1
|
NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I. Proc Natl Acad Sci U S A 2018; 115:E11633-E11641. [PMID: 30482860 PMCID: PMC6294894 DOI: 10.1073/pnas.1809421115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequence motifs that affect RNA polymerase transcription elongation are well studied in prokaryotic organisms and contribute directly to regulation of gene expression. Despite significant work on the regulation of eukaryotic transcription, the effect of DNA template sequence on RNA polymerase I (Pol I) transcription elongation remains unknown. In this study, we examined the effects of DNA sequence motifs on Pol I transcription elongation kinetics in vitro and in vivo. Specifically, we characterized how the spy rho-independent terminator motif from Escherichia coli directly affects Saccharomyces cerevisiae Pol I activity, demonstrating evolutionary conservation of sequence-specific effects on transcription. The insight gained from this analysis led to the identification of a homologous sequence in the ribosomal DNA of S. cerevisiae We then used native elongating transcript sequencing (NETSeq) to determine whether Pol I encounters pause-inducing sequences in vivo. We found hundreds of positions within the ribosomal DNA (rDNA) that reproducibly induce pausing in vivo. We also observed significantly lower Pol I occupancy at G residues in the rDNA, independent of other sequence context, indicating differential nucleotide incorporation rates for Pol I in vivo. These data demonstrate that DNA template sequence elements directly influence Pol I transcription elongation. Furthermore, we have developed the necessary experimental and analytical methods to investigate these perturbations in living cells going forward.
Collapse
|
2
|
Caravokyri C, Leppard KN. Human adenovirus type 5 variants with sequence alterations flanking the E2A gene: effects on E2 expression and DNA replication. Virus Genes 1996; 12:65-75. [PMID: 8879122 DOI: 10.1007/bf00370002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human adenovirus type 5 (Ad5) E2 transcription unit is divided into a promoter-proximal region, E2A, and a distal region, E2B, each with its own polyadenylation site. Together these regions encode the three virus-derived proteins necessary for genome replication. Ad5 variants were produced that carried linker insertion mutations immediately 5' and/or 3' to the coding sequence for the E2A gene DNA binding protein (DBP). Two variants carrying solely a 5' lesion showed decreased usage of the adjacent 3' splice site, via which the DBP mRNA is produced, and an increased usage of the alternative downstream splice sites in the E2B region, wherein viral DNA polymerase and terminal protein precursor are encoded; these viruses showed somewhat reduced growth. A variant carrying a 3' lesion showed a marginal increase in DBP expression and slightly accelerated growth. When lesions 5' and 3' to the DBP coding sequence were combined in cis, the resulting virus was severely defective for growth and expressed E2B products to the virtual exclusion of E2A DBP. These data indicate that interactions must occur between the E2A 3' splice site and polyadenylation site before this region can be treated as an exon by the RNA processing machinery, and that a sequence alteration at the polyadenylation site that alone has only minor effects on the pattern of RNA processing can drastically affect terminal exon usage when placed in cis with a mutation that reduces splicing efficiency at the upstream 3' splice site. The data further indicate that, in vivo, Ad5 DNA replication is limited by prevailing DBP levels rather than by levels of polymerase or terminal protein precursor.
Collapse
Affiliation(s)
- C Caravokyri
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
3
|
Krauskopf A, Ben-Asher E, Aloni Y. Minute virus of mice infection modifies cellular transcription elongation. J Virol 1994; 68:2741-5. [PMID: 8139050 PMCID: PMC236753 DOI: 10.1128/jvi.68.4.2741-2745.1994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Our previous observations indicated that upon infection with minute virus of mice (MVM), Ehrlich ascites cells lose a transcription elongation activity which is essential for the readthrough of the MVM attenuator. This was monitored by the ability of extracts from uninfected but not from infected cells to support readthrough of the P4 attenuator when added to partially purified transcription elongation complexes. We have investigated the nature of this change in transcription elongation following MVM infection. In this communication, we show that infection of Ehrlich ascites cells with MVM leads to a general shift in the length of nascent mRNA synthesized in isolated nuclei and separated by sucrose gradients. Furthermore, infection leads to attenuation of transcription of the cellular gene c-fos but not c-myc. We show biochemical evidence to support a model by which, following MVM infection, there is a functional reduction in the activity of a TFIIS-like general transcriptional elongation activity.
Collapse
Affiliation(s)
- A Krauskopf
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
4
|
Kessler M, Mathews MB. Premature termination and processing of human immunodeficiency virus type 1-promoted transcripts. J Virol 1992; 66:4488-96. [PMID: 1602555 PMCID: PMC241258 DOI: 10.1128/jvi.66.7.4488-4496.1992] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have used transient expression assays to study transcription directed by the human immunodeficiency virus (HIV) type 1 promoter. A plasmid containing an HIV-reporter gene fusion and a simian virus 40 origin of DNA replication was transfected into COS-1 cells in the presence or absence of a Tat expression vector. HIV-promoted RNA was analyzed by in vivo labeling, by RNase protection mapping, and in run-on transcription assays. As observed previously, two populations of HIV RNA accumulate in vivo: short, attenuated transcripts and long, polyadenylated mRNA. The short transcripts labeled in vivo were longer and more heterogeneous than expected from RNase protection assays. Moreover, comparison of transcripts labeled in vivo with run-on transcription products revealed that similar, if not identical, short RNAs accumulate in vitro. Utilizing the run-on assay, we show that following transcriptional termination, the attenuated transcripts undergo processing to generate one species of RNA. We also provide evidence that Tat does not act as an antiterminator to relieve a discrete elongation block but instead modifies transcriptional complexes, enabling them to overcome putative pause sites and continue transcription of the template.
Collapse
Affiliation(s)
- M Kessler
- Cold Spring Harbor Laboratory, New York 11724-2208
| | | |
Collapse
|
5
|
Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol Cell Biol 1992. [PMID: 1569941 DOI: 10.1128/mcb.12.5.2078] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined elongation by RNA polymerase II initiated at a promoter and have identified two classes of elongation complexes. Following initiation at a promoter, all polymerase molecules enter an abortive mode of elongation. Abortive elongation is characterized by the rapid generation of short transcripts due to pausing of the polymerase followed by termination of transcription. Termination of the early elongation complexes can be suppressed by the addition of 250 mM KCl or 1 mg of heparin per ml soon after initiation. Elongation complexes of the second class carry out productive elongation in which long transcripts can be synthesized. Productive elongation complexes are derived from early paused elongation complexes by the action of a factor which we call P-TEF (positive transcription elongation factor). P-TEF is inhibited by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole at concentrations which have no effect on the initiation of transcription. By using templates immobilized on paramagnetic particles, we show that isolated preinitiation complexes lack P-TEF and give rise to transcription complexes which can carry out only abortive elongation. The ability to carry out productive elongation can be restored to isolated transcription complexes by the addition of P-TEF after initiation. A model is presented which describes the role of elongation factors in the formation and maintenance of elongation complexes. The model is consistent with the available in vivo data concerning control of elongation and is used to predict the outcome of other potential in vitro and in vivo experiments.
Collapse
|
6
|
Abstract
We show that nuclear extract from Drosophila Kc cells supports efficient elongation by RNA polymerase II initiated from the actin 5C promoter. The addition of 0.3% Sarkosyl, 1 mg of heparin per ml, or 250 mM KCl immediately after initiation has two effects. First, the elongation rate is reduced 80 to 90% as a result of the inhibition of elongation factors. Second, there is an increase in the amount of long runoff RNA, suggesting that there is an early block to elongation that is relieved by the disruptive reagents. Consistent with the first effect, we find that the ability of factor 5 (TFIIF) to stimulate the elongation rate is inhibited by the disruptive agents when assayed in a defined system containing pure RNA polymerase II and a dC-tailed template. The disruptive agents also inhibit the ability of DmS-II to suppress transcriptional pausing but only slightly reduce the ability of DmS-II to increase the elongation rate twofold. The pause sites encountered by RNA polymerase II after initiation at a promoter and subsequent treatment with the disruptive reagents are also recognized by pure polymerase transcribing a dC-tailed template. It has been suggested that 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits RNA polymerase II during elongation, but we find that the purine nucleoside analog has no effect on elongation complexes containing RNA over 500 nucleotides in length or on the action of factor 5 or DmS-II in the defined system.
Collapse
|
7
|
Marshall NF, Price DH. Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol Cell Biol 1992; 12:2078-90. [PMID: 1569941 PMCID: PMC364379 DOI: 10.1128/mcb.12.5.2078-2090.1992] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have examined elongation by RNA polymerase II initiated at a promoter and have identified two classes of elongation complexes. Following initiation at a promoter, all polymerase molecules enter an abortive mode of elongation. Abortive elongation is characterized by the rapid generation of short transcripts due to pausing of the polymerase followed by termination of transcription. Termination of the early elongation complexes can be suppressed by the addition of 250 mM KCl or 1 mg of heparin per ml soon after initiation. Elongation complexes of the second class carry out productive elongation in which long transcripts can be synthesized. Productive elongation complexes are derived from early paused elongation complexes by the action of a factor which we call P-TEF (positive transcription elongation factor). P-TEF is inhibited by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole at concentrations which have no effect on the initiation of transcription. By using templates immobilized on paramagnetic particles, we show that isolated preinitiation complexes lack P-TEF and give rise to transcription complexes which can carry out only abortive elongation. The ability to carry out productive elongation can be restored to isolated transcription complexes by the addition of P-TEF after initiation. A model is presented which describes the role of elongation factors in the formation and maintenance of elongation complexes. The model is consistent with the available in vivo data concerning control of elongation and is used to predict the outcome of other potential in vitro and in vivo experiments.
Collapse
Affiliation(s)
- N F Marshall
- Department of Biochemistry, University of Iowa, Iowa City 52242
| | | |
Collapse
|
8
|
Kephart DD, Marshall NF, Price DH. Stability of Drosophila RNA polymerase II elongation complexes in vitro. Mol Cell Biol 1992; 12:2067-77. [PMID: 1373806 PMCID: PMC364378 DOI: 10.1128/mcb.12.5.2067-2077.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We show that nuclear extract from Drosophila Kc cells supports efficient elongation by RNA polymerase II initiated from the actin 5C promoter. The addition of 0.3% Sarkosyl, 1 mg of heparin per ml, or 250 mM KCl immediately after initiation has two effects. First, the elongation rate is reduced 80 to 90% as a result of the inhibition of elongation factors. Second, there is an increase in the amount of long runoff RNA, suggesting that there is an early block to elongation that is relieved by the disruptive reagents. Consistent with the first effect, we find that the ability of factor 5 (TFIIF) to stimulate the elongation rate is inhibited by the disruptive agents when assayed in a defined system containing pure RNA polymerase II and a dC-tailed template. The disruptive agents also inhibit the ability of DmS-II to suppress transcriptional pausing but only slightly reduce the ability of DmS-II to increase the elongation rate twofold. The pause sites encountered by RNA polymerase II after initiation at a promoter and subsequent treatment with the disruptive reagents are also recognized by pure polymerase transcribing a dC-tailed template. It has been suggested that 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits RNA polymerase II during elongation, but we find that the purine nucleoside analog has no effect on elongation complexes containing RNA over 500 nucleotides in length or on the action of factor 5 or DmS-II in the defined system.
Collapse
Affiliation(s)
- D D Kephart
- Department of Biochemistry, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
9
|
Roller RJ, Roizman B. Herpes simplex virus 1 RNA-binding protein US11 negatively regulates the accumulation of a truncated viral mRNA. J Virol 1991; 65:5873-9. [PMID: 1656075 PMCID: PMC250249 DOI: 10.1128/jvi.65.11.5873-5879.1991] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The US11 gene of herpes simplex virus 1 (HSV-1) encodes a site-specific, basic, RNA-binding protein. The viral RNA sequences bound by US11 protein precipitated by a monoclonal antibody hybridized to a 1.3-kb BamHI C' fragment of the HSV-1 genome. This fragment encodes a US11-regulated transcript which accumulates to high level in the cells infected with US11- virus but not in cells infected with wild-type virus. This transcript, designated delta 34, is a truncated form of the mRNA encoding an essential protein encoded by the UL34 open reading frame. The US11 protein was shown to bind delta 34 RNA at or near its 3' terminus. The nucleotide sequence of the region surrounding the termination of transcription of delta 34 RNA transcription suggests that the latter may be the product of transcriptional attenuation. US11 protein resembles the tat protein of human immunodeficiency virus with respect to size, charge, nucleolar accumulation, and possibly effect on accumulation of its target RNA but does not share with it discernible sequence homology.
Collapse
Affiliation(s)
- R J Roller
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Illinois 60637
| | | |
Collapse
|
10
|
The block to transcription elongation at the minute virus of mice attenuator is regulated by cellular elongation factors. Mol Cell Biol 1991. [PMID: 2046666 DOI: 10.1128/mcb.11.7.3515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that both in vivo and in vitro, RNA polymerase II pauses or prematurely terminates transcription at a specific attenuation site located 142 to 147 nucleotides downstream from the P4 promoter of minute virus of mice (MVM). In this report, we show that an in vitro block to transcription elongation in HeLa whole-cell extract occurs at elevated KCl concentrations (0.2 to 1.5 M) but not at the standard KCl concentration (50 mM). Briefly initiated transcription complexes, devoid of dissociated elongation factors by passage through a Sephacryl S-1000 column at 0.3 M KCl, were allowed to elongate the briefly initiated nascent RNA, and a block to transcription elongation at the attenuation site was observed independently of the KCl concentration at the time of elongation. Moreover, the block to elongation was overcome by the addition, during elongation, to the column of purified complexes of whole-cell extract from EA cells but not from MVM-infected EA cells or HeLa cells. The general transcription factors IIF and IIX were also shown to alleviate this block to transcription elongation. On the basis of these results, we suggest that the block to elongation at the MVM attenuation site observed late in MVM infection results, at least in part, from the inactivation of the general transcription elongation factors.
Collapse
|
11
|
Krauskopf A, Bengal E, Aloni Y. The block to transcription elongation at the minute virus of mice attenuator is regulated by cellular elongation factors. Mol Cell Biol 1991; 11:3515-21. [PMID: 2046666 PMCID: PMC361089 DOI: 10.1128/mcb.11.7.3515-3521.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have previously reported that both in vivo and in vitro, RNA polymerase II pauses or prematurely terminates transcription at a specific attenuation site located 142 to 147 nucleotides downstream from the P4 promoter of minute virus of mice (MVM). In this report, we show that an in vitro block to transcription elongation in HeLa whole-cell extract occurs at elevated KCl concentrations (0.2 to 1.5 M) but not at the standard KCl concentration (50 mM). Briefly initiated transcription complexes, devoid of dissociated elongation factors by passage through a Sephacryl S-1000 column at 0.3 M KCl, were allowed to elongate the briefly initiated nascent RNA, and a block to transcription elongation at the attenuation site was observed independently of the KCl concentration at the time of elongation. Moreover, the block to elongation was overcome by the addition, during elongation, to the column of purified complexes of whole-cell extract from EA cells but not from MVM-infected EA cells or HeLa cells. The general transcription factors IIF and IIX were also shown to alleviate this block to transcription elongation. On the basis of these results, we suggest that the block to elongation at the MVM attenuation site observed late in MVM infection results, at least in part, from the inactivation of the general transcription elongation factors.
Collapse
Affiliation(s)
- A Krauskopf
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehoyot, Israel
| | | | | |
Collapse
|
12
|
Resnekov O, Pruzan R, Aloni Y. Elements involved in an in vitro block to transcription elongation at the end of the L1 mRNA family of adenovirus 2. Nucleic Acids Res 1991; 19:1783-90. [PMID: 1709491 PMCID: PMC328105 DOI: 10.1093/nar/19.8.1783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using the 3' end of the L1 mRNA family of adenovirus 2 (Ad2) as a model system, we investigated transcription elongation following a poly(A) signal in a cell-free system. The results show that RNA polymerase II can halt transcription elongation at a T-rich stretch in the non-coding DNA strand 20 nucleotides downstream of the poly(A) signal. The block to transcription elongation is enhanced when Sarkosyl is included in the elongation reaction. Deletion studies narrowed the region which directs the elongation block at the T-rich stretch, to an upstream fragment of 53 nucleotides that is very dA-rich and also contains a functional poly(A) signal. The deletion studies and analysis by site-directed mutagenesis indicate that in the present system, RNA secondary structure, the stretch of T's and the poly(A) signal are not the dominant elements responsible for the elongation block. The block to transcription elongation at the T-rich stretch was also shown to be 5 times more effective in an uninfected extract than in an Ad2 infected extract, which is reminiscent of the in vivo situation and is consistent with the suggestion that a trans-acting factor is involved in modulating the elongation block at the T-rich stretch.
Collapse
Affiliation(s)
- O Resnekov
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
13
|
Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II. Mol Cell Biol 1991. [PMID: 1996086 DOI: 10.1128/mcb.11.3.1195] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used a recently developed system that allows the isolation of complexes competent for RNA polymerase II elongation (E. Bengal, A. Goldring, and Y. Aloni, J. Biol. Chem. 264:18926-18932, 1989). Pulse-labeled transcription complexes were formed at the adenovirus major late promoter with use of HeLa cell extracts. Elongation-competent complexes were purified from most of the proteins present in the extract, as well as from loosely bound elongation factors, by high-salt gel filtration chromatography. We found that under these conditions the nascent RNA was displaced from the DNA during elongation. These column-purified complexes were used to analyze the activities of different transcription factors during elongation by RNA polymerase II. We found that transcription factor IIS (TFIIS), TFIIF, and TFIIX affected the efficiency of elongation through the adenovirus major late promoter attenuation site and a synthetic attenuation site composed of eight T residues. These factors have distinct activities that depend on whether they are added before RNA polymerase has reached the attenuation site or at the time when the polymerase is pausing at the attenuation site. TFIIS was found to have antiattenuation activity, while TFIIF and TFIIX stimulated the rate of elongation. In comparison with TFIIF, TFIIS is loosely bound to the elongation complex. We also found that the activities of the factors are dependent on the nature of the attenuator. These results indicate that at least three factors play a major role during elongation by RNA polymerase II.
Collapse
|
14
|
Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II. Mol Cell Biol 1991; 11:1195-206. [PMID: 1996086 PMCID: PMC369390 DOI: 10.1128/mcb.11.3.1195-1206.1991] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have used a recently developed system that allows the isolation of complexes competent for RNA polymerase II elongation (E. Bengal, A. Goldring, and Y. Aloni, J. Biol. Chem. 264:18926-18932, 1989). Pulse-labeled transcription complexes were formed at the adenovirus major late promoter with use of HeLa cell extracts. Elongation-competent complexes were purified from most of the proteins present in the extract, as well as from loosely bound elongation factors, by high-salt gel filtration chromatography. We found that under these conditions the nascent RNA was displaced from the DNA during elongation. These column-purified complexes were used to analyze the activities of different transcription factors during elongation by RNA polymerase II. We found that transcription factor IIS (TFIIS), TFIIF, and TFIIX affected the efficiency of elongation through the adenovirus major late promoter attenuation site and a synthetic attenuation site composed of eight T residues. These factors have distinct activities that depend on whether they are added before RNA polymerase has reached the attenuation site or at the time when the polymerase is pausing at the attenuation site. TFIIS was found to have antiattenuation activity, while TFIIF and TFIIX stimulated the rate of elongation. In comparison with TFIIF, TFIIS is loosely bound to the elongation complex. We also found that the activities of the factors are dependent on the nature of the attenuator. These results indicate that at least three factors play a major role during elongation by RNA polymerase II.
Collapse
|
15
|
Seiberg M, Aloni Y, Levine AJ. The adenovirus type 2 DNA-binding protein interacts with the major late promoter attenuated RNA. J Virol 1989; 63:1134-41. [PMID: 2492608 PMCID: PMC247808 DOI: 10.1128/jvi.63.3.1134-1141.1989] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The adenovirus 72-kilodalton DNA-binding protein (DBP) binds to the attenuated RNA derived from the viral major late promoter. Protection from T1 RNase digestion can be observed when DBP is incubated with attenuated RNA. By using attenuated RNA labeled at one end, the T1 RNase digestion pattern can be mapped to residues located at specific sites in this RNA. Heterologous competitor RNAs do not alter the pattern of DBP protection of a labeled attenuated RNA, as does the identical attenuated RNA. These data indicate some specificity of the interaction between DBP and attenuated RNA. Adenovirus infection of monkey cells results in a more efficient attenuation of RNA initiated at the major late promoter and a reduced level of infectious virus. Adenovirus mutations in DBP relieve this restriction. These DBP mutant proteins do not change their binding properties to the attenuated RNA but suggest a mechanism by which DBP plays a role in the adenovirus host range restriction in monkey cells.
Collapse
Affiliation(s)
- M Seiberg
- Department of Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
16
|
Resnekov O, Aloni Y. RNA polymerase II is capable of pausing and prematurely terminating transcription at a precise location in vivo and in vitro. Proc Natl Acad Sci U S A 1989; 86:12-6. [PMID: 2911563 PMCID: PMC286393 DOI: 10.1073/pnas.86.1.12] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
By using the minute virus of mice, we have shown that in vivo and in vitro RNA polymerase II pauses or prematurely terminates transcription at a specific location 142-147 nucleotides downstream from the P4 promoter. The attenuated RNA was found and mapped in vivo in A9 cell late after infection in both the nuclear and cytoplasmic fractions, and the terminal nucleotide was shown to have a 3' OH group. The 3' end of the attenuated RNA is capable of forming a hairpin structure that is followed by a stretch of uridines. To distinguish whether the attenuated RNA is formed as a result of processing, pausing, or termination and to dissect structural elements, factors, or mechanisms that are involved in its formation, we used in vitro systems: isolated nuclei and cell-free extracts from HeLa cells. The results of the in vitro studies show that the attenuated RNA is a result of pausing or termination and not processing. Additionally, a salt-soluble factor and RNA secondary structure were implicated in the process of termination.
Collapse
Affiliation(s)
- O Resnekov
- Department of Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|