1
|
Nakagami S, Wang Z, Han X, Tsuda K. Regulation of Bacterial Growth and Behavior by Host Plant. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:69-96. [PMID: 38857544 DOI: 10.1146/annurev-phyto-010824-023359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants are associated with diverse bacteria in nature. Some bacteria are pathogens that decrease plant fitness, and others are beneficial bacteria that promote plant growth and stress resistance. Emerging evidence also suggests that plant-associated commensal bacteria collectively contribute to plant health and are essential for plant survival in nature. Bacteria with different characteristics simultaneously colonize plant tissues. Thus, plants need to accommodate bacteria that provide service to the host plants, but they need to defend against pathogens at the same time. How do plants achieve this? In this review, we summarize how plants use physical barriers, control common goods such as water and nutrients, and produce antibacterial molecules to regulate bacterial growth and behavior. Furthermore, we highlight that plants use specialized metabolites that support or inhibit specific bacteria, thereby selectively recruiting plant-associated bacterial communities and regulating their function. We also raise important questions that need to be addressed to improve our understanding of plant-bacteria interactions.
Collapse
Affiliation(s)
- Satoru Nakagami
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Zhe Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Xiaowei Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Kenichi Tsuda
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
2
|
Anderson JC. Ill Communication: Host Metabolites as Virulence-Regulating Signals for Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:49-71. [PMID: 37253693 DOI: 10.1146/annurev-phyto-021621-114026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant bacterial pathogens rely on host-derived signals to coordinate the deployment of virulence factors required for infection. In this review, I describe how diverse plant-pathogenic bacteria detect and respond to plant-derived metabolic signals for the purpose of virulence gene regulation. I highlight examples of how pathogens perceive host metabolites through membrane-localized receptors as well as intracellular response mechanisms. Furthermore, I describe how individual strains may coordinate their virulence using multiple distinct host metabolic signals, and how plant signals may positively or negatively regulate virulence responses. I also describe how plant defenses may interfere with the perception of host metabolites as a means to dampen pathogen virulence. The emerging picture is that recognition of host metabolic signals for the purpose of virulence gene regulation represents an important primary layer of interaction between pathogenic bacteria and host plants that shapes infection outcomes.
Collapse
Affiliation(s)
- Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
3
|
Aoki N, Cui S, Ito C, Kumaishi K, Kobori S, Ichihashi Y, Yoshida S. Phenolic signals for prehaustorium formation in Striga hermonthica. FRONTIERS IN PLANT SCIENCE 2022; 13:1077996. [PMID: 36561443 PMCID: PMC9767415 DOI: 10.3389/fpls.2022.1077996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Striga hermonthica is a root parasitic plant that causes considerable crop yield losses. To parasitize host plants, parasitic plants develop a specialized organ called the haustorium that functions in host invasion and nutrient absorption. The initiation of a prehaustorium, the primitive haustorium structure before host invasion, requires the perception of host-derived compounds, collectively called haustorium-inducing factors (HIFs). HIFs comprise quinones, phenolics, flavonoids and cytokinins for S. hermonthica; however, the signaling pathways from various HIFs leading to prehaustorium formation remain largely uncharacterized. It has been proposed that quinones serve as direct signaling molecules for prehaustorium induction and phenolic compounds originating from the host cell wall are the oxidative precursors, but the overlap and distinction of their downstream signaling remain unknown. Here we show that quinone and phenolic-triggered prehaustorium induction in S. hermonthica occurs through partially divergent signaling pathways. We found that ASBr, an inhibitor of acetosyringone in virulence gene induction in the soil bacterium Agrobacterium, compromised prehaustorium formation in S. hermonthica. In addition, LGR-991, a competitive inhibitor of cytokinin receptors, inhibited phenolic-triggered but not quinone-triggered prehaustorium formation, demonstrating divergent signaling pathways of phenolics and quinones for prehaustorium formation. Comparisons of genome-wide transcriptional activation in response to either phenolic or quinone-type HIFs revealed markedly distinct gene expression patterns specifically at the early initiation stage. While quinone DMBQ triggered rapid and massive transcriptional changes in genes at early stages, only limited numbers of genes were induced by phenolic syringic acid. The number of genes that are commonly upregulated by DMBQ and syringic acid is gradually increased, and many genes involved in oxidoreduction and cell wall modification are upregulated at the later stages by both HIFs. Our results show kinetic and signaling differences in quinone and phenolic HIFs, providing useful insights for understanding how parasitic plants interpret different host signals for successful parasitism.
Collapse
Affiliation(s)
- Natsumi Aoki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Songkui Cui
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chiharu Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kie Kumaishi
- RIKEN BioResource Research Center, Tsukuba, Japan
| | | | | | - Satoko Yoshida
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
4
|
Ren H, Xu Y, Zhao X, Zhang Y, Hussain J, Cui F, Qi G, Liu S. Optimization of Tissue Culturing and Genetic Transformation Protocol for Casuarina equisetifolia. FRONTIERS IN PLANT SCIENCE 2022; 12:784566. [PMID: 35126414 PMCID: PMC8814579 DOI: 10.3389/fpls.2021.784566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Casuarina equisetifolia is widely used in agroforestry plantations for soil stabilization, ecosystem rehabilitation, reclamation, and coastal protection. Moreover, C. equisetifolia has remarkable resistance to typhoons, desert, low soil fertility, drought, and salinity, but not cold. Therefore, it is significant to breed high-quality Casuarina varieties to improve the tolerance and adaptability to cold weather by molecular techniques. The establishment of a rapid and efficient callus induction and regeneration system via tissue culture is pre-requisite for the genetic transformation of C. equisetifolia, which is so far lacking. In this study, we reported an efficient and rapid regeneration system using stem segment explants, in which callus induction was found to be optimal in a basal medium supplemented with 0.1 mg⋅L-1 TDZ and 0.1 mg⋅L-1 NAA, and proliferation in a basal medium containing 0.1 mg⋅L-1 TDZ and 0.5 mg⋅L-1 6-BA. For bud regeneration and rooting, the preferred plant growth regulator (PGR) in basal medium was 0.5 mg⋅L-1 6-BA, and a combination of 0.02 mg⋅L-1 IBA and 0.4 mg⋅L-1 IAA, respectively. We also optimized genetic a transformation protocol using Agrobacterium tumefaciens harboring the binary vector pCAMBIA1301 with β-glucuronidase (GUS) as a reporter gene. Consequently, 5 mg L-1 hygromycin, 20 mg L-1 acetosyringone (As), and 2 days of co-cultivation duration were optimized to improve the transformation efficiency. With these optimized parameters, transgenic plants were obtained in about 4 months. Besides that, Agrobacterium rhizogenes-mediated transformation involving adventitious root induction was also optimized. Our findings will not only increase the transformation efficiency but also shorten the time for developing transgenic C. equisetifolia plants. Taken together, this pioneer study on tissue culturing and genetic transformation of C. equisetifolia will pave the way for further genetic manipulation and functional genomics of C. equisetifolia.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Yan Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Xiaohong Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
5
|
Bahramnejad B, Naji M, Bose R, Jha S. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol Adv 2019; 37:107405. [PMID: 31185263 DOI: 10.1016/j.biotechadv.2019.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
Agrobacterium rhizogenes, along with A. tumefaciens, has been used to affect genetic transformation in plants for many years. Detailed studies conducted in the past have uncovered the basic mechanism of foreign gene transfer and the implication of Ri/Ti plasmids in this process. A number of reviews exist describing the usage of binary vectors with A. tumefaciens, but no comprehensive account of the numerous binary vectors employed with A. rhizogenes and their successful applications has been published till date. In this review, we recollect a brief history of development of Ri-plasmid/Ri-T-DNA based binary vectors systems and their successful implementation with A. rhizogenes for different applications. The modification of native Ri plasmid to introduce foreign genes followed by development of binary vector using Ri plasmid and how it facilitated rapid and feasible genetic manipulation, earlier impossible with native Ri plasmid, have been discussed. An important milestone was the development of inducible plant expressing promoter systems which made expression of toxic genes in plant systems possible. The successful application of binary vectors in conjunction with A. rhizogenes in gene silencing and genome editing studies which are relatively newer developments, demonstrating the amenability and adaptability of hairy roots systems to make possible studying previously intractable research areas have been summarized in the present review.
Collapse
Affiliation(s)
- Bahman Bahramnejad
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Kurdistan 66177-15175, Iran.
| | - Mohammad Naji
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Kurdistan 66177-15175, Iran
| | - Rahul Bose
- Department of Genetics, University of Calcutta, Kolkata 700019, India
| | - Sumita Jha
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| |
Collapse
|
6
|
Gupta V, Ur Rahman L. An efficient plant regeneration and Agrobacterium-mediated genetic transformation of Tagetes erecta. PROTOPLASMA 2015; 252:1061-1070. [PMID: 25504508 DOI: 10.1007/s00709-014-0740-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
Tagetes erecta, L. an asteraceous plant of industrial and medicinal value, contains important compounds like pyrethrins, thiophenes and lutein, possessing immense potential for insecticidal, nematicidal and nutraceutical activities. Considering the importance and demand for these natural compounds, genetic manipulation of this crop for better productivity of secondary metabolites holds great significance. A rapid and reproducible direct regeneration and genetic transformation system is the prerequisite for genetic manipulation of any crop. This paper elucidates the establishment of an efficient direct regeneration and transformation protocol of T. erecta using Agrobacterium tumefaciens. Investigation of the effects of different types of explants (Hypocotyls, cotyledonary leaves, rachis and leaf sections) and different BAP and GA3 combinations on the regeneration frequency of T. erecta suggested that the best regeneration frequency (66 %) with an average of 5.08 ± 0.09 shoot buds/explant was observed from hypocotyl explants cultured on media containing 1.5 mg/l BAP and 5 mg/l GA3. The transformation protocol was established using A. tumefaciens strain LBA4404, containing the binary vector pBI121, along with the gusA reporter gene with intron under the transcriptional control of the Cauliflower Mosaic Virus (CaMV) 35S promoter and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Various parameters like optimization of kanamycin concentration (200 mg/l) for selection, standardization of cocultivation time (45 min) and acetosyringone concentration (150 μM) for obtaining higher transformation frequency were established using hypocotyl explants. The selected putative transgenic shoots were subsequently rooted on the Murashige and Skoog medium and transferred to the green house successfully. The plants were characterised by analysing the gus expression, amplification of 600 bp npt II fragment and Southern blot hybridization using the PCR-amplified gusA fragment as probe. The standardised protocol established during the study will open new vistas for genetic manipulation and introduction of desired genes for genetic improvement of T. erecta.
Collapse
Affiliation(s)
- Vijayta Gupta
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | | |
Collapse
|
7
|
Kiselevsky DB, Frolova OY, Solovyev AG, Dorokhov YL, Morozov SY, Samuilov VD. Plant cell death caused by fungal, bacterial, and viral elicitors: protective effect of mitochondria-targeted quinones. BIOCHEMISTRY. BIOKHIMIIA 2014; 79:1322-32. [PMID: 25716725 DOI: 10.1134/s0006297914120050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chitosan (partially deacetylated chitin), a component of fungal cell walls, caused epidermal cell (EC) death in the leaves of pea (Pisum sativum L.) and tobacco Nicotiana tabacum or Nicotiana benthamiana detected by destruction of cell nuclei. The mitochondria-targeted quinone SkQ1 prevented the destruction of EC nuclei induced by chitosan. Chitosan increased and SkQ1 suppressed the activity of protein kinases in N. benthamiana and P. sativum and eliminated the effect of chitosan. Chitosan induced the generation of reactive oxygen species (ROS) in the guard cells (GC) of pea plants. Treatment with chitosan or H2O2 did not cause destruction of GC nuclei; however, it resulted in disruption of the permeability barrier of the plasma membrane detected by propidium iodide fluorescence. Treatment with bacterial lipopolysaccharide but not peptidoglycan caused destruction of pea EC nuclei, which was prevented by SkQ1. Leaves of tobacco plants containing the N gene responsible for resistance to tobacco mosaic virus (TMV) were infiltrated with Agrobacterium tumefaciens cells. These cells contained a genetic construct with the gene of the helicase domain of TMV replicase (p50); its protein product p50 is a target for the N-gene product. As a result, the hypersensitive response (HR) was initiated. The HR manifested itself in the death of leaves and was suppressed by SkQ3. Treatment of tobacco epidermal peels with the A. tumefaciens cells for the p50 gene expression stimulated the destruction of EC nuclei, which was inhibited by SkQ1 or SkQ3. The p50-lacking A. tumefaciens cells did not induce the destruction of EC nuclei. The protective effect of mitochondria-targeted antioxidants SkQ1 and SkQ3 demonstrates the involvement of mitochondria and their ROS in programmed cell death caused by pathogen elicitors.
Collapse
Affiliation(s)
- D B Kiselevsky
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
8
|
Subramoni S, Nathoo N, Klimov E, Yuan ZC. Agrobacterium tumefaciens responses to plant-derived signaling molecules. FRONTIERS IN PLANT SCIENCE 2014; 5:322. [PMID: 25071805 PMCID: PMC4086400 DOI: 10.3389/fpls.2014.00322] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/18/2014] [Indexed: 05/24/2023]
Abstract
As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium-plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its Transferred DNA (T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA), cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium-plant interactions.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Southern Crop Protection and Food Research Centre, Agriculture & Agri-Food CanadaLondon, ON, Canada
| | - Naeem Nathoo
- Southern Crop Protection and Food Research Centre, Agriculture & Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| | - Eugene Klimov
- Southern Crop Protection and Food Research Centre, Agriculture & Agri-Food CanadaLondon, ON, Canada
| | - Ze-Chun Yuan
- Southern Crop Protection and Food Research Centre, Agriculture & Agri-Food CanadaLondon, ON, Canada
- Department of Microbiology and Immunology, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
9
|
The integrity of the periplasmic domain of the VirA sensor kinase is critical for optimal coordination of the virulence signal response in Agrobacterium tumefaciens. J Bacteriol 2011; 193:1436-48. [PMID: 21216996 DOI: 10.1128/jb.01227-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plant pathogen Agrobacterium tumefaciens responds to three main signals at the plant-bacterium interface: phenolics, such as acetosyringone (AS), monosaccharides, and acidic pH (∼5.5). These signals are transduced via the chromosomally encoded sugar binding protein ChvE and the Ti plasmid-encoded VirA/VirG two-component regulatory system, resulting in the transcriptional activation of the Ti plasmid virulence genes. Here, we present genetic and physical evidence that the periplasmic domain of VirA dimerizes independently of other parts of the protein, and we examine the effects of several engineered mutations in the periplasmic and transmembrane regions of VirA on vir-inducing capacity as indicated by AS sensitivity and maximal level of vir-inducing activity at saturating AS levels. The data indicate that helix-breaking mutations throughout the periplasmic domain of VirA or mutations that reposition the second transmembrane domain (TM2) of VirA relieve the periplasmic domain's repressive effects on the maximal activity of this kinase in response to phenolics, effects normally relieved only when ChvE, sugars, and low pH are also present. Such relief, however, does not sensitize VirA to low concentrations of phenolics, the other major effect of the ChvE-sugar and low pH signals. We further demonstrate that amino acid residues in a small Trg-like motif in the periplasmic domain of VirA are crucial for transmission of the ChvE-sugar signal to the cytoplasmic domain. These experiments provide evidence that small perturbations in the periplasmic domain of VirA can uncouple sugar-mediated changes in AS sensitivity from the sugar-mediated effects on maximal activity.
Collapse
|
10
|
Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. J Bacteriol 2009; 191:5802-13. [PMID: 19633083 DOI: 10.1128/jb.00451-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ChvE is a chromosomally encoded protein in Agrobacterium tumefaciens that mediates a sugar-induced increase in virulence (vir) gene expression through the activities of the VirA/VirG two-component system and has also been suggested to be involved in sugar utilization. The ChvE protein has homology to several bacterial periplasmic sugar-binding proteins, such as the ribose-binding protein and the galactose/glucose-binding protein of Escherichia coli. In this study, we provide direct evidence that ChvE specifically binds the vir gene-inducing sugar d-glucose with high affinity. Furthermore, ChvE mutations resulting in altered vir gene expression phenotypes have been isolated and characterized. Three distinct categories of mutants have been identified. Strains expressing the first class are defective in both virulence and d-glucose utilization as a result of mutations to residues lining the sugar-binding cleft. Strains expressing a second class of mutants are not adversely affected in sugar binding but are defective in virulence, presumably due to impaired interactions with the sensor kinase VirA. A subset of this second class of mutants includes variants of ChvE that also result in defective sugar utilization. We propose that these mutations affect not only interactions with VirA but also interactions with a sugar transport system. Examination of a homology model of ChvE shows that the mutated residues associated with the latter two phenotypes lie in two overlapping solvent-exposed sites adjacent to the sugar-binding cleft where conformational changes associated with the binding of sugar might have a maximal effect on ChvE's interactions with its distinct protein partners.
Collapse
|
11
|
McCullen CA, Binns AN. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 2006; 22:101-27. [PMID: 16709150 DOI: 10.1146/annurev.cellbio.22.011105.102022] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Host recognition and macromolecular transfer of virulence-mediating effectors represent critical steps in the successful transformation of plant cells by Agrobacterium tumefaciens. This review focuses on bacterial and plant-encoded components that interact to mediate these two processes. First, we examine the means by which Agrobacterium recognizes the host, via both diffusible plant-derived chemicals and cell-cell contact, with emphasis on the mechanisms by which multiple host signals are recognized and activate the virulence process. Second, we characterize the recognition and transfer of protein and protein-DNA complexes through the bacterial and plant cell membrane and wall barriers, emphasizing the central role of a type IV secretion system-the VirB complex-in this process.
Collapse
Affiliation(s)
- Colleen A McCullen
- Department of Biology and Plant Sciences Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
12
|
Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 2003; 67:16-37, table of contents. [PMID: 12626681 PMCID: PMC150518 DOI: 10.1128/mmbr.67.1.16-37.2003] [Citation(s) in RCA: 651] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and related Agrobacterium species have been known as plant pathogens since the beginning of the 20th century. However, only in the past two decades has the ability of Agrobacterium to transfer DNA to plant cells been harnessed for the purposes of plant genetic engineering. Since the initial reports in the early 1980s using Agrobacterium to generate transgenic plants, scientists have attempted to improve this "natural genetic engineer" for biotechnology purposes. Some of these modifications have resulted in extending the host range of the bacterium to economically important crop species. However, in most instances, major improvements involved alterations in plant tissue culture transformation and regeneration conditions rather than manipulation of bacterial or host genes. Agrobacterium-mediated plant transformation is a highly complex and evolved process involving genetic determinants of both the bacterium and the host plant cell. In this article, I review some of the basic biology concerned with Agrobacterium-mediated genetic transformation. Knowledge of fundamental biological principles embracing both the host and the pathogen have been and will continue to be key to extending the utility of Agrobacterium for genetic engineering purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
13
|
Wang Y, Gao R, Lynn DG. Ratcheting up vir gene expression in Agrobacterium tumefaciens: coiled coils in histidine kinase signal transduction. Chembiochem 2002; 3:311-7. [PMID: 11933231 DOI: 10.1002/1439-7633(20020402)3:4<311::aid-cbic311>3.0.co;2-n] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transmembrane histidine kinase VirA is responsible for the recognition of information from several plant-derived xenognostic signals that control gene transfer between Agrobacterium tumefaciens and its eukaryotic host. As with other histidine autokinases, VirA appears to exist as a homodimer within the inner membrane of the bacterium. In this study, we identify the putative homodimeric coiled-coil-like motifs Helix TM2 (amino acids (aa) 259-288) and Helix C (aa 293-327) within the previously assigned signal input domain. The functional importance of these coiled-coil interactions in signal-mediated VirA activation is investigated by the construction of fusion proteins with the leucine zipper domain of the transcription factor GCN4. Replacement of the membrane-spanning and periplasmic domains of VirA with the GCN4 leucine zipper gave functional proteins with increased signal-induced vir gene expression. When the GCN4 fusion was used to conformationally bias the interface of the Helix C coiled coil, constitutively active chimeras were created. The activity of these constructs was dependent on the interface of the Helix C coiled coil, and a ratchet model is proposed in which VirA activation is achieved by signal-induced switching of the interfaces of the homodimer. Since VirA functions as a transducer and integrates various host cues indirectly, these data highlight its role as an "antenna" for the tumor-inducing (Ti) plasmid, able to monitor the host proteome so as to select for successful xenognostic signaling strategies.
Collapse
Affiliation(s)
- Yulei Wang
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
14
|
Tzfira T, Citovsky V. From host recognition to T-DNA integration: the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. MOLECULAR PLANT PATHOLOGY 2000; 1:201-12. [PMID: 20572967 DOI: 10.1046/j.1364-3703.2000.00026.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
UNLABELLED Abstract Agrobacterium tumefaciens and its related species, A. rhizogenes and A. vitis, are the only known bacterial pathogens which 'genetically invade' host plants and stably integrate part of their genetic material into the host cell genome. Thus, A. tumefaciens has evolved as a major tool for plant genetic engineering. Furthermore, this unique process of interkingdom DNA transfer has been utilized as a model system for studies of its underlying biological events, such as intercellular signalling, cell-to-cell DNA transport, protein and DNA nuclear import and integration. To date, numerous bacterial proteins and several plant proteins have been implicated in the A. tumefaciens-plant cell interaction. Here, we discuss the molecular interactions among these bacterial and plant factors and their role in the A. tumefaciens-plant cell DNA transfer. Taxonomic relationship: Bacteria; Proteobacteria; alpha subdivision; Rhizobiaceae group; Rhizobiaceae family; Agrobacterium genus. Microbiological properties: Gram-negative, nonsporing, motile, rod-shaped, soil-borne. Related species:A. rhizogenes (causes root formation in infected plants), A. vitis (causes gall formation on grapevines). Disease symptoms: Formation of neoplastic swellings (galls) on plant roots, crowns, trunks and canes. Galls interfere with water and nutrient flow in the plants, and seriously infected plants suffer from weak, stunted growth and low productivity. HOST RANGE One of the widest host ranges known among plant pathogens; can potentially attack all dicotyledonous plant species. Also, under controlled conditions (usually in tissue culture), can infect, albeit with lower efficiency, several monocotyledonous species. Agronomic importance: The disease currently affects plants belonging to the rose family, e.g. apple, pear, peach, cherry, almond, roses, as well as poplar trees (aspen). Useful web site:http://www.bio.purdue.edu/courses/gelvinweb/gelvin.html.
Collapse
Affiliation(s)
- T Tzfira
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
15
|
Abstract
The phytopathogenic bacterium Agrobacterium tumefaciens genetically transforms plants by transferring a portion of the resident Ti-plasmid, the T-DNA, to the plant. Accompanying the T-DNA into the plant cell is a number of virulence (Vir) proteins. These proteins may aid in T-DNA transfer, nuclear targeting, and integration into the plant genome. Other virulence proteins on the bacterial surface form a pilus through which the T-DNA and the transferred proteins may translocate. Although the roles of these virulence proteins within the bacterium are relatively well understood, less is known about their roles in the plant cell. In addition, the role of plant-encoded proteins in the transformation process is virtually unknown. In this article, I review what is currently known about the functions of virulence and plant proteins in several aspects of the Agrobacterium transformation process.
Collapse
Affiliation(s)
- Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392; e-mail:
| |
Collapse
|
16
|
Campbell AM, Tok JB, Zhang J, Wang Y, Stein M, Lynn DG, Binns AN. Xenognosin sensing in virulence: is there a phenol receptor in Agrobacterium tumefaciens? CHEMISTRY & BIOLOGY 2000; 7:65-76. [PMID: 10662683 DOI: 10.1016/s1074-5521(00)00065-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The mechanisms of signal perception and transmission in the 'two-component' autokinase transmitters/response regulators are poorly understood, especially considering the vast number of such systems now known. Virulence induction from the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens represents one of the best understood systems with regard to the chemistry of the activating signal, and yet the existing data does not support a receptor-mediated perception event for the xenognostic phenols. RESULTS Here we provide the first conclusive evidence that a specific receptor must be involved in xenognostic phenol perception, detail structural requirements of the xenognosins necessary for perception by this receptor, and develop a genetic strategy that demonstrates critical components of the phenol recognition system are not encoded on the Ti plasmid. CONCLUSIONS Although the basic elements of the two-component system required for phenol-mediated induction of virulence gene expression are encoded on the Ti plasmid, they are dependent on the chromosomal background for even the very first stage of signal perception. This discovery suggests a curious evolutionary history, and also provides functional insight into the mechanisms of two-component signal detection and transmission in general.
Collapse
Affiliation(s)
- A M Campbell
- Plant Sciences Institute, University of Pennsylvania, Philadelphia, PA 19104-1018, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Zatyka M, Thomas CM. Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiol Rev 1998; 21:291-319. [PMID: 25508777 DOI: 10.1111/j.1574-6976.1998.tb00355.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Conjugative transfer is a primary means of spread of mobile genetic elements (plasmids and transposons) between bacteria.It leads to the dissemination and evolution of the genes (such as those conferring resistance to antibiotics) which are carried by the plasmid. Expression of the plasmid genes needed for conjugative transfer is tightly regulated so as to minimise the burden on the host. For plasmids such as those belonging to the IncP group this results in downregulation of the transfer genes once all bacteria have a functional conjugative apparatus. For F-like plasmids (apart from F itself which is a derepressed mutant) tight control results in very few bacteria having a conjugative apparatus. Chance encounters between the rare transfer-proficient bacteria and a potential recipient initiate a cascade of transfer which can continue until all potential recipients have acquired the plasmid. Other systems express their transfer genes in response to specific stimuli. For the pheromone-responsive plasmids of Enterococcus it is small peptide signals from potential recipients which trigger the conjugative transfer genes. For the Ti plasmids of Agrobacterium it is the presence of wounded plants which are susceptible to infection which stimulates T-DNA transfer to plants. Transfer and integration of T-DNA induces production of opines which the plasmid-positive bacteria can utilise. They multiply and when they reach an appropriate density their plasmid transfer system is switched on to allow transfer of the Ti plasmid to other bacteria. Finally some conjugative transfer systems are induced by the antibiotics to which the elements confer resistance. Understanding these control circuits may help to modify management of microbial communities where plasmid transfer is either desirable or undesirable. z 1998 Published by Elsevier Science B.V.
Collapse
Affiliation(s)
- M Zatyka
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
18
|
Dyé F, Delmotte FM. Purification of a protein from Agrobacterium tumefaciens strain A348 that binds phenolic compounds. Biochem J 1997; 321 ( Pt 2):319-24. [PMID: 9020861 PMCID: PMC1218071 DOI: 10.1042/bj3210319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to induce tumours on dicotyledonous plants, the bacterium Agrobacterium tumefaciens needs to be able to sense signal molecules, i.e. phenolic compounds. In order to identify putative chemoreceptors or environmental sensors involved in vir gene induction, we undertook the purification of a phenol-binding protein by affinity chromatography on a syringamide Ultrogel A4 column equilibrated at pH 5.6. A mild extraction of bacterial proteins with a Tris/HCl buffer at pH 9.0 led to the purification of a 39 kDa protein (Pbp39) with a pl of 4.3 after specific elution of the affinity matrix with sodium syringate. When the affinity chromatography was performed at neutral pH, barely any protein was isolated, indicating the importance of an acidic pH for optimal affinity. A microplate binding experiment revealed that both syringlyl biotinylated-BSA and sinapyl-biotinylated-BSA bound at pH 5.6 to the plate coated with Pbp39.
Collapse
Affiliation(s)
- F Dyé
- Centre de Biophysique Moléculaire, C.N.R.S, Orléans, France
| | | |
Collapse
|
19
|
Lee YW, Jin S, Sim WS, Nester EW. The sensing of plant signal molecules by Agrobacterium: genetic evidence for direct recognition of phenolic inducers by the VirA protein. Gene 1996; 179:83-8. [PMID: 8955632 DOI: 10.1016/s0378-1119(96)00328-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The virulence (vir) genes of Agrobacterium tumefaciens are induced by low-molecular-weight phenolic compounds and monosaccharides through a two-component regulatory system consisting of the VirA and VirG proteins. Although it is clear that the monosaccharides require binding to a periplasmic binding protein before they can interact with the sensor VirA protein, it is not certain whether the phenolic compounds also interact with a binding protein or directly interact with the sensor protein. To shed light on this question, we tested the vir-inducing abilities of several different phenolic compounds using two wild-type strains of A. tumefaciens, KU12 and A6. We found that several compounds such as 4-hydroxyacetophone and p-coumaric acid induced the vir of KU12, but not A6. On the other hand, acetosyringone and several other phenolic compounds induced the vir of A6, but not KU12. By transferring different Ti plasmids into isogenic chromosomal backgrounds, we showed that the phenolic sensing determinant is associated with the Ti plasmid. Subcloning of the Ti plasmid indicated that the virA locus determines which phenolic compounds can function as vir inducers. These results suggest that VirA directly senses the phenolic compounds for vir activation.
Collapse
Affiliation(s)
- Y W Lee
- Department of Microbiology, University of Washington, Seattle 98195-7242, USA
| | | | | | | |
Collapse
|
20
|
Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease. World J Microbiol Biotechnol 1996; 12:327-51. [DOI: 10.1007/bf00340209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/07/1996] [Accepted: 02/10/1996] [Indexed: 11/26/2022]
|
21
|
Doty SL, Yu MC, Lundin JI, Heath JD, Nester EW. Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens. J Bacteriol 1996; 178:961-70. [PMID: 8576069 PMCID: PMC177754 DOI: 10.1128/jb.178.4.961-970.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transmembrane sensor protein VirA activates VirG in response to high levels of acetosyringone (AS). In order to respond to low levels of AS, VirA requires the periplasmic sugar-binding protein ChvE and monosaccharides released from plant wound sites. To better understand how VirA senses these inducers, the C58 virA gene was randomly mutagenized, and 14 mutants defective in vir gene induction and containing mutations which mapped to the input domain of VirA were isolated. Six mutants had single missense mutatiions in three widely separated areas of the periplasmic domain. Eight mutants had mutations in or near an amphipathic helix, TM1, or TM2. Four of the mutations in the periplasmic domain, when introduced into the corresponding A6 virA sequence, caused a specific defect in the vir gene response to glucose. This suggests that most of the periplasmic domain is required for the interaction with, or response to, ChvE. Three of the mutations from outside the periplasmic domain, one from each transmembrane domain and one from the amphiphathic helix, were made in A6 virA. These mutants were defective in the vir gene response to AS. These mutations did not affect the stability or topology of VirA or prevent dimerization; therefore, they may interfere with detection of AS or transmission of the signals to the kinase domain. Characterization of C58 chvE mutants revealed that, unlike A6 VirA, C58 VirA requires ChvE for activation of the vir genes.
Collapse
Affiliation(s)
- S L Doty
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
22
|
Lee YW, Jin S, Sim WS, Nester EW. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 1995; 92:12245-9. [PMID: 8618878 PMCID: PMC40333 DOI: 10.1073/pnas.92.26.12245] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The virulence (vir) genes of Agrobacterium tumefaciens are induced by low-molecular-weight phenolic compounds and monosaccharides through a two-component regulatory system consisting of the VirA and VirG proteins. However, it is not clear how the phenolic compounds are sensed by the VirA/VirG system. We tested the vir-inducing abilities of 15 different phenolic compounds using four wild-type strains of A. tumefaciens--KU12, C58, A6, and Bo542. We analyzed the relationship between structures of the phenolic compounds and levels of vir gene expression in these strains. In strain KU12, vir genes were not induced by phenolic compounds containing 4'-hydroxy, 3'-methoxy, and 5'-methoxy groups, such as acetosyringone, which strongly induced vir genes of the other three strains. On the other hand, vir genes of strain KU12 were induced by phenolic compounds containing only a 4'-hydroxy group, such as 4-hydroxyacetophenone, which did not induce vir genes of the other three strains. The vir genes of strains KU12, A6, and Bo542 were all induced by phenolic compounds containing 4'-hydroxy and 3'-methoxy groups, such as acetovanillone. By transferring different Ti plasmids into isogenic chromosomal backgrounds, we showed that the phenolic-sensing determinant is associated with Ti plasmid. Subcloning of Ti plasmid indicates that the virA locus determines which phenolic compounds can function as vir gene inducers. These results suggest that the VirA protein directly senses the phenolic compounds for vir gene activation.
Collapse
Affiliation(s)
- Y W Lee
- Department of Microbiology, University of Washington, Seattle 98195-7242, USA
| | | | | | | |
Collapse
|