1
|
Wang S, Cao L, Willick IR, Wang H, Tanino KK. Arabidopsis Ubiquitin-Conjugating Enzymes UBC4, UBC5, and UBC6 Have Major Functions in Sugar Metabolism and Leaf Senescence. Int J Mol Sci 2022; 23:11143. [PMID: 36232444 PMCID: PMC9569852 DOI: 10.3390/ijms231911143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
The ubiquitin-conjugating enzyme (E2) is required for protein ubiquitination. Arabidopsis has 37 E2s grouped into 14 subfamilies and the functions for many of them are unknown. We utilized genetic and biochemical methods to study the roles of Arabidopsis UBC4, UBC5, and UBC6 of the E2 subfamily IV. The Arabidopsis ubc4/5/6 triple mutant plants had higher levels of glucose, sucrose, and starch than the control plants, as well as a higher protein level of a key gluconeogenic enzyme, cytosolic fructose 1,6-bisphosphatase 1 (cyFBP). In an in vitro assay, the proteasome inhibitor MG132 inhibited the degradation of recombinant cyFBP whereas ATP promoted cyFBP degradation. In the quadruple mutant ubc4/5/6 cyfbp, the sugar levels returned to normal, suggesting that the increased sugar levels in the ubc4/5/6 mutant were due to an increased cyFBPase level. In addition, the ubc4/5/6 mutant plants showed early leaf senescence at late stages of plant development as well as accelerated leaf senescence using detached leaves. Further, the leaf senescence phenotype remained in the quadruple ubc4/5/6 cyfbp mutant. Our results suggest that UBC4/5/6 have two lines of important functions, in sugar metabolism through regulating the cyFBP protein level and in leaf senescence likely through a cyFBP-independent mechanism.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ling Cao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ian R. Willick
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Karen K. Tanino
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
2
|
Callis J. The ubiquitination machinery of the ubiquitin system. THE ARABIDOPSIS BOOK 2014; 12:e0174. [PMID: 25320573 PMCID: PMC4196676 DOI: 10.1199/tab.0174] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The protein ubiquitin is a covalent modifier of proteins, including itself. The ubiquitin system encompasses the enzymes required for catalysing attachment of ubiquitin to substrates as well as proteins that bind to ubiquitinated proteins leading them to their final fate. Also included are activities that remove ubiquitin independent of, or in concert with, proteolysis of the substrate, either by the proteasome or proteases in the vacuole. In addition to ubiquitin encoded by a family of fusion proteins, there are proteins with ubiquitin-like domains, likely forming ubiquitin's β-grasp fold, but incapable of covalent modification. However, they serve as protein-protein interaction platforms within the ubiquitin system. Multi-gene families encode all of these types of activities. Within the ubiquitination machinery "half" of the ubiquitin system are redundant, partially redundant, and unique components affecting diverse developmental and environmental responses in plants. Notably, multiple aspects of biotic and abiotic stress responses require, or are modulated by, ubiquitination. Finally, aspects of the ubiquitin system have broad utility: as components to enhance gene expression or to regulate protein abundance. This review focuses on the ubiquitination machinery: ubiquitin, unique aspects about the synthesis of ubiquitin and organization of its gene family, ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases, or E3s. Given the large number of E3s in Arabidopsis this review covers the U box, HECT and RING type E3s, with the exception of the cullin-based E3s.
Collapse
Affiliation(s)
- Judy Callis
- Department of Molecular and Cellular Biology, University of California-Davis, Davis CA 95616
| |
Collapse
|
3
|
Viana AAB, Fragoso RR, Guimarães LM, Pontes N, Oliveira-Neto OB, Artico S, Nardeli SM, Alves-Ferreira M, Batista JAN, Silva MCM, Grossi-de-Sa MF. Isolation and functional characterization of a cotton ubiquitination-related promoter and 5'UTR that drives high levels of expression in root and flower tissues. BMC Biotechnol 2011; 11:115. [PMID: 22115195 PMCID: PMC3239415 DOI: 10.1186/1472-6750-11-115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/24/2011] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Cotton (Gossypium spp.) is an important crop worldwide that provides raw material to 40% of the textile fiber industry. Important traits have been studied aiming the development of genetically modified crops including resistance to insect and diseases, and tolerance to drought, cold and herbicide. Therefore, the characterization of promoters and regulatory regions is also important to achieve high gene expression and/or a specific expression pattern. Commonly, genes involved in ubiquitination pathways are highly and differentially expressed. In this study, we analyzed the expression of a cotton ubiquitin-conjugating enzyme (E2) family member with no previous characterization. RESULTS Nucleotide analysis revealed high identity with cotton E2 homologues. Multiple alignment showed a premature stop codon, which prevents the encoding of the conserved cysteine residue at the E2 active site, and an intron that is spliced in E2 homologues, but not in GhGDRP85. The GhGDRP85 gene is highly expressed in different organs of cotton plants, and has high transcript levels in roots. Its promoter (uceApro2) and the 5'UTR compose a regulatory region named uceA1.7, and were isolated from cotton and studied in Arabidopsis thaliana. uceA1.7 shows strong expression levels, equaling or surpassing the expression levels of CaMV35S. The uceA1.7 regulatory sequence drives GUS expression 7-fold higher in flowers, 2-fold in roots and at similar levels in leaves and stems. GUS expression levels are decreased 7- to 15-fold when its 5'UTR is absent in uceApro2. CONCLUSIONS uceA1.7 is a strong constitutive regulatory sequence composed of a promoter (uceApro2) and its 5'UTR that will be useful in genetic transformation of dicots, having high potential to drive high levels of transgene expression in crops, particularly for traits desirable in flower and root tissues.
Collapse
Affiliation(s)
- Antonio AB Viana
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB final W5 Norte, Brasília/DF, 70770-900, Brasil
- Universidade Católica de Brasília, QS 07 Lote 01 EPCT, Taguatinga/DF, 71966-700, Brasil
| | - Rodrigo R Fragoso
- Embrapa Cerrados, Rodovia Brasília/Fortaleza BR 020, Km18, Planaltina/DF, 73310-970, Brasil
- Depto. Biologia Celular, Universidade de Brasília, IB, Campus Universitário Darcy Ribeiro, Brasília/DF, 70910-900, Brasil
| | - Luciane M Guimarães
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB final W5 Norte, Brasília/DF, 70770-900, Brasil
| | - Naiara Pontes
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB final W5 Norte, Brasília/DF, 70770-900, Brasil
| | - Osmundo B Oliveira-Neto
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB final W5 Norte, Brasília/DF, 70770-900, Brasil
| | - Sinara Artico
- Depto. Genética, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde (CCS), Bloco A, 2° andar, Sala 85, Ilha do Fundão, Rio de Janeiro/RJ, 21941-570, Brasil
| | - Sarah M Nardeli
- Depto. Genética, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde (CCS), Bloco A, 2° andar, Sala 85, Ilha do Fundão, Rio de Janeiro/RJ, 21941-570, Brasil
| | - Marcio Alves-Ferreira
- Depto. Genética, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde (CCS), Bloco A, 2° andar, Sala 85, Ilha do Fundão, Rio de Janeiro/RJ, 21941-570, Brasil
| | - João AN Batista
- Depto. Botânica, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte/MG, 31270-901, Brasil
| | - Maria CM Silva
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB final W5 Norte, Brasília/DF, 70770-900, Brasil
| | - Maria F Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB final W5 Norte, Brasília/DF, 70770-900, Brasil
- Universidade Católica de Brasília, QS 07 Lote 01 EPCT, Taguatinga/DF, 71966-700, Brasil
| |
Collapse
|
4
|
Cao Y, Dai Y, Cui S, Ma L. Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. THE PLANT CELL 2008; 20:2586-602. [PMID: 18849490 PMCID: PMC2590739 DOI: 10.1105/tpc.108.062760] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/15/2008] [Accepted: 09/21/2008] [Indexed: 05/17/2023]
Abstract
Ubiquitination is one of many known histone modifications that regulate gene expression. Here, we examine the Arabidopsis thaliana homologs of the yeast E2 and E3 enzymes responsible for H2B monoubiquitination (H2Bub1). Arabidopsis has two E3 homologs (HISTONE MONOUBIQUITINATION1 [HUB1] and HUB2) and three E2 homologs (UBIQUITIN CARRIER PROTEIN [UBC1] to UBC3). hub1 and hub2 mutants show the loss of H2Bub1 and early flowering. By contrast, single ubc1, ubc2, or ubc3 mutants show no flowering defect; only ubc1 ubc2 double mutants, and not double mutants with ubc3, show early flowering and H2Bub1 defects. This suggests that ubc1 and ubc2 are redundant, but ubc3 is not involved in flowering time regulation. Protein interaction analysis showed that HUB1 and HUB2 interact with each other and with UBC1 and UBC2, as well as self-associating. The expression of FLOWERING LOCUS C (FLC) and its homologs was repressed in hub1, hub2, and ubc1 ubc2 mutant plants. Association of H2Bub1 with the chromatin of FLC clade genes depended on UBC1,2 and HUB1,2, as did the dynamics of methylated histones H3K4me3 and H3K36me2. The monoubiquitination of H2B via UBC1,2 and HUB1,2 represents a novel form of histone modification that is involved in flowering time regulation.
Collapse
Affiliation(s)
- Ying Cao
- Institute of Molecular Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang 050016, China
| | | | | | | |
Collapse
|
5
|
Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau OS, Deng XW, Callis J. Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. PLANT PHYSIOLOGY 2005; 139:1597-611. [PMID: 16339806 PMCID: PMC1310545 DOI: 10.1104/pp.105.067983] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Attachment of ubiquitin to substrate proteins is catalyzed by the three enzymes E1, E2 (ubiquitin conjugating [UBC]), and E3 (ubiquitin ligase). Forty-one functional proteins with a UBC domain and active-site cysteine are predicted in the Arabidopsis (Arabidopsis thaliana) genome, which includes four that are predicted or shown to function with ubiquitin-like proteins. Only nine were previously characterized biochemically as ubiquitin E2s. We obtained soluble protein for 22 of the 28 uncharacterized UBCs after expression in Escherichia coli and demonstrated that 16 function as ubiquitin E2s. Twelve, plus three previously characterized ubiquitin E2s, were also tested for the ability to catalyze ubiquitination in vitro in the presence of one of 65 really interesting new gene (RING) E3 ligases. UBC22, UBC19-20, and UBC1-6 had variable levels of E3-independent activity. Six UBCs were inactive with all RINGs tested. Closely related UBC8, 10, 11, and 28 were active with the largest number of RING E3s and with all RING types. Expression analysis was performed to determine whether E2s or E3s were expressed in specific organs or under specific environmental conditions. Closely related E2s show unique patterns of expression and most express ubiquitously. Some RING E3s are also ubiquitously expressed; however, others show organ-specific expression. Of all the organs tested, RING mRNAs are most abundant in floral organs. This study demonstrates that E2 diversity includes examples with broad and narrow specificity toward RINGs, and that most ubiquitin E2s are broadly expressed with each having a unique spatial and developmental pattern of expression.
Collapse
Affiliation(s)
- Edward Kraft
- Section of Molecular and Cellular Biology, Division of Biological Sciences , University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Koyama T, Okada T, Kitajima S, Ohme-Takagi M, Shinshi H, Sato F. Isolation of tobacco ubiquitin-conjugating enzyme cDNA in a yeast two-hybrid system with tobacco ERF3 as bait and its characterization of specific interaction. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:1175-81. [PMID: 12654868 DOI: 10.1093/jxb/erg136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tobacco ETHYLENE-RESPONSIVE FACTOR3 (ERF3) is a member of the ERF-domain transcription factors and has a transcriptional repressor activity, whereas other ERF proteins show activation activity. To understand the regulation of ERF3-repressor activity, protein(s) were screened which interact with ERF3 in a yeast two-hybrid system. A partial sequence (B8) of NtUBC2, a tobacco ubiquitin-conjugating enzyme was isolated. This B8 specifically interacted with ERF3 in the yeast two-hybrid system. Further analyses revealed that the region unique to ERF3 interacted with B8. The physiological functions of NtUBC2 and the stability of ERF3 are discussed in relation to the regulation of the repression activity of ERF3.
Collapse
Affiliation(s)
- Tomotsugu Koyama
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Nakazono M, Qiu F, Borsuk LA, Schnable PS. Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. THE PLANT CELL 2003; 15:583-96. [PMID: 12615934 PMCID: PMC150015 DOI: 10.1105/tpc.008102] [Citation(s) in RCA: 274] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Laser-capture microdissection (LCM) allows for the one-step procurement of large homogeneous populations of cells from tissue sections. In mammals, LCM has been used to conduct cDNA microarray and proteomics studies on specific cell types. However, LCM has not been applied to plant cells, most likely because plant cell walls make it difficult to separate target cells from surrounding cells and because ice crystals can form in the air spaces between cells when preparing frozen sections. By fixing tissues, using a cryoprotectant before freezing, and using an adhesive-coated slide system, it was possible to capture large numbers (>10,000) of epidermal cells and vascular tissues (vascular bundles and bundle sheath cells) from ethanol:acetic acid-fixed coleoptiles of maize. RNA extracted from these cells was amplified with T7 RNA polymerase and used to hybridize a microarray containing approximately 8800 maize cDNAs. Approximately 250 of these were expressed preferentially in epidermal cells or vascular tissues. These results demonstrate that the combination of LCM and microarrays makes it feasible to conduct high-resolution global gene expression analyses of plants. This approach has the potential to enhance our understanding of diverse plant cell type-specific biological processes.
Collapse
Affiliation(s)
- Mikio Nakazono
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
8
|
Criqui MC, de Almeida Engler J, Camasses A, Capron A, Parmentier Y, Inzé D, Genschik P. Molecular characterization of plant ubiquitin-conjugating enzymes belonging to the UbcP4/E2-C/UBCx/UbcH10 gene family. PLANT PHYSIOLOGY 2002; 130:1230-40. [PMID: 12427990 PMCID: PMC166644 DOI: 10.1104/pp.011353] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Accepted: 08/07/2002] [Indexed: 05/04/2023]
Abstract
The anaphase promoting complex or cyclosome is the ubiquitin-ligase that targets destruction box-containing proteins for proteolysis during the cell cycle. Anaphase promoting complex or cyclosome and its activator (the fizzy and fizzy-related) proteins work together with ubiquitin-conjugating enzymes (UBCs) (E2s). One class of E2s (called E2-C) seems specifically involved in cyclin B1 degradation. Although it has recently been shown that mammalian E2-C is regulated at the protein level during the cell cycle, not much is known concerning the expression of these genes. Arabidopsis encodes two genes belonging to the E2-C gene family (called UBC19 and UBC20). We found that UBC19 is able to complement fission yeast (Schizosaccharomyces pombe) UbcP4-140 mutant, indicating that the plant protein can functionally replace its yeast ortholog for protein degradation during mitosis. In situ hybridization experiments were performed to study the expression of the E2-C genes in various tissues of plants. Their transcripts were always, but not exclusively, found in tissues active for cell division. Thus, the UBC19/20 E2s may have a key function during cell cycle, but may also be involved in ubiquitylation reactions occurring during differentiation and/or in differentiated cells. Finally, we showed that a translational fusion protein between UBC19 and green fluorescent protein localized both in the cytosol and the nucleus in stable transformed tobacco (Nicotiana tabacum cv Bright Yellow 2) cells.
Collapse
Affiliation(s)
- Marie Claire Criqui
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Bachmair A, Novatchkova M, Potuschak T, Eisenhaber F. Ubiquitylation in plants: a post-genomic look at a post-translational modification. TRENDS IN PLANT SCIENCE 2001; 6:463-70. [PMID: 11590065 DOI: 10.1016/s1360-1385(01)02080-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this article, we summarize Arabidopsis genes encoding ubiquitin, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzymes (E2s) and an additional selected set of proteins related to ubiquitylation. We emphasize comparisons to components from Saccharomyces cerevisiae, with occasional reference to animals. Among the E1 and E2s, Arabidopsis usually has two to four probable orthologs to one yeast gene. Also, Arabidopsis has genes with no likely ortholog in yeast, although they often have potential orthologs in animals. The large number of components with known function in ubiquitylation indicates that this process plays a complex role in cellular physiology.
Collapse
Affiliation(s)
- A Bachmair
- Institute of Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria.
| | | | | | | |
Collapse
|
10
|
Davis SJ, Bhoo SH, Durski AM, Walker JM, Vierstra RD. The heme-oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants. PLANT PHYSIOLOGY 2001; 126:656-69. [PMID: 11402195 PMCID: PMC111157 DOI: 10.1104/pp.126.2.656] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Revised: 03/19/2001] [Accepted: 03/23/2001] [Indexed: 05/05/2023]
Abstract
The committed step in the biosynthesis of the phytochrome chromophore phytochromobilin involves the oxidative cleavage of heme by a heme oxygenase (HO) to form biliverdin IXalpha. Through positional cloning of the photomorphogenic mutant hy1, the Arabidopsis HO (designated AtHO1) responsible for much of phytochromobilin synthesis recently was identified. Using the AtHO1 sequence, we identified families of HO genes in a number of plants that cluster into two subfamilies (HO1- and HO2-like). The tomato (Lycopersicon esculentum) yg-2 and Nicotiana plumbaginifolia pew1 photomorphogenic mutants are defective in specific HO genes. Phenotypic analysis of a T-DNA insertion mutant of Arabidopsis HO2 revealed that the second HO subfamily also contributes to phytochromobilin synthesis. Homozygous ho2-1 plants show decreased chlorophyll accumulation, reduced growth rate, accelerated flowering time, and reduced de-etiolation. A mixture of apo- and holo-phyA was detected in etiolated ho2-1 seedlings, suggesting that phytochromobilin is limiting in this mutant, even in the presence of functional AtHO1. The patterns of Arabidopsis HO1 and HO2 expression suggest that the products of both genes overlap temporally and spatially. Taken together, the family of HOs is important for phytochrome-mediated development in a number of plants and that each family member may uniquely contribute to the phytochromobilin pool needed to assemble holo-phytochromes.
Collapse
Affiliation(s)
- S J Davis
- Laboratory of Genetics, Cellular and Molecular Biology Program, and the Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
11
|
Miller JD, Arteca RN, Pell EJ. Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. PLANT PHYSIOLOGY 1999; 120:1015-24. [PMID: 10444084 PMCID: PMC59334 DOI: 10.1104/pp.120.4.1015] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/1999] [Accepted: 05/11/1999] [Indexed: 05/18/2023]
Abstract
The expression patterns of senescence-related genes were determined during ozone (O(3)) exposure in Arabidopsis. Rosettes were treated with 0.15 microL L(-1) O(3) for 6 h d(-1) for 14 d. O(3)-treated leaves began to yellow after 10 d of exposure, whereas yellowing was not apparent in control leaves until d 14. Transcript levels for eight of 12 senescence related genes characterized showed induction by O(3). SAG13 (senescence-associated gene), SAG21, ERD1 (early responsive to dehydration), and BCB (blue copper-binding protein) were induced within 2 to 4 d of O(3) treatment; SAG18, SAG20, and ACS6 (ACC synthase) were induced within 4 to 6 d; and CCH (copper chaperone) was induced within 6 to 8 d. In contrast, levels of photosynthetic gene transcripts, rbcS (small subunit of Rubisco) and cab (chlorophyll a/b-binding protein), declined after 6 d. Other markers of natural senescence, SAG12, SAG19, MT1 (metallothionein), and Atgsr2 (glutamine synthetase), did not show enhanced transcript accumulation. When SAG12 promoter-GUS (beta-glucuronidase) and SAG13 promoter-GUS transgenic plants were treated with O(3), GUS activity was induced in SAG13-GUS plants after 2 d but was not detected in SAG12-GUS plants. SAG13 promoter-driven GUS activity was located throughout O(3)-treated leaves, whereas control leaves generally showed activity along the margins. The acceleration of leaf senescence induced by O(3) is a regulated event involving many genes associated with natural senescence.
Collapse
Affiliation(s)
- J D Miller
- Intercollege Graduate Program in Plant Physiology, The Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
12
|
Feussner K, Feussner I, Leopold I, Wasternack C. Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato--the first stress-induced UBC of higher plants. FEBS Lett 1997; 409:211-5. [PMID: 9202147 DOI: 10.1016/s0014-5793(97)00509-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A clone of an ubiquitin-conjugating enzyme (UBC) was isolated from a lambda-ZAP-cDNA library, generated from mRNA of tomato (Lycopersicon esculentum) cells grown in suspension for 3 days. The open reading frame called LeUBC1, encodes for a polypeptide with a predicted molecular mass of 21.37 kDa, which was confirmed by bacterial overexpression and SDS-PAGE. Database searches with LeUBC1 showed highest sequence similarities to UBC1 of bovine and yeast. By Southern blot analysis LeUBC1 was identified as a member of a small E2 subfamily of tomato, presumably consisting of at least two members. As revealed by Northern blot analysis LeUBC1 is constitutively expressed in an exponentially growing tomato cell culture. In response to heat shock an increase in LeUBC1-mRNA was detectable. A strong accumulation of the LeUBC1-transcript was observed by exposure to heavy metal stress which was performed by treatment with cadmium chloride (CdCl2). The cellular uptake of cadmium was controlled via ICP-MS measurements. The data suggest that like in yeast, in plants a certain subfamily of UBC is specifically involved in the proteolytic degradation of abnormal proteins as result of stress.
Collapse
Affiliation(s)
- K Feussner
- Institute of Plant Biochemistry, Halle/Saale, Germany
| | | | | | | |
Collapse
|