1
|
Shi T, Fan D, Xu C, Zheng G, Zhong C, Feng F, Chow WS. The Fitting of the OJ Phase of Chlorophyll Fluorescence Induction Based on an Analytical Solution and Its Application in Urban Heat Island Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:452. [PMID: 38337985 PMCID: PMC10857409 DOI: 10.3390/plants13030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Chlorophyll (Chl) fluorescence induction (FI) upon a dark-light transition has been widely analyzed to derive information on initial events of energy conversion and electron transfer in photosystem II (PSII). However, currently, there is no analytical solution to the differential equation of QA reduction kinetics, raising a doubt about the fitting of FI by numerical iteration solution. We derived an analytical solution to fit the OJ phase of FI, thereby yielding estimates of three parameters: the functional absorption cross-section of PSII (σPSII), a probability parameter that describes the connectivity among PSII complexes (p), and the rate coefficient for QA- oxidation (kox). We found that σPSII, p, and kox exhibited dynamic changes during the transition from O to J. We postulated that in high excitation light, some other energy dissipation pathways may vastly outcompete against excitation energy transfer from a closed PSII trap to an open PSII, thereby giving the impression that connectivity seemingly does not exist. We also conducted a case study on the urban heat island effect on the heat stability of PSII using our method and showed that higher-temperature-acclimated leaves had a greater σPSII, lower kox, and a tendency of lower p towards more shade-type characteristics.
Collapse
Affiliation(s)
- Tongxin Shi
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Dayong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Chengyang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Guoming Zheng
- Yi Zong Qi Technology (Beijing) Co., Ltd., Beijing 100095, China
| | - Chuanfei Zhong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Fei Feng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (T.S.)
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
2
|
Belyaeva NE, Bulychev AA, Klementiev KE, Paschenko VZ, Riznichenko GY, Rubin AB. Model quantification of the light-induced thylakoid membrane processes in Synechocystis sp. PCC 6803 in vivo and after exposure to radioactive irradiation. PHOTOSYNTHESIS RESEARCH 2020; 146:259-278. [PMID: 32734447 DOI: 10.1007/s11120-020-00774-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Measurements of OJIP-SMT patterns of fluorescence induction (FI) in Synechocystis sp. PCC 6803 (Synechocystis) cells on a time scale up to several minutes were mathematically treated within the framework of thylakoid membrane (T-M) model (Belyaeva et al., Photosynth Res 140:1-19, 2019) that was renewed to account for the state transitions effects. Principles of describing electron transfer in reaction centers of photosystems II and I (PSII and PSI) and cytochrome b6f complex remained unchanged, whereas parameters for dissipative reactions of non-radiative charge recombination were altered depending on the oxidation state of QB-site (neutral, reduced by one electron, empty, reduced by two electrons). According to our calculations, the initial content of plastoquinol (PQH2) in the total quinone pool of Synechocystis cells adapted to darkness for 10 min ranged between 20 and 40%. The results imply that the PQ pool mediates photosynthetic and respiratory charge flows. The redistribution of PBS antenna units responsible for the increase of Chl fluorescence in cyanobacteria (qT2 → 1) upon state 2 → 1 transition or the fluorescence lowering (qT1 → 2) due to state 1 → 2 transition were described in the model by exponential functions. Parameters of dynamically changed effective cross section were found by means of simulations of OJIP-SMT patterns observed on Synechocystis cells upon strong (3000 μmol photons m-2s-1) and moderate (1000 μmol photons m-2s-1) actinic light intensities. The corresponding light constant values kLΣAnt = 1.2 ms-1 and 0.4 ms-1 define the excitation of total antenna pool dynamically redistributed between PSII and PSI reaction centers. Although the OCP-induced quenching of antenna excitation is not involved in the model, the main features of the induction signals have been satisfactorily explained. In the case of strong illumination, the effective cross section decreases by approximately 33% for irradiated Synechocystis cells as compared to untreated cells. Under moderate light, the irradiated Synechocystis cells showed in simulations the same cross section as the untreated cells. The thylakoid model renewed with state transitions description allowed simulation of fluorescence induction OJIP-SMT curves detected on time scale from microseconds to minutes.
Collapse
Affiliation(s)
- N E Belyaeva
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - A A Bulychev
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - K E Klementiev
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - V Z Paschenko
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - G Yu Riznichenko
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| | - A B Rubin
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119234, Moscow, Russia
| |
Collapse
|
3
|
Laisk A, Oja V. Variable fluorescence of closed photochemical reaction centers. PHOTOSYNTHESIS RESEARCH 2020; 143:335-346. [PMID: 31960223 DOI: 10.1007/s11120-020-00712-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 05/12/2023]
Abstract
Chlorophyll fluorescence induction during 0.4 to 200 ms multiple-turnover pulses (MTP) was measured in parallel with O2 evolution induced by the MTP light. Additionally, a saturating single-turnover flash (STF) was applied at the end of each MTP and the total MTP +STF O2 evolution was measured. Quantum yield of O2 evolution during the MTP transients was calculated and related to the number of open PSII centers, found from the STF O2 evolution. Proportionality between the number of open PSII and their running photochemical activity showed the quantum yield of open PSII remained constant independent of the closure of adjacent centers. During the induction, total fluorescence was partitioned between Fo of all the open centers and Fc of all the closed centers. The fluorescence yield of a closed center was 0.55 of the final Fm while less than a half of the centers were closed, but later increased, approaching Fm to the end of the induction. In the framework of the antenna/radical pair equilibrium model, the collective rise of the fluorescence of centers closed earlier during the induction is explained by an electric field, facilitating return of excitation energy from the Pheo- P680+ radical pair to the antenna.
Collapse
Affiliation(s)
- Agu Laisk
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia.
| | - Vello Oja
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia
| |
Collapse
|
4
|
Belyaeva NE, Bulychev AA, Riznichenko GY, Rubin AB. Thylakoid membrane model of the Chl a fluorescence transient and P700 induction kinetics in plant leaves. PHOTOSYNTHESIS RESEARCH 2016; 130:491-515. [PMID: 27368165 DOI: 10.1007/s11120-016-0289-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/20/2016] [Indexed: 05/09/2023]
Abstract
A new Thylakoid model is presented, which describes in detail the electron/proton transfer reactions between membrane protein complexes including photosystems II and I (PSII, PSI), cytochrome (Cyt) b 6 f, mobile plastoquinone PQ pool in the thylakoid membrane, plastocyanin in lumen and ferredoxin in stroma, reduction of NADP via FNR and cyclic electron transfer. The Thylakoid model parameters were fitted both to Chl fluorescence induction data (FI) and oxido-reductions of P700 (ΔA 810) measured from 20 μs up to 20 s in pea leaves. The two-wave kinetics of FI and ΔA 810 (O(JI)PSM and OABCDE) were described quantitatively, provided that the values of membrane electrochemical potential components ΔΨ(t), pHL(t)/pHS(t) are in physiologically relevant ranges. The time courses on the time scale from nanoseconds to tens of seconds of oxido-reduction changes of ET components as well as concentrations of proton/ions (K+, Cl-) were calculated. We assume a low constant FNR activity over this period. Charge movements across the thylakoid membrane by passive leakage and active ATPase transport and proton buffer reactions are simulated. The dynamics of charge fluxes during photosynthetic induction under low light (PFD 200 μmol photons m-2 s-1) were analyzed. The initial wave of P700 oxidation within 20 ms during independent operation of PSI and PSII was followed after 50 ms by PSI donor-side reduction from reduced PQ pool via Cyt b 6 f site. The Cyt b 6 f reactions contribute to the stabilization of fluxes in the time range 1 s < t < 10 s. The detailed analysis of Chl a fluorescence at the PSM stage (t > 10 s) would need the investigation of FNR activation effect in order to explain the transitions between cyclic and linear electron transport.
Collapse
Affiliation(s)
- N E Belyaeva
- Department of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992.
| | - A A Bulychev
- Department of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - G Yu Riznichenko
- Department of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| | - A B Rubin
- Department of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia, 119992
| |
Collapse
|
5
|
Belyaeva NE, Schmitt FJ, Paschenko VZ, Riznichenko GY, Rubin AB. Modeling of the redox state dynamics in photosystem II of Chlorella pyrenoidosa Chick cells and leaves of spinach and Arabidopsis thaliana from single flash-induced fluorescence quantum yield changes on the 100 ns-10 s time scale. PHOTOSYNTHESIS RESEARCH 2015; 125:123-140. [PMID: 26049407 DOI: 10.1007/s11120-015-0163-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
The time courses of the photosystem II (PSII) redox states were analyzed with a model scheme supposing a fraction of 11-25 % semiquinone (with reduced [Formula: see text]) RCs in the dark. Patterns of single flash-induced transient fluorescence yield (SFITFY) measured for leaves (spinach and Arabidopsis (A.) thaliana) and the thermophilic alga Chlorella (C.) pyrenoidosa Chick (Steffen et al. Biochemistry 44:3123-3132, 2005; Belyaeva et al. Photosynth Res 98:105-119, 2008, Plant Physiol Biochem 77:49-59, 2014) were fitted with the PSII model. The simulations show that at high-light conditions the flash generated triplet carotenoid (3)Car(t) population is the main NPQ regulator decaying in the time interval of 6-8 μs. So the SFITFY increase up to the maximum level [Formula: see text]/F 0 (at ~50 μs) depends mainly on the flash energy. Transient electron redistributions on the RC redox cofactors were displayed to explain the SFITFY measured by weak light pulses during the PSII relaxation by electron transfer (ET) steps and coupled proton transfer on both the donor and the acceptor side of the PSII. The contribution of non-radiative charge recombination was taken into account. Analytical expressions for the laser flash, the (3)Car(t) decay and the work of the water-oxidizing complex (WOC) were used to improve the modeled P680(+) reduction by YZ in the state S 1 of the WOC. All parameter values were compared between spinach, A. thaliana leaves and C. pyrenoidosa alga cells and at different laser flash energies. ET from [Formula: see text] slower in alga as compared to leaf samples was elucidated by the dynamics of [Formula: see text] fractions to fit SFITFY data. Low membrane energization after the 10 ns single turnover flash was modeled: the ∆Ψ(t) amplitude (20 mV) is found to be about 5-fold smaller than under the continuous light induction; the time-independent lumen pHL, stroma pHS are fitted close to dark estimates. Depending on the flash energy used at 1.4, 4, 100 % the pHS in stroma is fitted to 7.3, 7.4, and 7.7, respectively. The biggest ∆pH difference between stroma and lumen was found to be 1.2, thus pH- dependent NPQ was not considered.
Collapse
Affiliation(s)
- N E Belyaeva
- Department of Biophysics, Biology Faculty, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia,
| | | | | | | | | |
Collapse
|
6
|
Stirbet A, Riznichenko GY, Rubin AB, Govindjee. Modeling chlorophyll a fluorescence transient: relation to photosynthesis. BIOCHEMISTRY (MOSCOW) 2015; 79:291-323. [PMID: 24910205 DOI: 10.1134/s0006297914040014] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To honor Academician Alexander Abramovitch Krasnovsky, we present here an educational review on the relation of chlorophyll a fluorescence transient to various processes in photosynthesis. The initial event in oxygenic photosynthesis is light absorption by chlorophylls (Chls), carotenoids, and, in some cases, phycobilins; these pigments form the antenna. Most of the energy is transferred to reaction centers where it is used for charge separation. The small part of energy that is not used in photochemistry is dissipated as heat or re-emitted as fluorescence. When a photosynthetic sample is transferred from dark to light, Chl a fluorescence (ChlF) intensity shows characteristic changes in time called fluorescence transient, the OJIPSMT transient, where O (the origin) is for the first measured minimum fluorescence level; J and I for intermediate inflections; P for peak; S for semi-steady state level; M for maximum; and T for terminal steady state level. This transient is a real signature of photosynthesis, since diverse events can be related to it, such as: changes in redox states of components of the linear electron transport flow, involvement of alternative electron routes, the build-up of a transmembrane pH gradient and membrane potential, activation of different nonphotochemical quenching processes, activation of the Calvin-Benson cycle, and other processes. In this review, we present our views on how different segments of the OJIPSMT transient are influenced by various photosynthetic processes, and discuss a number of studies involving mathematical modeling and simulation of the ChlF transient. A special emphasis is given to the slower PSMT phase, for which many studies have been recently published, but they are less known than on the faster OJIP phase.
Collapse
Affiliation(s)
- A Stirbet
- 204 Anne Burras Lane, Newport News, VA 23606, USA.
| | | | | | - Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Xin CP, Yang J, Zhu XG. A model of chlorophyll a fluorescence induction kinetics with explicit description of structural constraints of individual photosystem II units. PHOTOSYNTHESIS RESEARCH 2013; 117:339-354. [PMID: 23912704 DOI: 10.1007/s11120-013-9894-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Chlorophyll a fluorescence induction (FI) kinetics, in the microseconds to the second range, reflects the overall performance of the photosynthetic apparatus. In this paper, we have developed a novel FI model, using a rule-based kinetic Monte Carlo method, which incorporates not only structural and kinetic information on PSII, but also a simplified photosystem I. This model has allowed us to successfully simulate the FI under normal or different treatment conditions, i.e., with different levels of measuring light, under 3-(3',4'-dichlorophenyl)-1,1-dimethylurea treatment, under 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone treatment, and under methyl viologen treatment. Further, using this model, we have systematically studied the mechanistic basis and factors influencing the FI kinetics. The results of our simulations suggest that (1) the J step is caused by the two-electron gate at the Q B site; (2) the I step is caused by the rate limitation of the plastoquinol re-oxidation in the plastoquinone pool. This new model provides a framework for exploring impacts of modifying not only kinetic but also structural parameters on the FI kinetics.
Collapse
Affiliation(s)
- Chang-Peng Xin
- CAS Key Laboratory of Computational Biology, CAS-MPG (Chinese Academy of Sciences-German Max Planck Society) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
8
|
van Amerongen H, Croce R. Light harvesting in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:251-63. [PMID: 23595278 PMCID: PMC3824292 DOI: 10.1007/s11120-013-9824-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/08/2013] [Indexed: 05/18/2023]
Abstract
Water oxidation in photosynthesis takes place in photosystem II (PSII). This photosystem is built around a reaction center (RC) where sunlight-induced charge separation occurs. This RC consists of various polypeptides that bind only a few chromophores or pigments, next to several other cofactors. It can handle far more photons than the ones absorbed by its own pigments and therefore, additional excitations are provided by the surrounding light-harvesting complexes or antennae. The RC is located in the PSII core that also contains the inner light-harvesting complexes CP43 and CP47, harboring 13 and 16 chlorophyll pigments, respectively. The core is surrounded by outer light-harvesting complexes (Lhcs), together forming the so-called supercomplexes, at least in plants. These PSII supercomplexes are complemented by some "extra" Lhcs, but their exact location in the thylakoid membrane is unknown. The whole system consists of many subunits and appears to be modular, i.e., both its composition and organization depend on environmental conditions, especially on the quality and intensity of the light. In this review, we will provide a short overview of the relation between the structure and organization of pigment-protein complexes in PSII, ranging from individual complexes to entire membranes and experimental and theoretical results on excitation energy transfer and charge separation. It will become clear that time-resolved fluorescence data can provide invaluable information about the organization and functioning of thylakoid membranes. At the end, an overview will be given of unanswered questions that should be addressed in the near future.
Collapse
Affiliation(s)
- Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P. O. Box 8128, 6700 ET, Wageningen, The Netherlands,
| | | |
Collapse
|
9
|
Stirbet A. Excitonic connectivity between photosystem II units: what is it, and how to measure it? PHOTOSYNTHESIS RESEARCH 2013; 116:189-214. [PMID: 23794168 DOI: 10.1007/s11120-013-9863-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/26/2013] [Indexed: 05/22/2023]
Abstract
In photosynthetic organisms, light energy is absorbed by a complex network of chromophores embedded in light-harvesting antenna complexes. In photosystem II (PSII), the excitation energy from the antenna is transferred very efficiently to an active reaction center (RC) (i.e., with oxidized primary quinone acceptor Q(A)), where the photochemistry begins, leading to O2 evolution, and reduction of plastoquinones. A very small part of the excitation energy is dissipated as fluorescence and heat. Measurements on chlorophyll (Chl) fluorescence and oxygen have shown that a nonlinear (hyperbolic) relationship exists between the fluorescence yield (Φ(F)) (or the oxygen emission yield, (Φ(O2)) and the fraction of closed PSII RCs (i.e., with reduced Q(A)). This nonlinearity is assumed to be related to the transfer of the excitation energy from a closed PSII RC to an open (active) PSII RC, a process called PSII excitonic connectivity by Joliot and Joliot (CR Acad Sci Paris 258: 4622-4625, 1964). Different theoretical approaches of the PSII excitonic connectivity, and experimental methods used to measure it, are discussed in this review. In addition, we present alternative explanations of the observed sigmoidicity of the fluorescence induction and oxygen evolution curves.
Collapse
|
10
|
Stirbet A. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. PHOTOSYNTHESIS RESEARCH 2012; 113:15-61. [PMID: 22810945 DOI: 10.1007/s11120-012-9754-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/29/2012] [Indexed: 05/03/2023]
Abstract
The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O-J-I-P transient in parallel with the reduction of Q(A), through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation-reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J-I-P rise during Chl a FI in plants and algae.
Collapse
|
11
|
Belyaeva NE, Bulychev AA, Riznichenko GY, Rubin AB. A model of photosystem II for the analysis of fast fluorescence rise in plant leaves. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911030055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Croce R, van Amerongen H. Light-harvesting and structural organization of Photosystem II: From individual complexes to thylakoid membrane. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:142-53. [DOI: 10.1016/j.jphotobiol.2011.02.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
|
13
|
Semenov AY, Kurashov VN, Mamedov MD. Transmembrane charge transfer in photosynthetic reaction centers: some similarities and distinctions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:326-32. [PMID: 21356596 DOI: 10.1016/j.jphotobiol.2011.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 12/17/2022]
Abstract
This mini review presents a general comparison of structural and functional peculiarities of three types of photosynthetic reaction centers (RCs)--photosystem (PS) II, RC from purple bacteria (bRC) and PS I. The nature and mechanisms of the primary electron transfer reactions, as well as specific features of the charge transfer reactions at the donor and acceptor sides of RCs are considered. Comparison of photosynthetic RCs shows general similarity between the core central parts of all three types, between the acceptor sides of bRC and PS II, and between the donor sides of bRC and PS I. In the latter case, the similarity covers thermodynamic, kinetic and dielectric properties, which determine the resemblance of mechanisms of electrogenic reduction of the photooxidized primary donors. Significant distinctions between the donor and acceptor sides of PS I and PS II are also discussed. The results recently obtained in our laboratory indicate in favor of the following sequence of the primary and secondary electron transfer reactions: in PS II (bRC): Р(680)(Р(870)) → Chl(D1)(В(А)) → Phe(bPhe) → Q(A); and in PS I: Р(700) → А(0А)/A(0B) → Q(A)/Q(B).
Collapse
Affiliation(s)
- Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, 119992 Moscow, Leninskie Gory, Russia.
| | | | | |
Collapse
|
14
|
Belyaeva N, Schmitt FJ, Paschenko V, Riznichenko G, Rubin A, Renger G. PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies. Biosystems 2011; 103:188-95. [DOI: 10.1016/j.biosystems.2010.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/25/2022]
|
15
|
Lazár D, Schansker G. Models of Chlorophyll a Fluorescence Transients. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Belyaeva NE, Schmitt FJ, Steffen R, Paschenko VZ, Riznichenko GY, Chemeris YK, Renger G, Rubin AB. PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns-10 s on dark-adapted Chlorella pyrenoidosa cells. PHOTOSYNTHESIS RESEARCH 2008; 98:105-19. [PMID: 18937044 DOI: 10.1007/s11120-008-9374-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 09/24/2008] [Indexed: 05/24/2023]
Abstract
The set up described in Steffen et al. (Biochemistry 40:173-180, 2001) was used to monitor in the time domain from 100 ns to 10 s single turnover flash-induced transients of the normalized fluorescence yield (SFITFY) on dark-adapted cells of the thermophilic algae Chlorella pyrenoidosa Chick. Perfect data fit was achieved within the framework of a previously proposed model for the PS II reaction pattern (Lebedeva et al., Biophysics 47:968-980, 2002; Belyaeva et al., Biophysics 51:860-872, 2006) after its modification by taking into account nonradiative decay processes including nonphotochemical quenching due to time-dependent populations of P680(+*) and (3)Car. On the basis of data reported in the literature, a consistent set of rate constants was obtained for electron transfer at the donor and acceptor sides of PS II, pH in lumen and stroma, the initial redox state of plastoquinone pool and the rate of plastoquinone oxidation. The evaluation of the rate constant values of dissipative processes due to quenching by carotenoid triplets in antennae and P680(+*)Q(A)(-*) recombination as well as the initial state populations after excitation with a single laser flash are close to that outlined in (Steffen et al., Biochemistry 44:3123-3133, 2005a). The simulations based on the model of the PS II reaction pattern provide information on the time courses of population probabilities of different PS II states. We analyzed the maximum (F(m)(STF)) and minimum (F(0)) of the normalized FL yield dependence on the rate of the recombination processes (radiative and dissipative nonradiative) and of P680(+*) reduction. The developed PS II model provides a basis for theoretical comparative analyses of time-dependent fluorescence signals, observed at different photosynthetic samples under various conditions (e.g. presence of herbicides, other stress conditions, excitation with actinic pulses of different intensity, and duration).
Collapse
Affiliation(s)
- N E Belyaeva
- Department of Biophysics, Biology Faculty of the M.V. Lomonosov Moscow State University, 119992 Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Semenov A, Cherepanov D, Mamedov M. Electrogenic reactions and dielectric properties of photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 98:121-30. [PMID: 18937043 DOI: 10.1007/s11120-008-9377-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 10/01/2008] [Indexed: 05/12/2023]
Abstract
This review is focused on the mechanism of photovoltage generation involving the photosystem II turnover. This large integral membrane enzyme catalyzes the light-driven oxidation of water and reduction of plastoquinone. The data discussed in this work show that there are four main electrogenic steps in native complexes: (i) light-induced charge separation between special pair chlorophylls P(680) and primary quinone acceptor Q(A); (ii) P(680)(+) reduction by the redox-active tyrosine Y(Z) of polypeptide D1; (iii) oxidation of Mn cluster by Y(Z)(ox) followed by proton release, and (iv) protonation of double reduced secondary quinone acceptor Q(B). The electrogenicity related to (i) proton-coupled electron transfer between Q(A)(-) and preoxidized non-heme iron (Fe(3+)) in native and (ii) electron transfer between protein-water boundary and Y(Z)(ox) in the presence of redox-dye(s) in Mn-depleted samples, respectively, were also considered. Evaluation of the dielectric properties using the electrometric data and the polarity profiles of reaction center from purple bacteria Blastochloris viridis and photosystem II are presented. The knowledge of the profile of dielectric permittivity along the photosynthetic reaction center is important for understanding of the mechanism of electron transfer between redox cofactors.
Collapse
Affiliation(s)
- Alexey Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow, Russia.
| | | | | |
Collapse
|
18
|
Tumino G, Casazza AP, Engelmann E, Garlaschi FM, Zucchelli G, Jennings RC. Fluorescence Lifetime Spectrum of the Plant Photosystem II Core Complex: Photochemistry Does Not Induce Specific Reaction Center Quenching. Biochemistry 2008; 47:10449-57. [DOI: 10.1021/bi800831j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Giorgio Tumino
- Dipartimento di Biologia, Università degli Studi di Milano and CNR Istituto di Biofisica, via Celoria 26, 20133 Milano, Italy
| | - Anna Paola Casazza
- Dipartimento di Biologia, Università degli Studi di Milano and CNR Istituto di Biofisica, via Celoria 26, 20133 Milano, Italy
| | - Enrico Engelmann
- Dipartimento di Biologia, Università degli Studi di Milano and CNR Istituto di Biofisica, via Celoria 26, 20133 Milano, Italy
| | - Flavio M. Garlaschi
- Dipartimento di Biologia, Università degli Studi di Milano and CNR Istituto di Biofisica, via Celoria 26, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Dipartimento di Biologia, Università degli Studi di Milano and CNR Istituto di Biofisica, via Celoria 26, 20133 Milano, Italy
| | - Robert C. Jennings
- Dipartimento di Biologia, Università degli Studi di Milano and CNR Istituto di Biofisica, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
19
|
|
20
|
Grabolle M, Dau H. Efficiency and role of loss processes in light-driven water oxidation by PSII. PHYSIOLOGIA PLANTARUM 2007; 131:50-63. [PMID: 18251924 DOI: 10.1111/j.1399-3054.2007.00941.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Its superior quantum efficiency renders PSII a model for biomimetic systems. However, also in biological water oxidation by PSII, the efficiency is restricted by recombination losses. By laser-flash illumination, the secondary radical pair, P680(+)Q(-) (A) (where P680 is the primary Chl donor in PSII and Q(A), primary quinone acceptor of PSII), was formed in close to 100% of the PSII. Investigation of the quantum efficiency (or yield) of the subsequent steps by time-resolved delayed (10 micros to 60 ms) and prompt (70 micros to 700 ms) Chl fluorescence measurements on PSII membrane particles suggests that (1) the effective rate for P680(+) Q(-) (A) recombination is approximately 5 ms(-1) with an activation energy of approximately 0.34 eV, circumstantially confirming dominating losses by reformation of the primary radical pair followed by ground-state recombination. (2) Because of compensatory influences on recombination and forward reactions, the efficiency is only weakly temperature dependent. (3) Recombination losses are several-fold enhanced at lower pH. (4) Calculation based on delayed-fluorescence data suggests that the losses depend on the state of the water-oxidizing manganese complex, being low in the S(0)-->S(1) and S(1)-->S(2) transition, clearly higher in S(2)-->S(3) and S(3)-->S(4)-->S(0). (5) For the used artificial electron acceptor, the efficiency is limited by acceptor-side processes/S-state decay at high/low photon-absorption rates resulting in optimal efficiency at surprisingly low rates of approximately 0.15-15 photons s(-1) (per PSII). The pH and S-state dependence can be rationalized by the basic model of alternate electron-proton removal proposed elsewhere. A physiological function of the recombination losses could be limitation of the lifetime of the reactive donor-side tyrosine radical (Y(.) (Z)) in the case of low-pH blockage of water oxidation.
Collapse
Affiliation(s)
- Markus Grabolle
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | | |
Collapse
|
21
|
van der Weij-de Wit CD, Ihalainen JA, van Grondelle R, Dekker JP. Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy. PHOTOSYNTHESIS RESEARCH 2007; 93:173-82. [PMID: 17390231 DOI: 10.1007/s11120-007-9157-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 03/02/2007] [Indexed: 05/14/2023]
Abstract
In this work, the transfer of excitation energy was studied in native and cation-depletion induced, unstacked thylakoid membranes of spinach by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission spectra at 5 K show an increase in photosystem I (PSI) emission upon unstacking, which suggests an increase of its antenna size. Fluorescence excitation measurements at 77 K indicate that the increase of PSI emission upon unstacking is caused both by a direct spillover from the photosystem II (PSII) core antenna and by a functional association of light-harvesting complex II (LHCII) to PSI, which is most likely caused by the formation of LHCII-LHCI-PSI supercomplexes. Time-resolved fluorescence measurements, both at room temperature and at 77 K, reveal differences in the fluorescence decay kinetics of stacked and unstacked membranes. Energy transfer between LHCII and PSI is observed to take place within 25 ps at room temperature and within 38 ps at 77 K, consistent with the formation of LHCII-LHCI-PSI supercomplexes. At the 150-160 ps timescale, both energy transfer from LHCII to PSI as well as spillover from the core antenna of PSII to PSI is shown to occur at 77 K. At room temperature the spillover and energy transfer to PSI is less clear at the 150 ps timescale, because these processes compete with charge separation in the PSII reaction center, which also takes place at a timescale of about 150 ps.
Collapse
Affiliation(s)
- C D van der Weij-de Wit
- Faculty of Sciences, Department of Physics and Astronomy, Section Biophysics, Vrije Universiteit, De Boelelaan 1081, Amsterdam, 1081 HV, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Chamorovsky SK, Cherepanov DA, Chamorovsky CS, Semenov AY. Correlation of electron transfer rate in photosynthetic reaction centers with intraprotein dielectric properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:441-8. [PMID: 17328862 DOI: 10.1016/j.bbabio.2007.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 12/24/2006] [Accepted: 01/15/2007] [Indexed: 11/20/2022]
Abstract
A number of the electrogenic reactions in photosystem I, photosystem II, and bacterial reaction centers (RC) were comparatively analyzed, and the variation of the dielectric permittivity (epsilon) in the vicinity of electron carriers along the membrane normal was calculated. The value of epsilon was minimal at the core of the complexes and gradually increased towards the periphery. We found that the rate of electron transfer (ET) correlated with the value of the dielectric permittivity: the fastest primary ET reactions occur in the low-polarity core of the complexes within the picosecond time range, whereas slower secondary reactions take place at the high-polarity periphery of the complexes within micro- to millisecond time range. The observed correlation was quantitatively interpreted in the framework of the Marcus theory. We calculated the reorganization energy of ET carriers using their van der Waals volumes and experimentally determined epsilon values. The electronic coupling was calculated by the empirical Moser-Dutton rule for the distance-dependent electron tunneling rate in nonadiabatic ET reactions. We concluded that the local dielectric permittivity inferred from the electrometric measurements could be quantitatively used to estimate the rate constant of ET reactions in membrane proteins with resolved atomic structure with the accuracy of less than one order of magnitude.
Collapse
|
23
|
Belyaeva NE, Pashchenko VZ, Renger G, Riznichenko GY, Rubin AB. Application of a photosystem II model for analysis of fluorescence induction curves in the 100 ns to 10 s time domain after excitation with a saturating light pulse. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906060030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Broess K, Trinkunas G, van der Weij-de Wit CD, Dekker JP, van Hoek A, van Amerongen H. Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophys J 2006; 91:3776-86. [PMID: 16861268 PMCID: PMC1630486 DOI: 10.1529/biophysj.106.085068] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/29/2006] [Indexed: 11/18/2022] Open
Abstract
We have performed time-resolved fluorescence measurements on photosystem II (PSII) containing membranes (BBY particles) from spinach with open reaction centers. The decay kinetics can be fitted with two main decay components with an average decay time of 150 ps. Comparison with recent kinetic exciton annihilation data on the major light-harvesting complex of PSII (LHCII) suggests that excitation diffusion within the antenna contributes significantly to the overall charge separation time in PSII, which disagrees with previously proposed trap-limited models. To establish to which extent excitation diffusion contributes to the overall charge separation time, we propose a simple coarse-grained method, based on the supramolecular organization of PSII and LHCII in grana membranes, to model the energy migration and charge separation processes in PSII simultaneously in a transparent way. All simulations have in common that the charge separation is fast and nearly irreversible, corresponding to a significant drop in free energy upon primary charge separation, and that in PSII membranes energy migration imposes a larger kinetic barrier for the overall process than primary charge separation.
Collapse
Affiliation(s)
- Koen Broess
- Wageningen University, Laboratory of Biophysics, 6700 ET Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Vasil'ev S, Bruce D. A protein dynamics study of photosystem II: the effects of protein conformation on reaction center function. Biophys J 2006; 90:3062-73. [PMID: 16461403 PMCID: PMC1432123 DOI: 10.1529/biophysj.105.076075] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations have been performed to study photosystem II structure and function. Structural information obtained from simulations was combined with ab initio computations of chromophore excited states. In contrast to calculations based on the x-ray structure, the molecular-dynamics-based calculations accurately predicted the experimental absorbance spectrum. In addition, our calculations correctly assigned the energy levels of reaction-center (RC) chromophores, as well as the lowest-energy antenna chlorophyll. The primary and secondary quinone electron acceptors, Q(A) and Q(B), exhibited independent changes in position over the duration of the simulation. Q(B) fluctuated between two binding sites similar to the proximal and distal sites previously observed in light- and dark-adapted RC from purple bacteria. Kinetic models were used to characterize the relative influence of chromophore geometry, site energies, and electron transport rates on RC efficiency. The fluctuating energy levels of antenna chromophores had a larger impact on quantum yield than did their relative positions. Variations in electron transport rates had the most significant effect and were sufficient to explain the experimentally observed multi-component decay of excitation in photosystem II. The implications of our results are discussed in the context of competing evolutionary selection pressures for RC structure and function.
Collapse
Affiliation(s)
- Sergej Vasil'ev
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| | | |
Collapse
|
26
|
Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:9-30. [PMID: 32689211 DOI: 10.1071/fp05095] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 08/18/2005] [Indexed: 05/24/2023]
Abstract
Chlorophyll a fluorescence rise caused by illumination of photosynthetic samples by high intensity of exciting light, the O-J-I-P (O-I1-I2-P) transient, is reviewed here. First, basic information about chlorophyll a fluorescence is given, followed by a description of instrumental set-ups, nomenclature of the transient, and samples used for the measurements. The review mainly focuses on the explanation of particular steps of the transient based on experimental and theoretical results, published since a last review on chlorophyll a fluorescence induction [Lazár D (1999) Biochimica et Biophysica Acta 1412, 1-28]. In addition to 'old' concepts (e.g. changes in redox states of electron acceptors of photosystem II (PSII), effect of the donor side of PSII, fluorescence quenching by oxidised plastoquinone pool), 'new' approaches (e.g. electric voltage across thylakoid membranes, electron transport through the inactive branch in PSII, recombinations between PSII electron acceptors and donors, electron transport reactions after PSII, light gradient within the sample) are reviewed. The K-step, usually detected after a high-temperature stress, and other steps appearing in the transient (the H and G steps) are also discussed. Finally, some applications of the transient are also mentioned.
Collapse
Affiliation(s)
- Dušan Lazár
- Palacký University, Faculty of Science, Department of Experimental Physics, Laboratory of Biophysics, tř. Svobody 26, 771 46 Olomouc, Czech Republic. Email
| |
Collapse
|
27
|
Engelmann ECM, Zucchelli G, Garlaschi FM, Casazza AP, Jennings RC. The effect of outer antenna complexes on the photochemical trapping rate in barley thylakoid Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:276-86. [PMID: 15694356 DOI: 10.1016/j.bbabio.2004.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 11/04/2004] [Accepted: 11/23/2004] [Indexed: 11/22/2022]
Abstract
We have investigated the previous suggestions in the literature that the outer antenna of Photosystem II of barley does not influence the effective photosystem primary photochemical trapping rate. It is shown by steady state fluorescence measurements at the F(0) fluorescence level of wild type and the chlorina f2 mutant, using the chlorophyll b fluorescence as a marker, that the outer antenna is thermally equilibrated with the core pigments, at room temperature, under conditions of photochemical trapping. This is in contrast with the conclusions of the earlier studies in which it was suggested that energy was transferred rapidly and irreversibly from the outer antenna to the Photosystem II core. Furthermore, the effective trapping time, determined by single photon counting, time-resolved measurements, was shown to increase from 0.17+/-0.017 ns in the chlorina Photosystem II core to a value within the range 0.42+/-0.036-0.47+/-0.044 ns for the wild-type Photosystem II with the outer antenna system. This 2.5-2.8-fold increase in the effective trapping time is, however, significantly less than that expected for a thermalized system. The data can be explained in terms of the outer antenna increasing the primary charge separation rate by about 50%.
Collapse
Affiliation(s)
- Enrico C M Engelmann
- Istituto di Biofisica del C.N.R, Sez. di Milano, Dipartimento di Biologia, Università degli Studi di Milano, Via G. Celoria 26, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
28
|
Grabolle M, Dau H. Energetics of primary and secondary electron transfer in Photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:209-18. [PMID: 15878422 DOI: 10.1016/j.bbabio.2005.03.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/14/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
Photon absorption by one of the roughly 200 chlorophylls of the plant Photosystem II (PSII) results in formation of an equilibrated excited state (Chl200*) and is followed by chlorophyll oxidation (formation of P680+) coupled to reduction of a specific pheophytin (Phe), then electron transfer from Phe- to a firmly bound quinone (QA), and subsequently reduction of P680+ by a redox-active tyrosine residue denoted as Z. The involved free-energy differences (DeltaG) and redox potentials are of prime interest. Oxygen-evolving PSII membrane particles of spinach were studied at 5 degrees C. By analyzing the delayed and prompt Chl fluorescence, we determined the equilibrium constant and thus free-energy difference between Chl200* and the [Z+,QA-] radical pair to be -0.43+/-0.025 eV, at 10 mus after the photon absorption event for PSII in its S(3)-state. On basis of this value and previously published results, the free-energy difference between P680* and [P680+,QA-] is calculated to be -0.50+/-0.04 eV; the free-energy loss associated with electron transfer from Phe to QA is found to be 0.34+/-0.04 eV. The given uncertainty ranges do not represent a standard deviation or likely error, but an estimate of the maximal error. Assuming a QA-/QA redox potential of -0.08 V, the following redox-potential estimates are obtained: +1.25 V for P680/P680+; +1.21 V for Z/Z+ (at 10 mus); -0.42 V for Phe-/Phe; -0.58 V for P680*/P680+.
Collapse
Affiliation(s)
- Markus Grabolle
- Freie Universität Berlin, FB Physik Arnimallee 14, D-14195 Berlin, Germany
| | | |
Collapse
|
29
|
Dekker JP, Boekema EJ. Supramolecular organization of thylakoid membrane proteins in green plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:12-39. [PMID: 15620363 DOI: 10.1016/j.bbabio.2004.09.009] [Citation(s) in RCA: 603] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 09/10/2004] [Accepted: 09/15/2004] [Indexed: 11/26/2022]
Abstract
The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.
Collapse
Affiliation(s)
- Jan P Dekker
- Faculty of Sciences, Division of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
| | | |
Collapse
|
30
|
Chamorovsky CS, Chamorovsky SK, Semenov AY. Dielectric and photoelectric properties of photosynthetic reaction centers. BIOCHEMISTRY. BIOKHIMIIA 2005; 70:257-63. [PMID: 15807667 DOI: 10.1007/s10541-005-0109-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A brief review of studies of dielectric and photoelectric properties of photosynthetic reaction centers of purple bacteria as well as photosystem I and photosystem II of cyanobacteria and higher plants is given. A simple kinetic model of the primary processes of electron transfer in photosynthesis is used to discuss possible mechanisms of correlation between rate constant of charge transfer reaction, free energy of electron transition, and effective dielectric constant in the locus of corresponding carriers.
Collapse
Affiliation(s)
- C S Chamorovsky
- Belozersky Institute of Physico-Chemical Biology and Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
31
|
Lazár D, Ilík P, Kruk J, Strzałka K, Naus J. A theoretical study on effect of the initial redox state of cytochrome b559 on maximal chlorophyll fluorescence level (F(M)): implications for photoinhibition of photosystem II. J Theor Biol 2004; 233:287-300. [PMID: 15619367 DOI: 10.1016/j.jtbi.2004.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/06/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
In this work, we extended the reversible radical pair model which describes energy utilization and electron transfer up to the first quinone electron acceptor (Q(A)) in photosystem II (PSII), by redox reactions involving cytochrome (cyt) b559. In the model, cyt b559 accepts electrons from the reduced primary electron acceptor in PSII, pheophytin, and donates electrons to the oxidized primary electron donor in PSII (P680+). Theoretical simulations of chlorophyll fluorescence rise based on the model show that the maximal fluorescence, F(M), increases with an increasing amount of initially reduced cyt b559. In this work we applied, the first to our knowledge, metabolic control analysis (MCA) to a model of reactions in PSII. The MCA was used to determine to what extent the reactions occurring in the model control the F(M) level and how this control depends on the initial redox state of cyt b559. The simulations also revealed that increasing the amount of initially reduced cyt b559 could protect PSII against photoinhibition. Also experimental data, which might be used to validate our theory, are presented and discussed.
Collapse
Affiliation(s)
- Dusan Lazár
- Laboratory of Biophysics, Department of Experimental Physics, Faculty of Science, Palacký University, tr. Svobody 26, 771 46 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
32
|
Lazár D. Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 2003; 220:469-503. [PMID: 12623282 DOI: 10.1006/jtbi.2003.3140] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chlorophyll a fluorescence rise (FLR) measured in vivo in dark-adapted plant tissue immediately after the onset of high light continuous illumination shows complex O-K-J-I-P transient. The steps typically appear at about 400 micros (K), 2 ms (J), 30 ms (I), and 200 - 500 ms (P) and a transient decrease of fluorescence to local minima (dips D) can be observed after the K, J, and I steps. As the FLR reflects a function of photosystem II (PSII) and to more understand the FLR, a PSII reactions model was formulated comprising equilibrium of excited states among all light harvesting and reaction centre pigments and P680, reversible radical pair formation and the donor and acceptor side functions. Such a formulated model is the most detailed and complex model of PSII reactions used so far for simulations of the FLR. By varying of selected model parameters (rate constants and initial conditions) several conclusions can be made as for the origin of and changes in shape of the theoretical FLR and compare them with in-literature-reported results. For homogeneous population of PSII and using standard in-literature-reported values of the model parameters, the simulated FLR is characterized by reaching the minimal fluorescence F(0) at about 3 ns after the illumination is switched on lasting to about 1 micros, followed by fluorescence rise to a plateau located at about 2 ms and subsequent fluorescence rise to a global maximum that is reached at about 60 ms. Varying of the values of rate constants of fast processes that can compete for utilization of the excited states with fluorescence emission does not change qualitatively the shape of the FLR. However, primary photochemistry of PSII (the charge separation, recombination and stabilization), non-radiative loss of excited states in light harvesting antennae and excited states quenching by oxidized plastoquisnone (PQ) molecules from the PQ pool seem to be the main factors controlling the maximum quantum yield of PSII photochemistry as expressed by the F(V)/F(M) ratio. The appearance of the plateau at about 2 ms in the FLR is affected by several factors: the height of the plateau in the FLR increases when the fluorescence quenching by oxidized P680(+) is not considered in the simulations or when the electron transfer from Q(A)(-) to Q(B)((-)) is slowed down whereas the height of the plateau decreases and its position is shifted to shorter times when OEC is initially in higher S state. The plateau at about 2 ms is changed into the local fluorescence maximum followed by a dip when the fluorescence quenching by oxidized PQ molecules or the charge recombination between P680(+) and Q(A)(-) is not considered in the simulations or when all OEC is initially in the S(0) state or when the S -state transitions of OEC are slowed down. Slowing down of the S -state transitions of OEC as well as of the electron transfer from Q(A)(-) to Q(B)((-)) also causes a decrease of maximal fluorescence level. In the case of full inhibition of the S -state transitions of OEC as well as in the case of full inhibition of the electron donation to P680(+) by Y(Z), the local fluorescence maximum becomes the global fluorescence maximum. Assuming homogeneous PSII population, theoretical FLR curve that only far resembles experimentally measured O-J-I-P transient at room temperature can be simulated when slowly reducing PQ pool is considered. Assuming heterogeneous PSII population (i.e. the alpha/beta and the Q(B) -reducing/Q(B)-non-reducing heterogeneity and heterogeneity in size of the PQ pool and rate of its reduction) enables to simulate the FLR with two steps between minimal and maximal fluorescence whose relative heights are in agreement with the experiments but not their time positions. A cause of this discrepancy is discussed as well as different approaches to the definition of fluorescence signal during the FLR.
Collapse
Affiliation(s)
- Dusan Lazár
- Laboratory of Biophysics, Faculty of Science, Palackỳ University, tr. Svobody 26, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
33
|
|
34
|
Vasil'ev S, Orth P, Zouni A, Owens TG, Bruce D. Excited-state dynamics in photosystem II: insights from the x-ray crystal structure. Proc Natl Acad Sci U S A 2001; 98:8602-7. [PMID: 11459991 PMCID: PMC37482 DOI: 10.1073/pnas.141239598] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heart of oxygenic photosynthesis is photosystem II (PSII), a multisubunit protein complex that uses solar energy to drive the splitting of water and production of molecular oxygen. The effectiveness of the photochemical reaction center of PSII depends on the efficient transfer of excitation energy from the surrounding antenna chlorophylls. A kinetic model for PSII, based on the x-ray crystal structure coordinates of 37 antenna and reaction center pigment molecules, allows us to map the major energy transfer routes from the antenna chlorophylls to the reaction center chromophores. The model shows that energy transfer to the reaction center is slow compared with the rate of primary electron transport and depends on a few bridging chlorophyll molecules. This unexpected energetic isolation of the reaction center in PSII is similar to that found in the bacterial photosystem, conflicts with the established view of the photophysics of PSII, and may be a functional requirement for primary photochemistry in photosynthesis. In addition, the model predicts a value for the intrinsic photochemical rate constant that is 4 times that found in bacterial reaction centers.
Collapse
Affiliation(s)
- S Vasil'ev
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1.
| | | | | | | | | |
Collapse
|
35
|
Gibasiewicz K, Dobek A, Breton J, Leibl W. Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor Q(A). Biophys J 2001; 80:1617-30. [PMID: 11259277 PMCID: PMC1301353 DOI: 10.1016/s0006-3495(01)76134-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Time-resolved photovoltage measurements on destacked photosystem II membranes from spinach with the primary quinone electron acceptor Q(A) either singly or doubly reduced have been performed to monitor the time evolution of the primary radical pair P680(+)Pheo(-). The maximum transient concentration of the primary radical pair is about five times larger and its decay is about seven times slower with doubly reduced compared with singly reduced Q(A). The possible biological significance of these differences is discussed. On the basis of a simple reversible reaction scheme, the measured apparent rate constants and relative amplitudes allow determination of sets of molecular rate constants and energetic parameters for primary reactions in the reaction centers with doubly reduced Q(A) as well as with oxidized or singly reduced Q(A). The standard free energy difference DeltaG degrees between the charge-separated state P680(+)Pheo(-) and the equilibrated excited state (Chl(N)P680)* was found to be similar when Q(A) was oxidized or doubly reduced before the flash (approximately -50 meV). In contrast, single reduction of Q(A) led to a large change in DeltaG degrees (approximately +40 meV), demonstrating the importance of electrostatic interaction between the charge on Q(A) and the primary radical pair, and providing direct evidence that the doubly reduced Q(A) is an electrically neutral species, i.e., is doubly protonated. A comparison of the molecular rate constants shows that the rate of charge recombination is much more sensitive to the change in DeltaG degrees than the rate of primary charge separation.
Collapse
Affiliation(s)
- K Gibasiewicz
- Section de Bioénergétique, DBCM, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
36
|
Boekema EJ, van Breemen JF, van Roon H, Dekker JP. Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. J Mol Biol 2000; 301:1123-33. [PMID: 10966810 DOI: 10.1006/jmbi.2000.4037] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chloroplast thylakoid membrane of green plants is organized in stacked grana membranes and unstacked stroma membranes. We investigated the structural organization of Photosystem II (PSII) in paired grana membrane fragments by transmission electron microscopy. The membrane fragments were obtained by a short treatment of thylakoid membranes with the mild detergent n-dodecyl-alpha, d-maltoside and are thought to reflect the grana membranes in a native state. The membranes frequently show crystalline macrodomains in which PSII is organized in rows spaced by either 26.3 nm (large-spaced crystals) or 23 nm (small-spaced crystals). The small-spaced crystals are less common but better ordered. Image analysis of the crystals by an aperiodic approach revealed the precise positions of the core parts of PSII in the lattices, as well as features of the peripheral light-harvesting antenna. Together, they indicate that the so-called C(2)S(2) and C(2)S(2)M supercomplexes form the basic motifs of the small-spaced and large-spaced crystals, respectively. An analysis of a pair of membranes with a well-ordered large-spaced crystal reveals that many PSII complexes in one layer face only light-harvesting complexes (LHCII) in the other layer. The implications of this type of organization for the efficient transfer of excitation energy from LHCII to PSII and for the stacking of grana membranes are discussed.
Collapse
Affiliation(s)
- E J Boekema
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Dobrikova AG, Ivanov AG, Morgan R, Petkanchin IB, Taneva SG. Contribution of LHC II complex to the electric properties of thylakoid membranes: an electric light scattering study of Chl b-less barley mutant. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 57:33-40. [PMID: 11100835 DOI: 10.1016/s1011-1344(00)00071-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electric light scattering measurements demonstrate a strong decline in the permanent electric dipole moment and electric polarizability of both thylakoid membranes and photosystem II-enriched particles of the Chlorina f2 mutant which has severely reduced levels of light-harvesting chlorophyll a/b-binding proteins compared to the wild type barley chloroplasts. The shift in the electric polarizability relaxation to higher frequencies in thylakoids and photosystem II particles from Chlorina f2 reflects higher mobility of the interfacial charges of the mutant than that of the wild type membranes. The experimental data strongly suggest that the major light-harvesting complex of photosystem II directly contribute to the electric properties of thylakoid membranes.
Collapse
Affiliation(s)
- A G Dobrikova
- Institute of Biophysics, Bulgarian Academy of Sciences, Sofia
| | | | | | | | | |
Collapse
|
38
|
Gibasiewicz K, Brettel K, Dobek A, Leibl W. Re-examination of primary radical pair recombination in Rp. viridis with QA reduced. Chem Phys Lett 1999. [DOI: 10.1016/s0009-2614(99)01158-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Vavilin DV, Ermakova-Gerdes SY, Keilty AT, Vermaas WF. Tryptophan at position 181 of the D2 protein of photosystem II confers quenching of variable fluorescence of chlorophyll: implications for the mechanism of energy-dependent quenching. Biochemistry 1999; 38:14690-6. [PMID: 10545195 DOI: 10.1021/bi9915622] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lumenal CD loop region of the D2 protein of photosystem II contains residues that interact with a reaction center chlorophyll and the redox-active Tyr(D). Using combinatorial mutagenesis, photoautotrophic mutants of Synechocystis sp. PCC 6803 have been generated with multiple amino acid changes in this region. The CD loop mutations were transferred into a photosystem I-less Synechocystis strain to facilitate characterization of photosystem II properties in the mutants. Most of the combinatorial photosystem I-less mutants obtained had a high yield of variable fluorescence, F(V). However, in three mutants, which shared a replacement of Phe181 by Trp, the F(V) yield was dramatically reduced although a high rate of oxygen evolution was maintained. A site-directed F181W D2 mutant shared similar properties. Picosecond time-resolved fluorescence measurements revealed that in the combinatorial F181W mutants the fluorescence lifetimes in closed and open photosystem II centers were essentially identical and were similar to the fluorescence lifetime in open centers of the control strain. These results are explained by quenching of variable fluorescence in the mutants by charge separation between Trp181 and excited reaction center chlorophyll. This reaction competes efficiently with fluorescence and nonradiative decay in closed photosystem II centers, where the lifetime of the excitation in the chlorophyll antenna is long. Thermodynamic considerations favor the formation of oxidized tryptophan and reduced chlorophyll in the quenching reaction, presumably followed by charge recombination. A possible role of tryptophan-chlorophyll charge separation in the mechanism of energy-dependent quenching of excitations in photosynthesis is discussed.
Collapse
Affiliation(s)
- D V Vavilin
- Department of Plant Biology and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 871601, Tempe, Arizona 85287-1601, USA.
| | | | | | | |
Collapse
|
40
|
Riznichenko G, Lebedeva G, Demin O, Rubin A. Kinetic mechanisms of biological regulation in photosynthetic organisms. J Biol Phys 1999; 25:177-92. [PMID: 23345696 PMCID: PMC3455964 DOI: 10.1023/a:1005101703188] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Principles of regulation on different levels of photosynthetic apparatus are discussed. Mathematical models of isolated photosynthetic reaction centers and general system of energy transduction in chloroplast are developed. A general approach to model these complex metabolic systems is suggested. Regulatory mechanisms in plant cell are correlated with the different patterns of fluorescence induction curve at different internal physiological states of the cells and external (environmental) conditions. Light regulation inside photosynthetic reaction centers, diffusion processes in thylakoid membrane, generation of transmembrane electrochemical potential, coupling with processes of CO(2) fixation in Calvin Cycle are considered as stages of control of energy transformation in chloroplasts in their connection with kinetic patterns of fluorescence induction curves and other spectrophotometric data.
Collapse
Affiliation(s)
- G. Riznichenko
- Dept. Biophysics, Biological Faculty, Moscow State University, Vorobjevy Gory, Moscow, 119899 Russia; Tel
| | - G. Lebedeva
- Dept. Biophysics, Biological Faculty, Moscow State University, Vorobjevy Gory, Moscow, 119899 Russia; Tel
| | - O. Demin
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Vorobjevy Gory, Moscow, 119899 Russia; Tel
| | - A. Rubin
- Dept. Biophysics, Biological Faculty, Moscow State University, Vorobjevy Gory, Moscow, 119899 Russia; Tel
| |
Collapse
|
41
|
|
42
|
Bernhardt K, Trissl HW. Theories for kinetics and yields of fluorescence and photochemistry: how, if at all, can different models of antenna organization be distinguished experimentally? BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1409:125-42. [PMID: 9878707 DOI: 10.1016/s0005-2728(98)00149-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The models most commonly used to describe the antenna organization of the photosynthetic membrane are the connected units model and the domain model. The theoretical descriptions of the exciton dynamics according to these models are reviewed with emphasis on a common nomenclature. Based on this nomenclature we compare for the two models the kinetics and yields of photochemistry and fluorescence under non-annihilation and annihilation conditions both under continuous light and under flash excitation. The general case is considered, that all initially open reaction centers become gradually closed and that exciton transfer between photosynthetic units (PSUs) is possible. Then, calculated kinetics and yields depend on the model assumptions made to account for the exciton transfer between PSUs. Here we extend the connected units model to flash excitation including exciton-exciton annihilation, and present a new simple mathematical formalism of the domain model under continuous light and flash excitation without annihilation. Product and fluorescence yields predicted by the connected units model for different degrees of connectivity are compared with those predicted by the domain model using the same sets of rate constants. From these calculations we conclude that it is hardly possible to distinguish experimentally between different models by any current method. If at all, classical fluorescence induction measurements are more suited for assessing the excitonic connectivity between PSUs than ps experiments.
Collapse
Affiliation(s)
- K Bernhardt
- Fachbereich Biologie/Chemie, Abteilung Biophysik, Universitat Osnabruck, Barbarastrasse 11, D-49069, Osnabruck, Germany
| | | |
Collapse
|
43
|
Vavilin DV, Tyystjärvi E, Aro EM. Model for the fluorescence induction curve of photoinhibited thylakoids. Biophys J 1998; 75:503-12. [PMID: 9649412 PMCID: PMC1299724 DOI: 10.1016/s0006-3495(98)77539-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The fluorescence induction curve of photoinhibited thylakoids measured in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea was modeled using an extension of the model of Lavergne and Trissl (Biophys. J. 68:2474-2492), which takes into account the reversible exciton trapping by photosystem II (PSII) reaction centers and exciton exchange between PSII units. The model of Trissl and Lavergne was modified by assuming that PSII consists of photosynthetically active and photoinhibited (inactive in oxygen evolution) units and that the inactive PSII units can efficiently dissipate energy even if they still retain the capacity for the charge separation reaction. Comparison of theoretical and experimental fluorescence induction curves of thylakoids, which had been subjected to strong light in the presence of the uncoupler nigericin, suggests connectivity between the photoinhibited and active PSII units. The model predicts that photoinhibition lowers the yield of radical pair formation in the remaining active PSII centers. However, the kinetics of PSII inactivation in nigericin-treated thylakoids upon exposure to photoinhibitory light ranging from 185 to 2650 micromol photons m-2 s-1 was strictly exponential. This may suggest that photoinhibition occurs independently of the primary electron transfer reactions of PSII or that increased production of harmful substances by photoinhibited PSII units compensates for the protection afforded by the quenching of excitation energy in photoinhibited centers.
Collapse
Affiliation(s)
- D V Vavilin
- Department of Biology, University of Turku, Laboratory of Plant Physiology, BioCity A, FIN-20014 Turku, Finland
| | | | | |
Collapse
|
44
|
Deligiannakis Y, Rutherford AW. Spin-lattice relaxation of the pheophytin, Pheo-, radical of photosystem II. Biochemistry 1996; 35:11239-46. [PMID: 8784177 DOI: 10.1021/bi9608471] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The spin-lattice relaxation times (T1) of the pheophytin anion radical, Pheo-, of the PSII reaction center, were measured between 5 and 80 K by electron spin-echo spectroscopy. The Pheo- was studied in Mn-depleted PSII reaction centers in which the primary quinone, QA, was doubly reduced. The selective conversion of the non-heme Fe2+ into its low-spin (S = O) state, in CN-treated PSII, allowed the measurement of the intrinsic T1 of the Pheo- radical. The temperature dependence of the intrinsic (T1)-1 was found to be approximately T1.3 +/- 0.1. In Mn-depleted PSII membranes the high-spin (S = 2) non-heme iron, enhances the spin-lattice relaxation of Pheo-. By analyzing the data with a dipolar model, the dipolar interaction (k1d) between the Pheo and the Fe2+ (S = 2) is estimated over the temperature range 5-80 K. Comparison with the dipolar coupling between the iron and the tyrosine, YD+, shows that the Pheo is much closer to the iron than the YD+ in the PSII reaction center. By scaling the reported Fe(2+)-YD+ distance by the ratio [k1dPheo-]/[k1dYD+], we estimate the Fe(2+)-Pheo- distance in PSII to be 20 +/- 4.2 A. This distance is close to the Fe(2+)-BPheo- distance in the bacterial reaction center, and this result provides further evidence that the acceptor sides of the reaction centers in PSII and bacteria are homologous.
Collapse
Affiliation(s)
- Y Deligiannakis
- Section de Bioénergétique (URA CNRS 2096), Département de Biologie Cellulaire et Moléculaire, CEA Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
45
|
Functional organization of the photosynthetic apparatus of the primitive alga Mantoniella squamata. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/0005-2728(96)00005-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Wulf K, Trissl HW. Competition between annihilation and trapping leads to strongly reduced yields of photochemistry under ps-flash excitation. PHOTOSYNTHESIS RESEARCH 1996; 48:255-262. [PMID: 24271306 DOI: 10.1007/bf00041016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/1995] [Accepted: 06/11/1996] [Indexed: 06/02/2023]
Abstract
Excitation of photosynthetic systems with short intense flashes is known to lead to exciton-exciton annihilation processes. Here we quantify the effect of competition between annihilation and trapping for Photosystem II, Photosystem I (thylakoids from peas and membranes from the cyanobacterium Synechocystis sp.), as well as for the purple bacterium Rhodospirillum rubrum. In none of the cases it was possible to reach complete product saturation (i.e. closure of reaction centers) even with an excitation energy exceeding 10 hits per photosynthetic unit. The parameter α introduced by Deprez et al. ((1990) Biochim. Biophys. Acta 1015: 295-303) describing the competition between exciton-exciton annihilation and trapping was calculated to range between ≈4.5 (PS II) and ≈6 (Rs. rubrum). The rate constants for bimolecular exciton-exciton annihilation ranged between (42 ps)(-1) and (2.5 ps)(-1) for PS II and PS I-membranes of Synechocystis, respectively. The data are interpreted in terms of hopping times (i.e. mean residence time of the excited state on a chromophore) according to random walk in isoenergetic antenna.
Collapse
Affiliation(s)
- K Wulf
- Abteilung Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastraße 11, D-49069, Osnabrück, Germany
| | | |
Collapse
|
47
|
van Gorkom HJ. Electroluminescence. PHOTOSYNTHESIS RESEARCH 1996; 48:107-16. [PMID: 24271291 DOI: 10.1007/bf00041001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/1995] [Accepted: 02/19/1996] [Indexed: 05/27/2023]
Abstract
An overview is presented of research based on the observation by Arnold and Azzi (1971) (Photochem Photobiol 14: 233-240), that an electric field induces charge-recombination luminescence in a suspension of photosynthetic membrane vesicles. The 'electroluminescence' signals from Photosystems I and II are discussed in relation to the shape of the vesicles and the membrane potentials generated by the externally applied electric field. The use of the electroluminescence amplitude as a probe to study the kinetics and energetics of charge separation, and of its kinetics to monitor the electric-field induced charge recombination process are reviewed. Currently unresolved issues regarding the emission yield of electroluminescence are briefly discussed and the properties are summarized of the unexplained Photosystem II luminescence which is not sensitive to the membrane potential.
Collapse
Affiliation(s)
- H J van Gorkom
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O.Box 9504, NL-2300 RA, Leiden, The Netherlands
| |
Collapse
|
48
|
Jennings RC, Garlaschi FM, Finzi L, Zucchelli G. Slow exciton trapping in Photosystem II: A possible physiological role. PHOTOSYNTHESIS RESEARCH 1996; 47:167-173. [PMID: 24301824 DOI: 10.1007/bf00016179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/1995] [Accepted: 12/06/1995] [Indexed: 06/02/2023]
Abstract
Photosystem II, which has a primary photochemical charge separation time of about 300 ps, is the slowest trapping of all photosystems. On the basis of an analysis of data from the literature this is shown to be due to a number of partly independent factors: a shallow energy funnel in the antenna, an energetically shallow trap, exciton dynamics which are partly 'trap limited' and a large antenna. It is argued that the first three of these properties of Photosystem II can be understood in terms of protective mechanisms against photoinhibition. These protective mechanisms, based on the generation of non photochemical quenching states mostly in the peripheral antenna, are able to decrease pheophytin reduction under conditions in which the primary quinone, QA, is already reduced, due to the slow trapping properties. The shallow antenna funnel is important in allowing quenching state-protective mechanisms in the peripheral antenna.
Collapse
Affiliation(s)
- R C Jennings
- Centro CNR sulla Biologia Cellulare e Molecolare delle Piante, Dipartimento di Biologia, Università di Milano, via Celoria 26, 20133, Milano, Italy
| | | | | | | |
Collapse
|
49
|
Dau H, Sauer K. Exciton equilibration and Photosystem II exciton dynamics — a fluorescence study on Photosystem II membrane particles of spinach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/0005-2728(95)00141-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Jennings RC, Bassi R, Zucchelli G. Antenna structure and energy transfer in higher plant photosystems. ELECTRON TRANSFER II 1996. [DOI: 10.1007/3-540-60110-4_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|