From these rates, we find that oxidative modification of methionine to the corresponding methionine sulfoxide does not predispose CaM to further oxidative modification. These results indicate that methionine oxidation results in no large-scale alterations in the tertiary structure of CaMox, because the rates of oxidative modification of individual methionines are directly related to their solvent exposure. Likewise, CD measurements indicate that methionine oxidation results in little change in the apparent alpha-helical content at 28 degrees C, and only a small (0.3 +/- 0.1 kcal mol(-1)) decrease in thermal stability, suggesting the disruption of a limited number of specific noncovalent interactions. Fluorescence lifetime, anisotropy, and quenching measurements of N-(1-pyrenyl)-maleimide (PMal) covalently bound to Cys26 indicate local structural changes around PMal in the amino-terminal domain in response to oxidative modification of methionine residues in the carboxyl-terminal domain. Because the opposing globular domains remain spatially distant in both native and oxidatively modified CaM, the oxidative modification of methionines in the carboxyl-terminal domain are suggested to modify the conformation of the amino-terminal domain through alterations in the structural features involving the interdomain central helix. The structural basis for the linkage between oxidative modification and these global conformational changes is discussed in terms of possible alterations in specific noncovalent interactions that have previously been suggested to stabilize the central helix in CaM.
Collapse
Affiliation(s)
- J Gao
- Department of Biochemistry, University of Kansas, Lawrence 66045-2106, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gagliardi D, Breton C, Chaboud A, Vergne P, Dumas C. Expression of heat shock factor and heat shock protein 70 genes during maize pollen development. PLANT MOLECULAR BIOLOGY 1995; 29:841-56. [PMID: 8541509 DOI: 10.1007/bf00041173] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have analysed the expression of heat shock protein 70 (HSP70) and heat shock factor (HSF) gene during maize pollen development, HSFs being the transcriptional activators of hsp genes. In order to eliminate the sporophytic tissues of anthers, we have isolated homogeneous cell populations corresponding to five stages of maize pollen development from microspores to mature pollen. We show that in the absence of heat stress, hsp70 genes are highly expressed late-bicellular pollen as compared to other stages. HSP70 transcripts are significantly accumulated in response to a heat shock at the late microspore stage but to a much lower extent than in vegetative tissues. The latest stages of pollen development, i.e. mid-tricellular and mature pollen, do not exhibit heat-induced accumulation of HSP70 transcripts. Therefore, we analysed the expression of hsf genes throughout pollen development. We demonstrate that at least three hsf genes are expressed in maize and that transcripts corresponding to one hsf gene, whose expression is independent of temperature in somatic as well as in microgametophytic tissues, are present at similar levels throughout pollen development. In addition, we show that the expression of the two other hsf genes is heat-inducible in maize vegetative tissues and is not significantly increased after heat shock at any stage of pollen development. These results indicate that the loss of hsp gene expression at late stages of pollen development is not due to a modification of hsf gene expression at the mRNA level and that hsf gene expression is differentially regulated in vegetative and microgametophytic tissues.
Collapse
Affiliation(s)
- D Gagliardi
- Ecole Normale Supérieure de Lyon, Reconnaissance Cellulaire et Amélioration des Plantes, UMR CNRS-INRA 9938, Lyon, France
| | | | | | | | | |
Collapse
|
11
|
Dumas C, Faure JE. Use of in vitro fertilization and zygote culture in crop improvement. Curr Opin Biotechnol 1995. [DOI: 10.1016/0958-1669(95)80029-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|