1
|
Rathore RS, Mishra M, Pareek A, Singla-Pareek SL. Grain lysine enrichment and improved stress tolerance in rice through protein engineering. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1408-1426. [PMID: 39392917 DOI: 10.1093/jxb/erae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/10/2024] [Indexed: 10/13/2024]
Abstract
Amino acids are a major source of nourishment for people living in regions where rice is a staple food. However, rice grain is deficient in essential amino acids including lysine. The activity of the enzyme dihydrodipicolinate synthase (DHDPS) is crucial for lysine production in higher plants, but it is tightly regulated through feedback inhibition by its end product, lysine, leading to limited activity in the grain and resulting in low lysine accumulation. We identified lysine binding sites in the DHDPS enzyme and introduced key mutations to make DHDPS lysine feedback insensitive. Using in vivo analysis and functional complementation assays, we confirmed that protein engineering of the DHDPS renders it insensitive to lysine. Expression of mutated DHDPS resulted in 29% higher lysine and 15% higher protein accumulation in rice grains than in the wild type. Importantly, the lysine content in transgenic grains was maintained in cooked rice. The transgenic plants also exhibited enhanced stress tolerance along with higher antioxidant levels, improved photosynthesis, and higher grain yield compared to wild-type plants. We have shown that protein engineering of DHDPS in rice can lead to accumulation of lysine in grains and impart abiotic stress tolerance. This approach could improve health in regions with nutrient deficiencies and environmental stressors that challenge food production and human health.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
2
|
Kiekens R, de Koning R, Toili MEM, Angenon G. The Hidden Potential of High-Throughput RNA-Seq Re-Analysis, a Case Study for DHDPS, Key Enzyme of the Aspartate-Derived Lysine Biosynthesis Pathway and Its Role in Abiotic and Biotic Stress Responses in Soybean. PLANTS 2022; 11:plants11131762. [PMID: 35807714 PMCID: PMC9269547 DOI: 10.3390/plants11131762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
DHDPS is a key enzyme in the aspartate-derived lysine biosynthesis pathway and an evident object of study for biofortification strategies in plants. DHDPS isoforms with novel regulatory properties in Medicago truncatula were demonstrated earlier and hypothesized to be involved in abiotic and biotic stress responses. Here, we present a phylogenetic analysis of the DHPDS gene family in land plants which establishes the existence of a legume-specific class of DHDPS, termed DHDPS B-type, distinguishable from the DHDPS A-type commonly present in all land plants. The G. max genome comprises two A-type DHDPS genes (Gm.DHDPS-A1; Glyma.09G268200, Gm.DHDPS-A2; Glyma.18G221700) and one B-type (Gm.DHDPS-B; Glyma.03G022300). To further investigate the expression pattern of the G. max DHDPS isozymes in different plant tissues and under various stress conditions, 461 RNA-seq experiments were exploited and re-analyzed covering two expression atlases, 13 abiotic and 5 biotic stress studies. Gm.DHDPS-B is seen almost exclusively expressed in roots and nodules in addition to old cotyledons or senescent leaves while both DHDPS A-types are expressed constitutively in all tissues analyzed with the highest expression in mature seeds. Furthermore, Gm.DHDPS-B expression is significantly upregulated in some but not all stress responses including salt stress, flooding, ethylene or infection with Phytophthora sojae and coincides with downregulation of DHDPS A-types. In conclusion, we demonstrate the potential of an in-depth RNA-seq re-analysis for the guidance of future experiments and to expand on current knowledge.
Collapse
Affiliation(s)
- Raphaël Kiekens
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Ramon de Koning
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Department of Horticulture and Food Security, School of Agriculture and Environmental Sciences, College of Agriculture and Natural Resources, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Correspondence: ; Tel.: +32-2-629-1935
| |
Collapse
|
3
|
Mishra M, Rathore RS, Singla‐Pareek SL, Pareek A. High lysine and high protein‐containing salinity‐tolerant rice grains (
Oryza sativa cv
IR64). Food Energy Secur 2022. [DOI: 10.1002/fes3.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Manjari Mishra
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Ray Singh Rathore
- Plant Stress Biology Laboratory International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Sneh L Singla‐Pareek
- Plant Stress Biology Laboratory International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory School of Life Sciences Jawaharlal Nehru University New Delhi India
- National Agri‐Food Biotechnology Institute Punjab India
| |
Collapse
|
4
|
Huang A, Coutu C, Harrington M, Rozwadowski K, Hegedus DD. Engineering a feedback inhibition-insensitive plant dihydrodipicolinate synthase to increase lysine content in Camelina sativa seeds. Transgenic Res 2021; 31:131-148. [PMID: 34802109 PMCID: PMC8821502 DOI: 10.1007/s11248-021-00291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Camelina sativa (camelina) is emerging as an alternative oilseed crop due to its short growing cycle, low input requirements, adaptability to less favorable growing environments and a seed oil profile suitable for biofuel and industrial applications. Camelina meal and oil are also registered for use in animal and fish feeds; however, like meals derived from most cereals and oilseeds, it is deficient in certain essential amino acids, such as lysine. In higher plants, the reaction catalyzed by dihydrodipicolinate synthase (DHDPS) is the first committed step in the biosynthesis of lysine and is subject to regulation by lysine through feedback inhibition. Here, we report enhancement of lysine content in C. sativa seed via expression of a feedback inhibition-insensitive form of DHDPS from Corynebacterium glutamicums (CgDHDPS). Two genes encoding C. sativa DHDPS were identified and the endogenous enzyme is partially insensitive to lysine inhibition. Site-directed mutagenesis was used to examine the impact of alterations, alone and in combination, present in lysine-desensitized DHDPS isoforms from Arabidopsis thaliana DHDPS (W53R), Nicotiana tabacum (N80I) and Zea mays (E84K) on C. sativa DHDPS lysine sensitivity. When introduced alone, each of the alterations decreased sensitivity to lysine; however, enzyme specific activity was also affected. There was evidence of molecular or structural interplay between residues within the C. sativa DHDPS allosteric site as coupling of the W53R mutation with the N80V mutation decreased lysine sensitivity of the latter, but not to the level with the W53R mutation alone. Furthermore, the activity and lysine sensitivity of the triple mutant (W53R/N80V/E84T) was similar to the W53R mutation alone or the C. glutamicum DHDPS. The most active and most lysine-insensitive C. sativa DHDPS variant (W53R) was not inhibited by free lysine up to 1 mM, comparable to the C. glutamicums enzyme. Seed lysine content increased 13.6 -22.6% in CgDHDPS transgenic lines and 7.6–13.2% in the mCsDHDPS lines. The high lysine-accumulating lines from this work may be used to produce superior quality animal feed with improved essential amino acid profile.
Collapse
Affiliation(s)
- Alex Huang
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Myrtle Harrington
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Kevin Rozwadowski
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
5
|
Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA. Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis. Biophys Rev 2018; 10:153-162. [PMID: 29204887 PMCID: PMC5899710 DOI: 10.1007/s12551-017-0350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is critical to the production of lysine through the diaminopimelate (DAP) pathway. Elucidation of the function, regulation and structure of this key class I aldolase has been the focus of considerable study in recent years, given that the dapA gene encoding DHDPS has been found to be essential to bacteria and plants. Allosteric inhibition by lysine is observed for DHDPS from plants and some bacterial species, the latter requiring a histidine or glutamate at position 56 (Escherichia coli numbering) over a basic amino acid. Structurally, two DHDPS monomers form the active site, which binds pyruvate and (S)-aspartate β-semialdehyde, with most dimers further dimerising to form a tetrameric arrangement around a solvent-filled centre cavity. The architecture and behaviour of these dimer-of-dimers is explored in detail, including biophysical studies utilising analytical ultracentrifugation, small-angle X-ray scattering and macromolecular crystallography that show bacterial DHDPS tetramers adopt a head-to-head quaternary structure, compared to the back-to-back arrangement observed for plant DHDPS enzymes. Finally, the potential role of pyruvate in providing substrate-mediated stabilisation of DHDPS is considered.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Melbourne, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC, 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
6
|
Ge X, Sem DS. Affinity-based chemical proteomic probe for dehydrogenases: Fluorescence and visible binding assays in gels. Anal Biochem 2007; 370:171-9. [PMID: 17870049 DOI: 10.1016/j.ab.2007.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/31/2007] [Accepted: 08/04/2007] [Indexed: 11/24/2022]
Abstract
A catechol rhodanine (CR)-based privileged scaffold, tailored to dehydrogenase enzymes, has recently been reported. This scaffold was used as a template in a focused combinatorial library, designed using the NMR SOLVE methodology, to prepare potent (50-200nM) biligand inhibitors for multiple dehydrogenases. It is reported here that this CR scaffold is also a fluorescent and visible probe for solution and in-gel (native) binding assays, making it a useful screening reagent for dehydrogenases, with applications as an affinity-based chemical proteomic probe. Initial application of this fluorescent CR probe was to dihydrodipicolinate reductase, an anti-infective drug target. The probe also shows in-gel binding affinity to two lactate dehydrogenase isozymes and to 1-deoxy-d-xylulose-5-phosphate reductoisomerase, making it a generally useful in-gel staining reagent for multiple dehydrogenases. Because binding is noncovalent, such a reagent could be used in a displacement assay performed in a native gel, monitoring decrease in fluorescent band intensity. But, because the probe has the added function of serving as a privileged scaffold for dehydrogenase-targeted combinatorial libraries, it could also be used in a direct binding assay to screen for the highest-affinity biligand inhibitors that contain the fluorescent CR. Finally, the CR probe could be used as a stain in proteomic studies, to profile mixtures of proteins run on a native gel, to identify proteins that are likely to be dehydrogenases.
Collapse
Affiliation(s)
- Xia Ge
- Chemical Proteomics Facility at Marquette, Chemistry Department, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | | |
Collapse
|
7
|
Turner JJ, Gerrard JA, Hutton CA. Heterocyclic inhibitors of dihydrodipicolinate synthase are not competitive. Bioorg Med Chem 2005; 13:2133-40. [PMID: 15727866 DOI: 10.1016/j.bmc.2005.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
A series of piperidine- and pyridine-2,6-dicarboxylate derivatives has been evaluated as potential inhibitors of dihydrodipicolinate synthase (DHDPS). The compounds were designed with oxygen functionality at the C-4 position in order to mimic the putative enzyme product HTHDP. Most compounds displayed weak-moderate inhibition of DHDPS. Additionally, the most potent inhibitors were shown not to be competitive, indicating they do not bind at the active site. Discrepancies between the two common assay systems-the imidazole assay and the coupled assay-were observed which are attributed to inherent problems in the imidazole assay, leading to artefactually low K(i) measurements.
Collapse
Affiliation(s)
- Jennifer J Turner
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
8
|
Sarrobert C, Thibaud MC, Contard-David P, Gineste S, Bechtold N, Robaglia C, Nussaume L. Identification of an Arabidopsis thaliana mutant accumulating threonine resulting from mutation in a new dihydrodipicolinate synthase gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:357-367. [PMID: 11069709 DOI: 10.1046/j.1365-313x.2000.00884.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel Arabidopsis DHDPS gene named DHDPS2 was found through identification of a mutant by promoter trapping. The mutation promotes a reduction of growth resulting from combination of a defect in lysine biosynthesis and accumulation of a toxic level of threonine or derived products. The mutant also modifies the amino acid composition issuing from the pyruvate and aspartate pathways, affecting mainly the root compartment. These data are in accordance with the expression of DHDPS2 in the root apex as visualized by expression of the GUS reporter gene. This suggests that a large proportion of the amino acids derived from pyruvate and aspartate are synthesized in this organ.
Collapse
Affiliation(s)
- C Sarrobert
- Laboratoire du Métabolisme Carboné, UMR 163, CNRS-CEA, DSV.DEVM, CEA/Cadarache, F-13108 St Paul les Durance Cedex, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Azevedo RA, Arruda P, Turner WL, Lea PJ. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. PHYTOCHEMISTRY 1997; 46:395-419. [PMID: 9332022 DOI: 10.1016/s0031-9422(97)00319-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The essential amino acids lysine, threonine, methionine and isoleucine are synthesised in higher plants via a common pathway starting with aspartate. The regulation of the pathway is discussed in detail, and the properties of the key enzymes described. Recent data obtained from studies of regulation at the gene level and information derived from mutant and transgenic plants are also discussed. The herbicide target enzyme acetohydroxyacid synthase involved in the synthesis of the branched chain amino acids is reviewed.
Collapse
Affiliation(s)
- R A Azevedo
- Departamento de Genética, Universidade de São Paulo, Piracicaba, SP, Brasil
| | | | | | | |
Collapse
|
10
|
Lawrence MC, Barbosa JA, Smith BJ, Hall NE, Pilling PA, Ooi HC, Marcuccio SM. Structure and mechanism of a sub-family of enzymes related to N-acetylneuraminate lyase. J Mol Biol 1997; 266:381-99. [PMID: 9047371 DOI: 10.1006/jmbi.1996.0769] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe here a sub-family of enzymes related both structurally and functionally to N-acetylneuraminate lyase. Two members of this family (N-acetylneuraminate lyase and dihydrodipicolinate synthase) have known three-dimensional structures and we now proceed to show their structural and functional relationship to two further proteins, trans-o-hydroxybenzylidenepyruvate hydratase-aldolase and D-4-deoxy-5-oxoglucarate dehydratase. These enzymes are all thought to involve intermediate Schiff-base formation with their respective substrates. In order to understand the nature of this intermediate, we have determined the three-dimensional structure of N-acetylneuraminate lyase in complex with hydroxypyruvate (a product analogue) and in complex with one of its products (pyruvate). From these structures we deduce the presence of a closely similar Schiff-base forming motif in all members of the N-acetylneuraminate lyase sub-family. A fifth protein, MosA, is also confirmed to be a member of the sub-family although the involvement of an intermediate Schiff-base in its proposed reaction is unclear.
Collapse
Affiliation(s)
- M C Lawrence
- Biomolecular Research Institute, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Hastings TG, Lewis DA, Zigmond MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci U S A 1996; 93:1956-61. [PMID: 8700866 PMCID: PMC39890 DOI: 10.1073/pnas.93.5.1956] [Citation(s) in RCA: 420] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have examined the biochemical and histological effects of high concentrations of dopamine (0.05-1.0 micromol) injected into the rat striatum. Twenty-four hours after such injections, the oxidation products of dopamine and dihydroxyphenylacetic acid were detected as both free and protein-bound cysteinyl dopamine and cysteinyl dihydroxyphenylacetic acid. Protein-bound cysteinyl catechols were increased 7- to 20-fold above control tissue levels. By 7 days postinjection, the protein-bound cysteinyl catechols were still detectable, although reduced in concentration, whereas the free forms could no longer be measured. Histological examination of striatum at 7 days revealed a central core of nonspecific damage including neuronal loss and gliosis. This core was surrounded by a region containing a marked reduction in tyrosine hydroxylase immunoreactivity but no apparent loss of serotonin or synaptophysin immunoreactivity. When dopamine was injected with an equimolar concentration of either ascorbic acid or glutathione, the formation of protein-bound cysteinyl catechols was greatly reduced. Moreover, the specific loss of tyrosine hydroxylase immunoreactivity associated with dopamine injections was no longer detectable, although the nonspecific changes in cytoarchitecture were still apparent. Thus, following its oxidation, dopamine in high concentrations binds to protein in the striatum, an event that is correlated with the specific loss of dopaminergic terminals. We suggest that the selective degeneration of dopamine neurons in Parkinson's disease may be caused by an imbalance between the oxidation of dopamine and the availability of antioxidant defenses.
Collapse
Affiliation(s)
- T G Hastings
- Department of Neurology, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
12
|
Shaver JM, Bittel DC, Sellner JM, Frisch DA, Somers DA, Gengenbach BG. Single-amino acid substitutions eliminate lysine inhibition of maize dihydrodipicolinate synthase. Proc Natl Acad Sci U S A 1996; 93:1962-6. [PMID: 8700867 PMCID: PMC39891 DOI: 10.1073/pnas.93.5.1962] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dihydrodipicolinate synthase (DHPS; EC 4.2.1.52) catalyzes the first step in biosynthesis of lysine in plants and bacteria. DHPS in plants is highly sensitive to end-product inhibition by lysine and, therefore, has an important role in regulating metabolite flux into lysine. To better understand the feedback inhibition properties of the plant enzyme, we transformed a maize cDNA for lysine-sensitive DHPS into an Escherichia coli strain lacking DHPS activity. Cells were mutagenized with ethylmethanesulfonate, and potential DHPS mutants were selected by growth on minimal medium containing the inhibitory lysine analogue S-2-aminoethyl-L-cysteine. DHPS assays identified surviving colonies expressing lysine-insensitive DHPS activity. Ten single-base-pair mutations were identified in the maize DHPS cDNA sequence; these mutations were specific to one of three amino acid residues (amino acids 157, 162, and 166) localized within a short region of the polypeptide. No other mutations were present in the remaining DHPS cDNA sequence, indicating that altering only one of the three residues suffices to eliminate lysine inhibition of maize DHPS. Identification of these specific mutations that change the highly sensitive maize DHPS to a lysine-insensitive isoform will help resolve the lysine-binding mechanism and the resultant conformational changes involved in inhibition of DHPS activity. The plant-derived mutant DHPS genes may also be used to improve nutritional quality of maize or other cereal grains that have inadequate lysine content when fed to animals such as poultry, swine, or humans.
Collapse
Affiliation(s)
- J M Shaver
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | | | |
Collapse
|