1
|
Han Y, Pu Q, Fan T, Wei T, Xu Y, Zhao L, Liu S. Long non-coding RNAs as promising targets for controlling disease vector mosquitoes. INSECT SCIENCE 2025; 32:24-41. [PMID: 38783627 DOI: 10.1111/1744-7917.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Hematophagous female mosquitoes are important vectors of numerous devastating human diseases, posing a major public health threat. Effective prevention and control of mosquito-borne diseases rely considerably on progress in understanding the molecular mechanisms of various life activities, and accordingly, the molecules that regulate the various life activities of mosquitoes are potential targets for implementing future vector control strategies. Many long non-coding RNAs (lncRNAs) have been identified in mosquitoes and significant progress has been made in determining their functions. Here, we present a comprehensive overview of the research advances on mosquito lncRNAs, including their molecular identification, function, and interaction with other non-coding RNAs, as well as their synergistic regulatory roles in mosquito life activities. We also highlight the potential roles of competitive endogenous RNAs in mosquito growth and development, as well as in insecticide resistance and virus-host interactions. Insights into the biological functions and mechanisms of lncRNAs in mosquito life activities, viral replication, pathogenesis, and transmission will contribute to the development of novel drugs and safe vaccines.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| |
Collapse
|
2
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 948] [Impact Index Per Article: 474.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Mattick JS. RNA out of the mist. Trends Genet 2023; 39:187-207. [PMID: 36528415 DOI: 10.1016/j.tig.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long 'intergenic' and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed 'enhancers', which marshal generic effector proteins to their sites of action to control cell fate decisions during development.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Lacroix E, Audas TE. Keeping up with the condensates: The retention, gain, and loss of nuclear membrane-less organelles. Front Mol Biosci 2022; 9:998363. [PMID: 36203874 PMCID: PMC9530788 DOI: 10.3389/fmolb.2022.998363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
In recent decades, a growing number of biomolecular condensates have been identified in eukaryotic cells. These structures form through phase separation and have been linked to a diverse array of cellular processes. While a checklist of established membrane-bound organelles is present across the eukaryotic domain, less is known about the conservation of membrane-less subcellular structures. Many of these structures can be seen throughout eukaryotes, while others are only thought to be present in metazoans or a limited subset of species. In particular, the nucleus is a hub of biomolecular condensates. Some of these subnuclear domains have been found in a broad range of organisms, which is a characteristic often attributed to essential functionality. However, this does not always appear to be the case. For example, the nucleolus is critical for ribosomal biogenesis and is present throughout the eukaryotic domain, while the Cajal bodies are believed to be similarly conserved, yet these structures are dispensable for organismal survival. Likewise, depletion of the Drosophila melanogaster omega speckles reduces viability, despite the apparent absence of this domain in higher eukaryotes. By reviewing primary research that has analyzed the presence of specific condensates (nucleoli, Cajal bodies, amyloid bodies, nucleolar aggresomes, nuclear speckles, nuclear paraspeckles, nuclear stress bodies, PML bodies, omega speckles, NUN bodies, mei2 dots) in a cross-section of organisms (e.g., human, mouse, D. melanogaster, Caenorhabditis elegans, yeast), we adopt a human-centric view to explore the emergence, retention, and absence of a subset of nuclear biomolecular condensates. This overview is particularly important as numerous biomolecular condensates have been linked to human disease, and their presence in additional species could unlock new and well characterized model systems for health research.
Collapse
Affiliation(s)
- Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E. Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Timothy E. Audas,
| |
Collapse
|
5
|
Choudhary C, Sharma S, Meghwanshi KK, Patel S, Mehta P, Shukla N, Do DN, Rajpurohit S, Suravajhala P, Shukla JN. Long Non-Coding RNAs in Insects. Animals (Basel) 2021; 11:1118. [PMID: 33919662 PMCID: PMC8069800 DOI: 10.3390/ani11041118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Only a small subset of all the transcribed RNAs are used as a template for protein translation, whereas RNA molecules that are not translated play a very important role as regulatory non-coding RNAs (ncRNAs). Besides traditionally known RNAs (ribosomal and transfer RNAs), ncRNAs also include small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs). The lncRNAs, which were initially thought to be junk, have gained a great deal attention because of their regulatory roles in diverse biological processes in animals and plants. Insects are the most abundant and diverse group of animals on this planet. Recent studies have demonstrated the role of lncRNAs in almost all aspects of insect development, reproduction, and genetic plasticity. In this review, we describe the function and molecular mechanisms of the mode of action of different insect lncRNAs discovered up to date.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| | - Shivasmi Sharma
- Department of Biotechnology, Amity University Jaipur, Jaipur 303002, India; (S.S.); (S.P.)
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| | - Smit Patel
- Department of Biotechnology, Amity University Jaipur, Jaipur 303002, India; (S.S.); (S.P.)
| | - Prachi Mehta
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India; (P.M.); (S.R.)
| | - Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, India;
| | - Duy Ngoc Do
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
| | - Subhash Rajpurohit
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India; (P.M.); (S.R.)
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur 302001, India;
- Bioclues.org, Vivekananda Nagar, Kukatpally, Hyderabad, Telangana 500072, India
| | - Jayendra Nath Shukla
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindari, Ajmer 305801, India; (C.C.); (K.K.M.)
| |
Collapse
|
6
|
Lo Piccolo L, Mochizuki H, Nagai Y. The lncRNA hsrω regulates arginine dimethylation of human FUS to cause its proteasomal degradation in Drosophila. J Cell Sci 2019; 132:jcs.236836. [PMID: 31519807 PMCID: PMC6826006 DOI: 10.1242/jcs.236836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have structural and regulatory effects on RNA-binding proteins (RBPs). However, the mechanisms by which lncRNAs regulate the neurodegenerative-causative RBP like FUS protein remain poorly understood. Here, we show that knockdown of the Drosophila lncRNA hsrω causes a shift in the methylation status of human FUS from mono- (MMA) to di-methylated (DMA) arginine via upregulation of the arginine methyltransferase 5 (PRMT5, known as ART5 in flies). We found this novel regulatory role to be critical for FUS toxicity since the PRMT5-dependent dimethylation of FUS is required for its proteasomal degradation and causes a reduction of high levels of FUS. Moreover, we show that an increase of FUS causes a decline of both PRMT1 (known as ART1 in flies) and PRMT5 transcripts, leading to an accumulation of neurotoxic MMA-FUS. Therefore, overexpression of either PRMT1 or PRMT5 is able to rescue the FUS toxicity. These results highlight a novel role of lncRNAs in post-translation modification (PTM) of FUS and suggest a causal relationship between lncRNAs and dysfunctional PRMTs in the pathogenesis of FUSopathies. Summary: The lncRNA hsrω regulates the arginine methyltransferases type I and II to modify the human FUS RNA-binding protein, recombinantly expressed in flies, in a fashion that controls both its cellular localization and homeostasis.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan .,Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Lo Piccolo L. Drosophila as a Model to Gain Insight into the Role of lncRNAs in Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:119-146. [PMID: 29951818 DOI: 10.1007/978-981-13-0529-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is now clear that the majority of transcription in humans results in the production of long non-protein-coding RNAs (lncRNAs) with a variable length spanning from 200 bp up to several kilobases. To date, we have a limited understanding of the lncRNA function, but a huge number of evidences have suggested that lncRNAs represent an outstanding asset for cells. In particular, temporal and spatial expression of lncRNAs appears to be important for proper neurological functioning. Stunningly, abnormal lncRNA function has been found as being critical for the onset of neurological disorders. This chapter focus on the lncRNAs with a role in diseases affecting the central nervous system with particular regard for the lncRNAs causing those neurodegenerative diseases that exhibit dementia and/or motor dysfunctions. A specific section will be dedicated to the human neuronal lncRNAs that have been modelled in Drosophila. Finally, even if only few examples have been reported so far, an overview of the Drosophila lncRNAs with neurological functions will be also included in this chapter.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine 2-2 Yamadaoka, Suita Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Abstract
It is now clear that eukaryotic cells produce many thousands of non-coding RNAs. The least well-studied of these are longer than 200 nt and are known as lncRNAs (long non-coding RNAs). These loci are of particular interest as their biological relevance remains uncertain. Sequencing projects have identified thousands of these loci in a variety of species, from flies to humans. Genome-wide scans for functionality, such as evolutionary and expression analyses, suggest that many of these molecules have functional roles to play in the cell. Nevertheless, only a handful of lncRNAs have been experimentally investigated, and most of these appear to possess roles in regulating gene expression at a variety of different levels. Several lncRNAs have also been implicated in cancer. This evidence suggests that lncRNAs represent a new class of non-coding gene whose importance should become clearer upon further experimental investigation.
Collapse
Affiliation(s)
- Robert S. Young
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, U.K
| | - Chris P. Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, U.K
| |
Collapse
|
9
|
Abstract
Many aspects of gene regulation are mediated by RNA molecules. However, regulatory RNAs have remained elusive until very recently. At least three types of small regulatory RNAs have been characterized in Drosophila: microRNAs (miRNAs), piwi-interacting RNAs and endogenous siRNAs. A fourth class of regulatory RNAs includes known long non-coding RNAs such as roX1 or bxd. The initial sequencing of the Drosophila melanogaster genome has served as a scaffold to study the transcriptional profile of an animal, revealing the complexities of the function and biogenesis of regulatory RNAs. The comparative analysis of 12 Drosophila genomes has been crucial for the study of microRNA evolution. However, comparative genomics of other RNA regulators is confounded by technical problems: genomic loci are poorly conserved and frequently encoded in the heterochromatin. Future developments in genome sequencing and population genomics in Drosophila will continue to shed light on the conservation, evolution and function of regulatory RNAs.
Collapse
Affiliation(s)
- Antonio Marco
- University of Manchester, Michael Smith Building, Manchester, UK.
| |
Collapse
|
10
|
|
11
|
Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsrω gene in Drosophila. J Biosci 2011; 36:265-80. [DOI: 10.1007/s12038-011-9061-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Walser JC, Chen B, Feder ME. Heat-shock promoters: targets for evolution by P transposable elements in Drosophila. PLoS Genet 2006; 2:e165. [PMID: 17029562 PMCID: PMC1592238 DOI: 10.1371/journal.pgen.0020165] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 08/17/2006] [Indexed: 11/19/2022] Open
Abstract
Transposable elements are potent agents of genomic change during evolution, but require access to chromatin for insertion—and not all genes provide equivalent access. To test whether the regulatory features of heat-shock genes render their proximal promoters especially susceptible to the insertion of transposable elements in nature, we conducted an unbiased screen of the proximal promoters of 18 heat-shock genes in 48 natural populations of Drosophila. More than 200 distinctive transposable elements had inserted into these promoters; greater than 96% are P elements. By contrast, few or no P element insertions segregate in natural populations in a “negative control” set of proximal promoters lacking the distinctive regulatory features of heat-shock genes. P element transpositions into these same genes during laboratory mutagenesis recapitulate these findings. The natural P element insertions cluster in specific sites in the promoters, with up to eight populations exhibiting P element insertions at the same position; laboratory insertions are into similar sites. By contrast, a “positive control” set of promoters resembling heat-shock promoters in regulatory features harbors few P element insertions in nature, but many insertions after experimental transposition in the laboratory. We conclude that the distinctive regulatory features that typify heat-shock genes (in Drosophila) are especially prone to mutagenesis via P elements in nature. Thus in nature, P elements create significant and distinctive variation in heat-shock genes, upon which evolutionary processes may act. Transposable elements can be a major source of evolutionary change. Their insertion can directly affect the genes into, or next to, which they insert. To insert, however, they must first gain access to the host gene. The authors reasoned that, because the DNA in the promoters (i.e., regulatory regions) of heat-shock genes is unusually accessible, these genes might harbor many transposable elements. With a technique that can detect any insertion into a gene, they discovered more than 200 distinctive transposable elements in the promoter regions of heat-shock genes in fruit flies from the wild—but few or none in the promoter regions of more typical genes. Surprisingly, out of the one hundred kinds of transposable elements in fruit flies, almost all were P elements. P elements are remarkable because they invaded the fruit fly genome only during the last century. These findings imply that the combination of accessible DNA and the recent invasion of P elements have left a distinctive imprint on the promoters of heat-shock genes.
Collapse
Affiliation(s)
- Jean-Claude Walser
- Department of Organismal Biology and Anatomy, The College, The University of Chicago, Chicago, Illinois, United States of America
| | | | | |
Collapse
|
13
|
Fu X, Ravindranath L, Tran N, Petrovics G, Srivastava S. Regulation of apoptosis by a prostate-specific and prostate cancer-associated noncoding gene, PCGEM1. DNA Cell Biol 2006; 25:135-41. [PMID: 16569192 DOI: 10.1089/dna.2006.25.135] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PCGEM1 is a prostate tissue-specific, and prostate cancer-associated noncoding RNA (ncRNA) gene. Previous results revealed a significant association of elevated PCGEM1 expression levels in prostate cancer cells of African-American patients, whose mortality rate is the highest among prostate cancer patients. Functional study of PCGEM1 demonstrated a marked increase in colony formation in LNCaP prostate cancer cells and NIH3T3 mouse fibroblast cells. This study demonstrates that PCGEM1 overexpression in LNCaP cell culture model results in the inhibition of apoptosis induced by doxorubicin (DOX). Induction of p53 and p21(Waf1/Cip1) by DOX were delayed in LNCaP cells stably overexpressing PCGEM1 (LNCaP-PCGEM1 cells) compared to control LNCaP cells. The protein levels of cleaved caspase 7, and cleaved PARP were attenuated in DOXtreated LNCaP-PCGEM1 cells compared to control LNCaP cells. Similar results were observed in LNCaP cells transiently overexpressing PCGEM1. The inhibition of PARP cleavage by PCGEM1 overexpression was also observed in LNCaP-PCGEM1 cells incubated with etoposide and sodium selenite. Fluorescence-Activated Cell Sorter Annexin-V analysis revealed significantly lower percentage of apoptotic cells in DOX-treated LNCaP-PCGEM1 cells compared to control LNCaP cells. The attenuation of apoptic response appears to be androgen dependent in this experimental model, as androgen-independent variants of LNCaP cells did not exhibit this response. In summary, this study provides new insights into cell biologic functions and novel features of an ncRNA. Further, these data unravel biological mechanisms of cell growth/cell survival-associated functions of this ncRNA in a widely used prostate cancer cell culture model.
Collapse
Affiliation(s)
- Xiaoqin Fu
- Department of Surgery, Center for Prostate Disease Research (CPDR), U.S. Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20852, USA
| | | | | | | | | |
Collapse
|
14
|
Piacentini L, Fanti L, Berloco M, Perrini B, Pimpinelli S. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J Cell Biol 2003; 161:707-14. [PMID: 12756231 PMCID: PMC2199350 DOI: 10.1083/jcb.200303012] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 04/07/2003] [Accepted: 04/07/2003] [Indexed: 11/30/2022] Open
Abstract
Heterochromatin protein 1 (HP1) is a conserved nonhistone chromosomal protein, which is involved in heterochromatin formation and gene silencing in many organisms. In addition, it has been shown that HP1 is also involved in telomere capping in Drosophila. Here, we show a novel striking feature of this protein demonstrating its involvement in the activation of several euchromatic genes in Drosophila. By immunostaining experiments using an HP1 antibody, we found that HP1 is associated with developmental and heat shock-induced puffs on polytene chromosomes. Because the puffs are the cytological phenotype of intense gene activity, we did a detailed analysis of the heat shock-induced expression of the HSP70 encoding gene in larvae with different doses of HP1 and found that HP1 is positively involved in Hsp70 gene activity. These data significantly broaden the current views of the roles of HP1 in vivo by demonstrating that this protein has multifunctional roles.
Collapse
Affiliation(s)
- Lucia Piacentini
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
15
|
Isaenko OA, Karr TL, Feder ME. Hsp70 and thermal pretreatment mitigate developmental damage caused by mitotic poisons in Drosophila. Cell Stress Chaperones 2002; 7:297-308. [PMID: 12482205 PMCID: PMC514829 DOI: 10.1379/1466-1268(2002)007<0297:hatpmd>2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To assess the ability of the heat-inducible molecular chaperone heat-shock protein 70 (Hsp70) to mitigate a specific developmental lesion, we administered the antimicrotubule drugs vinblastine (VB) and colchicine (COL) to larvae of Drosophila engineered to express differing levels of Hsp70 after heat pretreatment (HP). VB and COL decreased survival during metamorphosis, disrupted development of the adult eye and other structures as well as their precursor imaginal disks, and induced chromosome nondisjunction in the wing imaginal disk as indicated by the somatic mutation and recombination test (SMART) assay. Hsp70-inducing HP reduced many of these effects. For the traits viability, adult eye morphology, eye imaginal disk morphology, cell death in the eye imaginal disks, and single and total mutant clone formation in the SMART assay, HP reduced the impact of VB to a greater extent in Drosophila with 6 hsp70 transgenes than in a sister strain from which the transgenes had been excised. Because the extra-copy strain has higher levels of Hsp70 than does the excision strain but is otherwise almost identical in genetic background to the excision strain, these outcomes are attributable to Hsp70. The hsp70 copy number had a variable interaction with HP and COL administration.
Collapse
Affiliation(s)
- Olga A Isaenko
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
16
|
Chowdhuri DK, Nazir A, Saxena DK. Effect of three chlorinated pesticides on hsromega stress gene in transgenic Drosophila melanogaster. J Biochem Mol Toxicol 2002; 15:173-86. [PMID: 11673846 DOI: 10.1002/jbt.15] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Expression of hsromega stress gene in the third-instar larvae of 951-lacZ2 (hsromega-lacZ having-844pb sequence) and 498-lacZ1 (hrsomega-lacZ having -498bp sequence) strains of Drosophila melanogaster at LC(50) and lower dietary concentrations of hexachlorocyclohexane (HCH) pentachlorophenol (PCP), and endosulfan was examined in relation to larval mortality by beta galactosidase activity, vital dye staining, and salivary gland polytene chromosome puffing. Our results showed that both HCH and PCP at lower concentrations evoked strong hsromega stress gene expression in the larval tissues while endosulfan did not. On the other hand, puffing data revealed that endosulfan at lower doses, induced well-developed puff at the resident site (93D) of the hsromega gene but the transgenic sites (30B in 951-lacZ2 and 44B in 498-lacZ1 strain) did not show any well-developed puff. Regression in hsromega stress gene expression in 951-lacZ2 strain at LC(50) concentrations of HCH and PCP after 48 h was concurrent with extensive tissue damage as evident by trypan blue staining. Similarly, strong hsromega expression was accompanied by insignificant trypan blue staining in the larval tissues of this strain after shorter duration of exposure (2-12 h) to these toxicants. Although endosulfan under similar experimental condition did not induce hsromega, strong trypan blue staining indicated extensive tissue damage after 48 h of exposure. The present study suggests that all the three toxicants pose cytotoxic potential to Drosophila. While protective role of this stress gene was evident at the initial stages of exposure, extensive tissue damage in the later stages of intoxication accompanied by autorepression of hsromega led to larval mortality. The study further suggests that -844bp upstream sequence of the gene is adequate for hsromega inducibility against HCH and PCP but not for endosulfan for which responsive elements may be searched further upstream.
Collapse
Affiliation(s)
- D K Chowdhuri
- Embryotoxicology Section, Industrial Toxicology Research Centre, M. G. Marg, Lucknow 226 001, India.
| | | | | |
Collapse
|
17
|
Lakhotia SC, Prasanth KV. Tissue- and development-specific induction and turnover of hsp70 transcripts from loci 87A and 87C after heat shock and during recovery inDrosophila melanogaster. J Exp Biol 2002; 205:345-58. [PMID: 11854371 DOI: 10.1242/jeb.205.3.345] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe haploid genome of Drosophila melanogaster normally carries at least five nearly identical copies of heat-shock-inducible hsp70 genes, two copies at the 87A7 and three copies at the 87C1 chromosome sites. We used in situ hybridization of the cDNA, which hybridizes with transcripts of all five hsp70 genes, and of two 3′ untranslated region (3′UTR; specific for the 87A7- and 87C1-type hsp70 transcripts) riboprobes to cellular RNA to examine whether all these copies were similarly induced by heat shock in different cell types of D. melanogaster. Our results revealed remarkable differences not only in the heat-shock-inducibility of the hsp70 genes at the 87A7 and 87C1 loci, but also in their post-transcriptional metabolism, such as the stability of the transcripts and of their 3′UTRs in different cell types in developing embryos and in larval and adult tissues. Our results also revealed the constitutive presence of the heat-shock-inducible form of Hsp70 in a subset of late spermatogonial cells from the second-instar larval stage onwards. We suggest that the multiple copies of the stress-inducible hsp70 genes do not exist in the genome of D. melanogaster only to produce large amounts of the Hsp70 rapidly and at short notice, but that they are specifically regulated in a developmental-stage-specific manner. It is likely that the cost/benefit ratio of not producing or of producing a defined amount of Hsp70 under stress conditions varies for different cell types and under different physiological conditions and, accordingly, specific regulatory mechanisms operating at the transcriptional and post-transcriptional levels have evolved.
Collapse
Affiliation(s)
- S C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | | |
Collapse
|
18
|
Rajendra TK, Prasanth KV, Lakhotia SC. Male sterility associated with overexpression of the noncoding hsromega gene in cyst cells of testis of Drosophila melanogaster. J Genet 2001; 80:97-110. [PMID: 11910129 DOI: 10.1007/bf02728335] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Of the several noncoding transcripts produced by the hsromega gene of Drosophila melanogaster, the nucleus-limited >10-kb hsromega-n transcript colocalizes with heterogeneous nuclear RNA binding proteins (hnRNPs) to form fine nucleoplasmic omega speckles. Our earlier studies suggested that the noncoding hsromega-n transcripts dynamically regulate the distribution of hnRNPs in active (chromatin bound) and inactive (in omega speckles) compartments. Here we show that a P transposon insertion in this gene's promoter (at -130 bp) in the hsromega05421; enhancer-trap line had no effect on viability or phenotype of males or females, but the insertion-homozygous males were sterile. Testes of hsromega05421; homozygous flies contained nonmotile sperms while their seminal vesicles were empty. RNA:RNA in situ hybridization showed that the somatic cyst cells in testes of the mutant male flies contained significantly higher amounts of hsromega-n transcripts, and unlike the characteristic fine omega speckles in other cell types they displayed large clusters of omega speckles as typically seen after heat shock. Two of the hnRNPs, viz. HRB87F and Hrb57A, which are expressed in cyst cells, also formed large clusters in these cells in parallel with the hsromega-n transcripts. A complete excision of the P transposon insertion restored male fertility as well as the fine-speckled pattern of omega speckles in the cyst cells. The in situ distribution patterns of these two hnRNPs and several other RNA-binding proteins (Hrp40, Hrb57A, S5, Sxl, SRp55 and Rb97D) were not affected by hsromega mutation in any of the meiotic stages in adult testes. The present studies, however, revealed an unexpected presence (in wild-type as well as mutant) of the functional form of Sxl in primary spermatocytes and an unusual distribution of HRB87F along the retracting spindle during anaphase telophase of the first meiotic division. It appears that the P transposon insertion in the promoter region causes a misregulated overexpression of hsromega in cyst cells, which in turn results in excessive sequestration of hnRNPs and formation of large clusters of omega speckles in these cell nuclei. The consequent limiting availability of hnRNPs is likely to trans-dominantly affect processing of other pre-mRNAs in cyst cells. We suggest that a compromise in the activity of cyst cells due to the aberrant hnRNP distribution is responsible for the failure of individualization of sperms in hsromega05421; mutant testes. These results further support a significant role of the noncoding hsromega-n transcripts in basic cellular activities, namely regulation of the availability of hnRNPs in active (chromatin bound) and inactive (in omega speckles) compartments.
Collapse
Affiliation(s)
- T K Rajendra
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| | | | | |
Collapse
|
19
|
Lakhotia SC, Rajendra TK, Prasanth KV. Developmental regulation and complex organization of the promoter of the non-coding hsr(omega) gene of Drosophila melanogaster. J Biosci 2001; 26:25-38. [PMID: 11255511 DOI: 10.1007/bf02708978] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nucleus-limited large non-coding hsr(omega)-n RNA product of the 93D or the hsr(omega) gene of Drosophila melanogaster binds to a variety of RNA-binding proteins involved in nuclear RNA processing. We examined the developmental and heat shock induced expression of this gene by in situ hybridization of nonradioactively labelled riboprobe to cellular transcripts in intact embryos, larval and adult somatic tissues of wild type and an enhancer-trap line carrying the hsr(omega) 05241 allele due to insertion of a P-LacZ-rosy+ transposon at -130 bp position of the hsr(omega) promoter. We also examined LacZ expression in the enhancer-trap line and in two transgenic lines carrying different lengths of the hsr(omega) promoter upstream of the LacZ reporter. The hsr(omega) gene is expressed widely at all developmental stages; in later embryonic stages, its expression in the developing central nervous system was prominent. In spite of insertion of a big transposon in the promoter, expression of the hsr(omega) 05241 allele in the enhancer-trap line, as revealed by in situ hybridization to hsr(omega) transcripts in cells, was similar to that of the wild type allele in all the embryonic, larval and adult somatic tissues examined. Expression of the LacZ gene in this enhancer-trap line was similar to that of the hsr(omega) RNA in all diploid cell types in embryos and larvae but in the polytene cells, the LacZ gene did not express at all, neither during normal development nor after heat shock. Comparison of the expression patterns of hsr(omega) gene and those of the LacZ reporter gene under its various promoter regions in the enhancer-trap and transgenic lines revealed a complex pattern of regulation, which seems to be essential for its dynamically varying expression in diverse cell types.
Collapse
Affiliation(s)
- S C Lakhotia
- Cytogenetics Laboratory,Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | | | | |
Collapse
|
20
|
Posey KL, Jones LB, Cerda R, Bajaj M, Huynh T, Hardin PE, Hardin SH. Survey of transcripts in the adult Drosophila brain. Genome Biol 2001; 2:RESEARCH0008. [PMID: 11276425 PMCID: PMC30707 DOI: 10.1186/gb-2001-2-3-research0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Revised: 01/22/2001] [Accepted: 01/24/2001] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Classic methods of identifying genes involved in neural function include the laborious process of behavioral screening of mutagenized flies and then rescreening candidate lines for pleiotropic effects due to developmental defects. To accelerate the molecular analysis of brain function in Drosophila we constructed a cDNA library exclusively from adult brains. Our goal was to begin to develop a catalog of transcripts expressed in the brain. These transcripts are expected to contain a higher proportion of clones that are involved in neuronal function. RESULTS The library contains approximately 6.75 million independent clones. From our initial characterization of 271 randomly chosen clones, we expect that approximately 11% of the clones in this library will identify transcribed sequences not found in expressed sequence tag databases. Furthermore, 15% of these 271 clones are not among the 13,601 predicted Drosophila genes. CONCLUSIONS Our analysis of this unique Drosophila brain library suggests that the number of genes may be underestimated in this organism. This work complements the Drosophila genome project by providing information that facilitates more complete annotation of the genomic sequence. This library should be a useful resource that will help in determining how basic brain functions operate at the molecular level.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Leslie B Jones
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Rosalinda Cerda
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Monica Bajaj
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Thao Huynh
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Paul E Hardin
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Susan H Hardin
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| |
Collapse
|
21
|
Xu F, Paquette AJ, Anderson DJ, Charalambous A, Askew DS. Identification of a cell type-specific silencer in the first exon of theHis-1 gene. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000315)76:4<615::aid-jcb10>3.0.co;2-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Erdmann VA, Szymanski M, Hochberg A, de Groot N, Barciszewski J. Collection of mRNA-like non-coding RNAs. Nucleic Acids Res 1999; 27:192-5. [PMID: 9847177 PMCID: PMC148132 DOI: 10.1093/nar/27.1.192] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In last few years much data has accumulated which shows that in different cells various RNA transcripts are synthesized. They lack protein coding capacity and do not produce mature protein. It seems that they work mainly or exclusively on the RNA level. Their function and mechanism of action is poorly understood. In this paper we have collected all known RNA transcript and prepared a database for further structural and functional studies. This is the first collection of the nucleotide sequences of RNAs of this kind. The data can be accessed via WWW at: http://www.man.poznan.pl/5SData/ncRNA/inde x.html
Collapse
Affiliation(s)
- V A Erdmann
- Institut fur Biochemie, Freie Universitat Berlin, Thielallee 63, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
23
|
Ray P, Lakhotia SC. Interaction of the non-protein-coding developmental and stress-induciblehsrω gene withRas genes ofDrosophila melanogaster. J Biosci 1998. [DOI: 10.1007/bf02936131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Tapadia MG, Lakhotia SC. Specific induction of the hsr omega locus of Drosophila melanogaster by amides. Chromosome Res 1997; 5:359-62. [PMID: 9364937 DOI: 10.1023/a:1018440224177] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report here that 3-aminobenzamide and other amides, such as formamide, acetamide and nicotinamide, specifically induce a high rate of transcription at the 93D puff (the hsr omega heat shock gene) in polytene chromosomes of Drosophila melanogaster. Other chemicals, such as benzamide, colchicine, thiamphenicol and paracetamol, that are already known to specifically induce transcription at the hsr omega locus are also identified as amides. In view of the specific induction of the 93D puff by different amides and other data that demonstrate hsr omega transcription in response to benzamide and colchicine etc. to be independent of its heat shock induction, it appears likely that amides induce this locus through distinct regulatory elements that we propose to designate amide response elements (AREs).
Collapse
Affiliation(s)
- M G Tapadia
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
25
|
hsp 83 mutation is a dominant enhancer of lethality associated with absence of the non-protein codinghsrω locus inDrosophila melanogaster. J Biosci 1996. [DOI: 10.1007/bf02703109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Heat shock but not benzamide and colchicine response elements are present within the — 844 bp upstream region of thehrsω gene ofDrosophila melanogaster. J Biosci 1996. [DOI: 10.1007/bf02703111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Sharma A, Lakhotia SC. In situ quantification of hsp70 and alpha-beta transcripts at 87A and 87C loci in relation to hsr-omega gene activity in polytene cells of Drosophila melanogaster. Chromosome Res 1995; 3:386-93. [PMID: 7551555 DOI: 10.1007/bf00710021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hsp70-coding duplicate loci at the 87A and 87C sites (the 87C site also carries heat-inducible alpha-beta repeats) in polytene nuclei are known to puff to different levels under conditions in which heat shock does not induce the non-protein-coding hsr-omega gene at the 93D site. To understand the basis of this unequal puffing, the levels of hsp70 and alpha-beta transcripts at the 87A and 87C heat shock loci in polytene chromosomes of Drosophila melanogaster were quantified in situ by hybridization of antisense RNA probes after treatment with heat shock, benzamide, colchicine, heat shock followed by benzamide or heat shock in the presence of colchicine in salivary glands of late third instar larvae. Heat shock, resulting in equal puffing of the 87A and 87C loci, increased the hsp70 transcripts at both sites in proportion to the numbers of hsp70 gene copies at the two loci; levels of alpha-beta transcripts were also elevated at the 87C site following heat shock. Heat shock followed by benzamide treatment, which results in a larger puff at 87A, caused an increase in hsp70 transcripts per gene copy at 87A and a decrease at 87C without any effect on the alpha-beta transcripts; heat shock in the presence of colchicine, which causes the 87C puff to be larger than 87A, resulted in a decrease in hsp70 RNA at 87A but an increase in the levels of hsp70 as well as alpha-beta transcripts at the 87C site.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Sharma
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|