1
|
Méndez V, Sepúlveda M, Izquierdo-Fiallo K, Macaya CC, Esparza T, Báez-Matus X, Durán RE, Levicán G, Seeger M. Surfing in the storm: how Paraburkholderia xenovorans thrives under stress during biodegradation of toxic aromatic compounds and other stressors. FEMS Microbiol Rev 2025; 49:fuaf021. [PMID: 40388301 PMCID: PMC12117332 DOI: 10.1093/femsre/fuaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025] Open
Abstract
The adaptive mechanisms of Burkholderiales during the catabolism of aromatic compounds and abiotic stress are crucial for their fitness and performance. The aims of this report are to review the bacterial adaptation mechanisms to aromatic compounds, oxidative stress, and environmental stressful conditions, focusing on the model aromatic-degrading Paraburkholderia xenovorans LB400, other Burkholderiales, and relevant degrading bacteria. These mechanisms include (i) the stress response during aromatic degradation, (ii) the oxidative stress response to aromatic compounds, (iii) the metabolic adaptation to oxidative stress, (iv) the osmoadaptation to saline stress, (v) the synthesis of siderophore during iron limitation, (vi) the proteostasis network, which plays a crucial role in cellular function maintenance, and (vii) the modification of cellular membranes, morphology, and bacterial lifestyle. Remarkably, we include, for the first time, novel genomic analyses on proteostasis networks, carbon metabolism modulation, and the synthesis of stress-related molecules in P. xenovorans. We analyzed these metabolic features in silico to gain insights into the adaptive strategies of P. xenovorans to challenging environmental conditions. Understanding how to enhance bacterial stress responses can lead to the selection of more robust strains capable of thriving in polluted environments, which is critical for improving biodegradation and bioremediation strategies.
Collapse
Affiliation(s)
- Valentina Méndez
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Mario Sepúlveda
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Katherin Izquierdo-Fiallo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Constanza C Macaya
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Teresa Esparza
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Ximena Báez-Matus
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Roberto E Durán
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Gloria Levicán
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| |
Collapse
|
2
|
Bach E, Chen J, Angolini CFF, Bauer JS, Gross H, Passaglia LMP. Genome-guided purification of high amounts of the siderophore ornibactin and detection of potentially novel burkholdine derivatives produced by Burkholderia catarinensis 89T. J Appl Microbiol 2024; 135:lxae040. [PMID: 38364306 DOI: 10.1093/jambio/lxae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
AIM The increased availability of genome sequences has enabled the development of valuable tools for the prediction and identification of bacterial natural products. Burkholderia catarinensis 89T produces siderophores and an unknown potent antifungal metabolite. The aim of this work was to identify and purify natural products of B. catarinensis 89T through a genome-guided approach. MATERIALS AND METHODS The analysis of B. catarinensis 89T genome revealed 16 clusters putatively related to secondary metabolism and antibiotics production. Of particular note was the identification of a nonribosomal peptide synthetase (NRPS) cluster related to the production of the siderophore ornibactin, a hybrid NRPS-polyketide synthase Type 1 cluster for the production of the antifungal glycolipopeptide burkholdine, and a gene cluster encoding homoserine lactones (HSL), probably involved in the regulation of both metabolites. We were able to purify high amounts of the ornibactin derivatives D/C6 and F/C8, while also detecting the derivative B/C4 in mass spectrometry investigations. A group of metabolites with molecular masses ranging from 1188 to 1272 Da could be detected in MS experiments, which we postulate to be new burkholdine analogs produced by B. catarinensis. The comparison of B. catarinensis BGCs with other Bcc members corroborates the hypothesis that this bacterium could produce new derivatives of these metabolites. Moreover, the quorum sensing metabolites C6-HSL, C8-HSL, and 3OH-C8-HSL were observed in LC-MS/MS analysis. CONCLUSION The new species B. catarinensis is a potential source of new bioactive secondary metabolites. Our results highlight the importance of genome-guided purification and identification of metabolites of biotechnological importance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), 91540-000, Porto, Alegre, RS, Brazil
| | - Julia Chen
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, 72076, Germany
| | | | - Judith S Bauer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, 72076, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, 72076, Germany
| | | |
Collapse
|
3
|
Mathur V, Ulanova D. Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02073-x. [PMID: 35867138 DOI: 10.1007/s00248-022-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants are intimately connected with their associated microorganisms. Chemical interactions via natural products between plants and their microbial symbionts form an important aspect in host health and development, both in aquatic and terrestrial ecosystems. These interactions range from negative to beneficial for microbial symbionts as well as their hosts. Symbiotic microbes synchronize their metabolism with their hosts, thus suggesting a possible coevolution among them. Metabolites, synthesized from plants and microbes due to their association and coaction, supplement the already present metabolites, thus promoting plant growth, maintaining physiological status, and countering various biotic and abiotic stress factors. However, environmental changes, such as pollution and temperature variations, as well as anthropogenic-induced monoculture settings, have a significant influence on plant-associated microbial community and its interaction with the host. In this review, we put the prominent microbial metabolites participating in plant-microbe interactions in the natural terrestrial and aquatic ecosystems in a single perspective and have discussed commonalities and differences in these interactions for adaptation to surrounding environment and how environmental changes can alter the same. We also present the status and further possibilities of employing chemical interactions for environment remediation. Our review thus underlines the importance of ecosystem-driven functional adaptations of plant-microbe interactions in natural and anthropogenically influenced ecosystems and their possible applications.
Collapse
Affiliation(s)
- Vartika Mathur
- Animal Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, New Delhi-110021, India.
| | - Dana Ulanova
- Department of Marine Resource Sciences, Faculty of Agriculture and Marine Science, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
- Center for Advanced Marine Core Research, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
| |
Collapse
|
4
|
Butt AT, Banyard CD, Haldipurkar SS, Agnoli K, Mohsin M, Vitovski S, Paleja A, Tang Y, Lomax R, Ye F, Green J, Thomas M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3709-3726. [PMID: 35234897 PMCID: PMC9023288 DOI: 10.1093/nar/gkac137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that causes severe infections of the cystic fibrosis (CF) lung. To acquire iron, B. cenocepacia secretes the Fe(III)-binding compound, ornibactin. Genes for synthesis and utilisation of ornibactin are served by the iron starvation (IS) extracytoplasmic function (ECF) σ factor, OrbS. Transcription of orbS is regulated in response to the prevailing iron concentration by the ferric uptake regulator (Fur), such that orbS expression is repressed under iron-sufficient conditions. Here we show that, in addition to Fur-mediated regulation of orbS, the OrbS protein itself responds to intracellular iron availability. Substitution of cysteine residues in the C-terminal region of OrbS diminished the ability to respond to Fe(II) in vivo. Accordingly, whilst Fe(II) impaired transcription from and recognition of OrbS-dependent promoters in vitro by inhibiting the binding of OrbS to core RNA polymerase (RNAP), the cysteine-substituted OrbS variant was less responsive to Fe(II). Thus, the cysteine residues within the C-terminal region of OrbS contribute to an iron-sensing motif that serves as an on-board ‘anti-σ factor’ in the presence of Fe(II). A model to account for the presence two regulators (Fur and OrbS) that respond to the same intracellular Fe(II) signal to control ornibactin synthesis and utilisation is discussed.
Collapse
Affiliation(s)
- Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Christopher D Banyard
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Sayali S Haldipurkar
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Kirsty Agnoli
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Muslim I Mohsin
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Srdjan Vitovski
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Ameya Paleja
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Yingzhi Tang
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Rebecca Lomax
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Fuzhou Ye
- Section of Structural Biology, Department of Infectious Disease, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Jeffrey Green
- Correspondence may also be addressed to Jeffrey Green. Tel: +44 114 222 4403; Fax: +44 114 222 2800;
| | - Mark S Thomas
- To whom correspondence should be addressed. Tel: +44 114 215 9557; Fax: +44 114 271 1863;
| |
Collapse
|
5
|
Foxfire A, Buhrow AR, Orugunty RS, Smith L. Drug discovery through the isolation of natural products from Burkholderia. Expert Opin Drug Discov 2021; 16:807-822. [PMID: 33467922 PMCID: PMC9844120 DOI: 10.1080/17460441.2021.1877655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction: The increasing threat of antibiotic-resistant pathogens makes it imperative that new antibiotics to combat them are discovered. Burkholderia is a genus of Gram-negative, non-sporulating bacteria. While ubiquitous and capable of growing within plants and groundwater, they are primarily soil-dwelling organisms. These include the more virulent forms of Burkholderia such as Burkholderia mallei, Burkholderia pseudomallei, and the Burkholderia cepacia complex (Bcc).Areas covered: This review provides a synopsis of current research on the natural products isolated from the genus Burkholderia. The authors also cover the research on the drug discovery efforts that have been performed on the natural products derived from Burkholderia.Expert opinion: Though Burkholderia has a small number of pathogenic species, the majority of the genus is avirulent and almost all members of the genus are capable of producing useful antimicrobial products that could potentially lead to the development of novel therapeutics against infectious diseases. The need for discovery of new antibiotics is urgent due to the ever-increasing prevalence of antibiotic-resistant pathogens, coupled with the decline in the discovery of new antibiotics.
Collapse
Affiliation(s)
- Adam Foxfire
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Andrew Riley Buhrow
- Department of Biology, Texas A&M University, College Station, TX 77843,Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77803
| | | | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843,Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77803,Address correspondence to Leif Smith,
| |
Collapse
|
6
|
An Overview of Metabolic Activity, Beneficial and Pathogenic Aspects of Burkholderia Spp. Metabolites 2021; 11:metabo11050321. [PMID: 34067834 PMCID: PMC8156019 DOI: 10.3390/metabo11050321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Burkholderia is an important bacterial species which has different beneficial effects, such as promoting the plant growth, including rhizosphere competence for the secretion of allelochemicals, production of antibiotics, and siderophores. In addition, most of Burkholderia species have demonstrated promising biocontrol action against different phytopathogens for diverse crops. In particular, Burkholderia demonstrates significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. The current review is concerned with Burkholderia spp. covering the following aspects: discovering, classification, distribution, plant growth promoting effect, and antimicrobial activity of different species of Burkholderia, shedding light on the most important secondary metabolites, their pathogenic effects, and biochemical characterization of some important species of Burkholderia, such as B. cepacia, B. andropogonis, B. plantarii, B. rhizoxinica, B. glumae, B. caryophylli and B. gladioli.
Collapse
|
7
|
Prasad JK, Pandey P, Anand R, Raghuwanshi R. Drought Exposed Burkholderia seminalis JRBHU6 Exhibits Antimicrobial Potential Through Pyrazine-1,4-Dione Derivatives Targeting Multiple Bacterial and Fungal Proteins. Front Microbiol 2021; 12:633036. [PMID: 33935993 PMCID: PMC8079638 DOI: 10.3389/fmicb.2021.633036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/22/2021] [Indexed: 01/29/2023] Open
Abstract
The present study aimed to explore the antimicrobial potentials of soil bacteria and identify the bioactive compounds and their likely targets through in silico studies. A total 53 bacterial isolates were screened for their antimicrobial potential of which the strain JRBHU6 showing highest antimicrobial activity was identified as Burkholderia seminalis (GenBank accession no. MK500868) based on 16S ribosomal RNA (rRNA) gene sequencing and phylogenetic analysis. B. seminalis JRBHU6 also produced hydrolytic enzymes chitinases and cellulase of significance in accrediting its antimicrobial nature. The bioactive metabolites produced by the isolate were extracted in different organic solvents among which methanolic extract showed best growth-suppressing activities toward multidrug resistant Staphylococcus aureus and fungal strains, viz Fusarium oxysporum, Aspergillus niger, Microsporum gypseum, Trichophyton mentagrophytes, and Trichoderma harzianum. The antimicrobial compounds were purified using silica gel thin layer chromatography and high-performance liquid chromatography (HPLC). On the basis of spectroscopic analysis, the bioactive metabolites were identified as pyrrolo(1,2-a)pyrazine-1,4-dione,hexahydro (PPDH) and pyrrolo(1,2-a)pyrazine-1,4-dione, hexahydro-3(2-methylpropyl) (PPDHMP). In silico molecular docking studies showed the bioactive compounds targeting fungal and bacterial proteins, among which PPDHMP was multitargeting in nature as reported for the first time through this study.
Collapse
Affiliation(s)
- Jay Kishor Prasad
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Richa Anand
- Department of Applied Science, Indian Institute of Information Technology-Allahabad, Prayagraj, India
| | - Richa Raghuwanshi
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Picard L, Paris C, Dhalleine T, Morin E, Oger P, Turpault MP, Uroz S. The mineral weathering ability of Collimonas pratensis PMB3(1) involves a Malleobactin-mediated iron acquisition system. Environ Microbiol 2021; 24:784-802. [PMID: 33817942 DOI: 10.1111/1462-2920.15508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 11/27/2022]
Abstract
Mineral weathering by microorganisms is considered to occur through a succession of mechanisms based on acidification and chelation. While the role of acidification is established, the role of siderophores is difficult to disentangle from the effect of the acidification. We took advantage of the ability of strain Collimonas pratensis PMB3(1) to weather minerals but not to acidify depending on the carbon source to address the role of siderophores in mineral weathering. We identified a single non-ribosomal peptide synthetase (NRPS) responsible for siderophore biosynthesis in the PMB3(1) genome. By combining iron-chelating assays, targeted mutagenesis and chemical analyses (HPLC and LC-ESI-HRMS), we identified the siderophore produced as malleobactin X and how its production depends on the concentration of available iron. Comparison with the genome sequences of other collimonads evidenced that malleobactin production seems to be a relatively conserved functional trait, though some collimonads harboured other siderophore synthesis systems. We also revealed by comparing the wild-type strain and its mutant impaired in the production of malleobactin that the ability to produce this siderophore is essential to allow the dissolution of hematite under non-acidifying conditions. This study represents the first characterization of the siderophore produced by collimonads and its role in mineral weathering.
Collapse
Affiliation(s)
- Laura Picard
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| | - Cédric Paris
- Université de Lorraine, EA 4367 « Laboratoire d'Ingénierie des Biomolécules », Ecole Nationale Supérieure d'Agronomie et des Industries Alimentaires (ENSAIA), Vandœuvre-lès-Nancy, F-54505, France.,Plateau d'Analyse Structurale et Métabolomique (PASM) - SF4242 EFABA, Vandœuvre-lès-Nancy, F-54505, France
| | - Tiphaine Dhalleine
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France
| | - Philippe Oger
- Université de Lyon, INSA de Lyon, CNRS UMR 5240 « Microbiologie, Adaptation et Pathogénie », Villeurbanne, F-69621, France
| | - Marie-Pierre Turpault
- INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, F-54280, France.,INRAE, UR1138 « Biogéochimie des Ecosystèmes Forestiers », Champenoux, F-54280, France
| |
Collapse
|
9
|
Dashti Y, Nakou IT, Mullins AJ, Webster G, Jian X, Mahenthiralingam E, Challis GL. Discovery and Biosynthesis of Bolagladins: Unusual Lipodepsipeptides from Burkholderia gladioli Clinical Isolates*. Angew Chem Int Ed Engl 2020; 59:21553-21561. [PMID: 32780452 PMCID: PMC7756342 DOI: 10.1002/anie.202009110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 01/01/2023]
Abstract
Two Burkholderia gladioli strains isolated from the lungs of cystic fibrosis patients were found to produce unusual lipodepsipeptides containing a unique citrate-derived fatty acid and a rare dehydro-β-alanine residue. The gene cluster responsible for their biosynthesis was identified by bioinformatics and insertional mutagenesis. In-frame deletions and enzyme activity assays were used to investigate the functions of several proteins encoded by the biosynthetic gene cluster, which was found in the genomes of about 45 % of B. gladioli isolates, suggesting that its metabolic products play an important role in the growth and/or survival of the species. The Chrome Azurol S assay indicated that these metabolites bind ferric iron, which suppresses their production when added to the growth medium. Moreover, a gene encoding a TonB-dependent ferric-siderophore receptor is adjacent to the biosynthetic genes, suggesting that these metabolites may function as siderophores in B. gladioli.
Collapse
Affiliation(s)
- Yousef Dashti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Current address: The Centre for Bacterial Cell BiologyBiosciences InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Ioanna T. Nakou
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Alex J. Mullins
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Xinyun Jian
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Gregory L. Challis
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
- Department of Biochemistry and Molecular Biology, ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
10
|
Dashti Y, Nakou IT, Mullins AJ, Webster G, Jian X, Mahenthiralingam E, Challis GL. Discovery and Biosynthesis of Bolagladins: Unusual Lipodepsipeptides from
Burkholderia gladioli
Clinical Isolates**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yousef Dashti
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Current address: The Centre for Bacterial Cell Biology Biosciences Institute Medical School Newcastle University Newcastle upon Tyne NE2 4AX UK
| | - Ioanna T. Nakou
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Alex J. Mullins
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Xinyun Jian
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Gregory L. Challis
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
- Department of Biochemistry and Molecular Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science Monash University Clayton VIC 3800 Australia
| |
Collapse
|
11
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
12
|
McRose DL, Seyedsayamdost MR, Morel FMM. Multiple siderophores: bug or feature? J Biol Inorg Chem 2018; 23:983-993. [PMID: 30264174 DOI: 10.1007/s00775-018-1617-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
Abstract
It is common for bacteria to produce chemically diverse sets of small Fe-binding molecules called siderophores. Studies of siderophore bioinorganic chemistry have firmly established the role of these molecules in Fe uptake and provided great insight into Fe complexation. However, we still do not fully understand why microbes make so many siderophores. In many cases, the release of small structural variants or siderophore fragments has been ignored, or considered as an inefficiency of siderophore biosynthesis. Yet, in natural settings, microbes live in complex consortia and it has become increasingly clear that the secondary metabolite repertoires of microbes reflect this dynamic environment. Multiple siderophore production may, therefore, provide a window into microbial life in the wild. This minireview focuses on three biochemical routes by which multiple siderophores can be released by the same organism-multiple biosynthetic gene clusters, fragment release, and precursor-directed biosynthesis-and highlights emergent themes related to each. We also emphasize the plurality of reasons for multiple siderophore production, which include enhanced iron uptake via synergistic siderophore use, microbial warfare and cooperation, and non-classical functions such as the use of siderophores to take up metals other than Fe.
Collapse
Affiliation(s)
- Darcy L McRose
- Department of Geosciences, Princeton University, Princeton, USA.
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, USA.,Department of Molecular Biology, Princeton University, Princeton, USA
| | | |
Collapse
|
13
|
β-Hydroxyaspartic acid in siderophores: biosynthesis and reactivity. J Biol Inorg Chem 2018; 23:957-967. [DOI: 10.1007/s00775-018-1584-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/20/2018] [Indexed: 01/18/2023]
|
14
|
Butt AT, Thomas MS. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front Cell Infect Microbiol 2017; 7:460. [PMID: 29164069 PMCID: PMC5681537 DOI: 10.3389/fcimb.2017.00460] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/18/2017] [Indexed: 11/19/2022] Open
Abstract
Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans.
Collapse
Affiliation(s)
- Aaron T Butt
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Mark S Thomas
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
Devi KA, Pandey G, Rawat AKS, Sharma GD, Pandey P. The Endophytic Symbiont- Pseudomonas aeruginosa Stimulates the Antioxidant Activity and Growth of Achyranthes aspera L. Front Microbiol 2017; 8:1897. [PMID: 29021789 PMCID: PMC5623812 DOI: 10.3389/fmicb.2017.01897] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
A plant growth promoting bacterial endophyte designated as AL2-14B isolated from the leaves of Achyranthes aspera L. was identified as Pseudomonas aeruginosa based on its phenotypic and physiological features, and 16S rRNA gene sequence analysis. AL2-14B had plant growth stimulating attributes including siderophore and indole acetic acid release, inorganic phosphate solubilization, along with nitrogenase, ammonification, and protease activities. It also exhibited antifungal property against Rhizoctonia solani. The plantlets grown in germ-free condition were inoculated with AL2-14B and studied for the colonization of endophyte. Significant increase in population of AL2-14B between 3rd and 5th days after inoculation was recorded. The treatment of plants with endophytic P. aeruginosa AL2-14B increased nitrogen, phosphorus, potassium (NPK) contents in plant by 3.8, 12.59, and 19.15%, respectively. Significant enhancement of shoot and root length, dry leaf, dry shoot and dry root weight, and leaf surface area as compared to control (P < 0.05) was recorded in AL2-14B inoculated plants. The antioxidant activities increased in plants grown in germ-free conditions and inoculated with AL2-14B. The present study emphasizes on the role of diazotrophic endophyte P. aeruginosa AL2-14B in stimulating growth of A. aspera L. and improvement of its medicinal properties. Significant increase in growth and antioxidant content of P. aeruginosa AL2-14B treated plants suggests the possibility of an economical and eco-friendly mean of achieving antioxidants rich, healthier A. aspera plants.
Collapse
Affiliation(s)
- Khaidem A. Devi
- Department of Microbiology, Assam University, Silchar, India
| | - Garima Pandey
- Pharmacognosy and Ethnopharmacology Division, Council of Scientific & Industrial Research-National Botanical Research Institute, Lucknow, India
| | - A. K. S. Rawat
- Pharmacognosy and Ethnopharmacology Division, Council of Scientific & Industrial Research-National Botanical Research Institute, Lucknow, India
| | | | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
16
|
The Siderophore Product Ornibactin Is Required for the Bactericidal Activity of Burkholderia contaminans MS14. Appl Environ Microbiol 2017; 83:AEM.00051-17. [PMID: 28188204 DOI: 10.1128/aem.00051-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Burkholderia contaminans MS14 was isolated from soil in Mississippi. When it is cultivated on nutrient broth-yeast extract agar, the colonies exhibit bactericidal activity against a wide range of plant-pathogenic bacteria. A bacteriostatic compound with siderophore activity was successfully purified and was determined by nuclear magnetic resonance spectroscopy to be ornibactin. Isolation of the bactericidal compound has not yet been achieved; therefore, the exact nature of the bactericidal compound is still unknown. During an attempt to isolate the bactericidal compound, an interesting relationship between the production of ornibactin and the bactericidal activity of MS14 was characterized. Transposon mutagenesis resulted in two strains that lost bactericidal activity, with insertional mutations in a nonribosomal peptide synthetase (NRPS) gene for ornibactin biosynthesis and a luxR family transcriptional regulatory gene. Coculture of these two mutant strains resulted in restoration of the bactericidal activity. Furthermore, the addition of ornibactin to the NRPS mutant restored the bactericidal phenotype. It has been demonstrated that, in MS14, ornibactin has an alternative function, aside from iron sequestration. Comparison of the ornibactin biosynthesis genes in Burkholderia species shows diversity among the regulatory elements, while the gene products for ornibactin synthesis are conserved. This is an interesting observation, given that ornibactin is thought to have the same defined function within Burkholderia species. Ornibactin is produced by most Burkholderia species, and its role in regulating the production of secondary metabolites should be investigated.IMPORTANCE Identification of the antibacterial product from strain MS14 is not the key feature of this study. We present a series of experiments that demonstrate that ornibactin is directly involved in the bactericidal phenotype of MS14. This observation provides evidence for an alternative function for ornibactin, aside from iron sequestration. Ornibactin should be further evaluated for its role in regulating the biosynthesis of secondary metabolites in other Burkholderia species.
Collapse
|
17
|
Tamreihao K, Ningthoujam DS, Nimaichand S, Singh ES, Reena P, Singh SH, Nongthomba U. Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res 2016; 192:260-270. [DOI: 10.1016/j.micres.2016.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/31/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
|
18
|
Deng P, Wang X, Baird SM, Showmaker KC, Smith L, Peterson DG, Lu S. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. Microbiologyopen 2016; 5:353-69. [PMID: 26769582 PMCID: PMC4905989 DOI: 10.1002/mbo3.333] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/22/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14 genome as well as Burkholderia species genome show considerable diversity. Multiple antimicrobial agent biosynthesis genes were identified in the genome of plant growth-promoting species of Burkholderia. In addition, by comparing to nonpathogenic Burkholderia species, pathogenic Burkholderia species have more characterized homologs of the gene loci known to contribute to pathogenicity and virulence to plant and animals.
Collapse
Affiliation(s)
- Peng Deng
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| | - Xiaoqiang Wang
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| | - Sonya M. Baird
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| | - Kurt C. Showmaker
- Institute for GenomicsBiocomputing and BiotechnologyMississippi State UniversityMississippi stateMississippi
| | - Leif Smith
- Department of BiologyTexas A&M UniversityCollege StationTexas
| | - Daniel G. Peterson
- Institute for GenomicsBiocomputing and BiotechnologyMississippi State UniversityMississippi stateMississippi
| | - Shien Lu
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| |
Collapse
|
19
|
Genetic and Functional Analysis of the Biosynthesis of a Non-Ribosomal Peptide Siderophore in Burkholderia xenovorans LB400. PLoS One 2016; 11:e0151273. [PMID: 26963250 PMCID: PMC4786211 DOI: 10.1371/journal.pone.0151273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/25/2016] [Indexed: 11/26/2022] Open
Abstract
B. xenovorans LB400 is a model bacterium for the study of the metabolism of aromatic compounds. The aim of this study was the genomic and functional characterization of a non-ribosomal peptide synthetase containing gene cluster that encodes a siderophore in B. xenovorans LB400. The mba gene cluster from strain LB400 encodes proteins involved in the biosynthesis and transport of a hydroxamate-type siderophore. Strain LB400 has a unique mba gene organization, although mba gene clusters have been observed in diverse Burkholderiales. Bioinformatic analysis revealed the presence of promoters in the mba gene cluster that strongly suggest regulation by the ferric uptake regulator protein (Fur) and by the alternative RNA polymerase extracytoplasmic function sigma factor MbaF. Reverse transcriptase PCR analyses showed the expression of iron-regulated transcriptional units mbaFGHIJKL, mbaN, mbaABCE, mbaO, mbaP and mbaD genes under iron limitation. Chrome azurol S (CAS) assay strongly suggests that strain LB400 synthesized a siderophore under iron limitation. Mass spectrometry ESI-MS and MALDI-TOF-MS analyses revealed that the siderophore is a non-ribosomal peptide, and forms an iron complex with a molecular mass of 676 Da. Based on bioinformatic prediction, CAS assay and MS analyses, we propose that the siderophore is L-Nδ-hydroxy-Nδ-formylOrn-D-β-hydroxyAsp-L-Ser-L-Nδ-hydroxy-Nδ-formylOrn-1,4-diaminobutane that is closely related to malleobactin-type siderophores reported in B. thailandensis.
Collapse
|
20
|
Mathew A, Jenul C, Carlier AL, Eberl L. The role of siderophores in metal homeostasis of members of the genus Burkholderia. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:103-109. [PMID: 26621188 DOI: 10.1111/1758-2229.12357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
Although members of the genus Burkholderia can utilize a high-affinity iron uptake system to sustain growth under iron-limiting conditions, many strains also produce siderophores, suggesting that they may serve alternative functions. Here we demonstrate that the two Burkholderia siderophores pyochelin and ornibactin can protect the cells from metal toxicity and thus play an alternative role in metal homeostasis. We also demonstrate that metals such as copper and zinc induce the production of ornibactin.
Collapse
Affiliation(s)
- Anugraha Mathew
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Christian Jenul
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Aurelien L Carlier
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Microbiology, Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Tyrrell J, Callaghan M. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies. MICROBIOLOGY-SGM 2015; 162:191-205. [PMID: 26643057 DOI: 10.1099/mic.0.000220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy.
Collapse
Affiliation(s)
- Jean Tyrrell
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland
| |
Collapse
|
22
|
Abstract
![]()
Marine
bacteria produce an abundance of suites of acylated siderophores
characterized by a unique, species-dependent headgroup that binds
iron(III) and one of a series of fatty acid appendages. Marinobacter sp. DS40M6 produces a suite of seven acylated marinobactins, with
fatty acids ranging from saturated and unsaturated C12–C18
fatty acids. In the present study, we report that in the late log
phase of growth, the fatty acids are hydrolyzed by an amide hydrolase
producing the peptidic marinobactin headgroup. Halomonas aquamarina str. DS40M3, another marine bacterium isolated originally from the
same sample of open ocean water as Marinobacter sp.
DS40M6, produces the acyl aquachelins, also as a suite composed of
a peptidic headgroup distinct from that of the marinobactins. In contrast
to the acyl marinobactins, hydrolysis of the suite of acyl aquachelins
is not detected, even when H. aquamarina str. DS40M3
is grown into the stationary phase. The Marinobacter cell-free extract containing the acyl amide hydrolase is active
toward exogenous acyl-peptidic siderophores (e.g., aquachelin C, loihichelin
C, as well as octanoyl homoserine lactone used in quorum sensing).
Further, when H. aquamarina str. DS40M3 is cultured
together with Marinobacter sp. DS40M6, the fatty
acids of both suites of siderophores are hydrolyzed, and the aquachelin
headgroup is also produced. The present study demonstrates that coculturing
bacteria leads to metabolically tailored metabolites compared to growth
in a single pure culture, which is interesting given the importance
of siderophore-mediated iron acquisition for bacterial growth and
that Marinobacter sp. DS40M6 and H. aquamarina str. DS40M3 were isolated from the same sample of seawater.
Collapse
Affiliation(s)
- Julia M Gauglitz
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106-9510, United States
| | | | | | | |
Collapse
|
23
|
Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero-Mellado J, Perez-Rueda E. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 2013; 4:236-43. [PMID: 23680857 PMCID: PMC3728194 DOI: 10.4161/bioe.23808] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about Burkholderia tropica as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, Colletotrichum gloeosporioides, Fusarium culmorum, Fusarium oxysporum and Sclerotium rolffsi. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by B. tropica and, in particular, two bacterial strains (MTo293 and TTe203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including α-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid; however, their roles in the antagonism mechanism remain unclear.
Collapse
|
24
|
Fones H, Preston GM. The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev 2013; 37:495-519. [DOI: 10.1111/1574-6976.12004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 09/05/2012] [Accepted: 09/14/2012] [Indexed: 12/24/2022] Open
|
25
|
Dihazi A, Jaiti F, Kilani-Feki O, Jaoua S, Driouich A, Baaziz M, Daayf F, Serghini MA. Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 55:7-15. [PMID: 22480991 DOI: 10.1016/j.plaphy.2012.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/02/2012] [Indexed: 05/31/2023]
Abstract
The Bayoud, caused by Fusarium oxysporum f. sp. albedinis (Foa), is the most destructive disease of date palm (Phoenix dactylifera L) in Morocco and Algeria, with no effective control strategy yet available. In this work, two bacteria, Bacillus amyloliquefaciens strain Ag1 (Ag) and Burkholderia cepacia strain Cs5 (Cs), were examined for their potential to control this disease. Both bacterial strains inhibited both growth and sporulation of Foa. They released compounds into the culture medium, which resulted into cytological changes in Foa's mycelial structure. When Jihel-date palm plantlets, a susceptible cultivar, were induced with these bacteria, the size of the necrosis zone, which reflected the spreading of the pathogen, was reduced by more than 70%, as compared with uninduced controls. To further investigate the mechanisms of such disease reduction, phenolic compounds and peroxidase activity were assessed. One month after inoculation, date palm defense reactions against Foa were different depending on the bacterium used, B. cepacia led to higher accumulation of constitutive caffeoylshikimic acid isomers while B. amyloliquefaciens triggered the induction of new phenolic compounds identified as hydroxycinnamic acid derivatives. Peroxidase activity has also been stimulated significantly and varied with the bacterial strain used and with Foa inoculation. These results add to the promising field of investigation in controlling Bayoud disease.
Collapse
Affiliation(s)
- Abdelhi Dihazi
- Laboratoire de Biotechnologie, Biochimies, Valorisation et Protection des Plantes, Université Cadi Ayyad, Faculté des Sciences Semlalia, B.P. 2390, 40000 Marrakech, Morocco.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee J, Postmaster A, Soon HP, Keast D, Carson KC. Siderophore production by actinomycetes isolates from two soil sites in Western Australia. Biometals 2011; 25:285-96. [PMID: 22038645 DOI: 10.1007/s10534-011-9503-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/15/2011] [Indexed: 11/28/2022]
Abstract
The actinomycetes are metabolically flexible soil micro-organisms capable of producing a range of compounds of interest, including siderophores. Siderophore production by actinomycetes sampled from two distinct and separate geographical sites in Western Australia were investigated and found to be generally similar in the total percentage of siderophore producers found. The only notable difference was the proportion of isolates producing catechol siderophores with only 3% found in site 1 (from the north-west of Western Australia and reportedly containing 40% magnetite) and 17% in site 2 (a commercial stone fruit orchard in the hills east of Perth with a soil base ranging from sandy loam to laterite). Further detailed characterization of isolates of interest identified a Streptomyces that produced extracellularly excreted enterobactin, the characteristic Enterobacteriaceae siderophore, and also revealed some of the conditions required for enterobactin production. Carriage of the entF gene, which codes for the synthetase responsible for the final assembly of the tri-cyclic structure of enterobactin, was confirmed by PCR in this isolate. Another separate Streptomyces produced a compound that matched the UV/VIS spectra of heterobactin, a siderophore previously only described in Rhodococcus and Nocardia.
Collapse
Affiliation(s)
- Joanna Lee
- Discipline of Microbiology and Infectious Diseases, PathWest Laboratory Medicine WA, QEII Medical Center, Nedlands, WA, Australia
| | | | | | | | | |
Collapse
|
27
|
Asghar AH, Shastri S, Dave E, Wowk I, Agnoli K, Cook AM, Thomas MS. The pobA gene of Burkholderia cenocepacia encodes a Group I Sfp-type phosphopantetheinyltransferase required for biosynthesis of the siderophores ornibactin and pyochelin. Microbiology (Reading) 2011; 157:349-361. [DOI: 10.1099/mic.0.045559-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The opportunistic pathogen Burkholderia cenocepacia produces the siderophores ornibactin and pyochelin under iron-restricted conditions. Biosynthesis of both siderophores requires the involvement of non-ribosomal peptide synthetases (NRPSs). Using a transposon containing the lacZ reporter gene, two B. cenocepacia mutants were isolated which were deficient in siderophore production. Mutant IW10 was shown to produce normal amounts of ornibactin but only trace amounts of pyochelin, whereas synthesis of both siderophores was abolished in AHA27. Growth of AHA27, but not IW10, was inhibited under iron-restricted conditions. In both mutants, the transposon had integrated into the pobA gene, which encodes a polypeptide exhibiting similarity to the Sfp-type phosphopantetheinyltransferases (PPTases). These enzymes are responsible for activation of NRPSs by the covalent attachment of the 4′-phosphopantetheine (P-pant) moiety of coenzyme A. Previously characterized PPTase genes from other bacteria were shown to efficiently complement both mutants for siderophore production when provided in trans. The B. cenocepacia pobA gene was also able to efficiently complement an Escherichia coli entD mutant for production of the siderophore enterobactin. Using mutant IW10, in which the lacZ gene carried by the transposon is inserted in the same orientation as pobA, it was shown that pobA is not appreciably iron-regulated. Finally, we confirmed that Sfp-type bacterial PPTases can be subdivided into two distinct groups, and we present the amino acid signature sequences which characterize each of these groups.
Collapse
Affiliation(s)
- Atif H. Asghar
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Sravanthi Shastri
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Emma Dave
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Irena Wowk
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Kirsty Agnoli
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anne M. Cook
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Mark S. Thomas
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
28
|
|
29
|
Affiliation(s)
- Moriah Sandy
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | |
Collapse
|
30
|
Compant S, Nowak J, Coenye T, Clément C, Ait Barka E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 2008; 32:607-26. [PMID: 18422616 DOI: 10.1111/j.1574-6976.2008.00113.x] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Both in natural and in managed ecosystems, bacteria are common inhabitants of the phytosphere and the internal tissues of plants. Probably the most diverse and environmentally adaptable plant-associated bacteria belong to the genus Burkholderia. This genus is well-known for its human, animal and plant pathogenic members, including the Burkholderia cepacia complex. However, it also contains species and strains that are beneficial to plants and can be potentially exploited in biotechnological processes. Here we present an overview of plant-associated Burkholderia spp. with special emphasis on beneficial plant-Burkholderia interactions. A discussion of the potential for utilization of stable plant-Burkholderia spp. associations in the development of low-input cropping systems is also provided.
Collapse
Affiliation(s)
- Stéphane Compant
- Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, Université de Reims Champagne-Ardenne, Reims, France
| | | | | | | | | |
Collapse
|
31
|
Martinez JS, Butler A. Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning. J Inorg Biochem 2007; 101:1692-8. [PMID: 17868890 PMCID: PMC3061822 DOI: 10.1016/j.jinorgbio.2007.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/18/2007] [Accepted: 07/06/2007] [Indexed: 11/22/2022]
Abstract
Marinobactins A-E are a suite of amphiphilic siderophores which have a common peptidic head group that coordinates Fe(III), and a fatty acid which varies in length and saturation. As a result of the amphiphilic properties of these siderophores it is difficult to study siderophore-mediated uptake of iron, because the amphiphilic siderophores partition indiscriminately in microbial and other membranes. An alternative method to distinguish amphiphilic siderophore partitioning versus siderophore-mediated active uptake for Fe(III)-marinobactin E has been developed. In addition, a new member of the marinobactin family of siderophores is also reported, marinobactin F, which has a C(18) fatty acid with one double bond and which is substantially more hydrophobic that marinobactins A-E.
Collapse
Affiliation(s)
| | - Alison Butler
- Department of Chemistry and Biochemistry University of California Santa Barbara, CA 93106-9510
| |
Collapse
|
32
|
Menard A, de los Santos PE, Graindorge A, Cournoyer B. Architecture of Burkholderia cepacia complex sigma70 gene family: evidence of alternative primary and clade-specific factors, and genomic instability. BMC Genomics 2007; 8:308. [PMID: 17784948 PMCID: PMC2194791 DOI: 10.1186/1471-2164-8-308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 09/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Burkholderia cepacia complex (Bcc) groups bacterial species with beneficial properties that can improve crop yields or remediate polluted sites but can also lead to dramatic human clinical outcomes among cystic fibrosis (CF) or immuno-compromised individuals. Genome-wide regulatory processes of gene expression could explain parts of this bacterial duality. Transcriptional sigma70 factors are components of these processes. They allow the reversible binding of the DNA-dependent RNA polymerase to form the holoenzyme that will lead to mRNA synthesis from a DNA promoter region. Bcc genome-wide analyses were performed to investigate the major evolutionary trends taking place in the sigma70 family of these bacteria. RESULTS Twenty sigma70 paralogous genes were detected in the Burkholderia cenocepacia strain J2315 (Bcen-J2315) genome, of which 14 were of the ECF (extracytoplasmic function) group. Non-ECF paralogs were related to primary (rpoD), alternative primary, stationary phase (rpoS), flagellin biosynthesis (fliA), and heat shock (rpoH) factors. The number of sigma70 genetic determinants among this genome was of 2,86 per Mb. This number is lower than the one of Pseudomonas aeruginosa, a species found in similar habitats including CF lungs. These two bacterial groups showed strikingly different sigma70 family architectures, with only three ECF paralogs in common (fecI-like, pvdS and algU). Bcen-J2315 sigma70 paralogs showed clade-specific distributions. Some paralogs appeared limited to the ET12 epidemic clone (ecfA2), particular Bcc species (sigI), the Burkholderia genus (ecfJ, ecfF, and sigJ), certain proteobacterial groups (ecfA1, ecfC, ecfD, ecfE, ecfG, ecfL, ecfM and rpoS), or were broadly distributed in the eubacteria (ecfI, ecfK, ecfH, ecfB, and rpoD-, rpoH-, fliA-like genes). Genomic instability of this gene family was driven by chromosomal inversion (ecfA2), recent duplication events (ecfA and RpoD), localized (ecfG) and large scale deletions (sigI, sigJ, ecfC, ecfH, and ecfK), and a phage integration event (ecfE). CONCLUSION The Bcc sigma70 gene family was found to be under strong selective pressures that could lead to acquisition/deletion, and duplication events modifying its architecture. Comparative analysis of Bcc and Pseudomonas aeruginosa sigma70 gene families revealed distinct evolutionary strategies, with the Bcc having selected several alternative primary factors, something not recorded among P. aeruginosa and only previously reported to occur among the actinobacteria.
Collapse
Affiliation(s)
- Aymeric Menard
- Université de Lyon, Lyon, France
- Research group on «Bacterial Opportunistic Pathogens and Environment», UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, and Ecole Nationale Vétérinaire de Lyon, France
| | - Paulina Estrada de los Santos
- Université de Lyon, Lyon, France
- Research group on «Bacterial Opportunistic Pathogens and Environment», UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, and Ecole Nationale Vétérinaire de Lyon, France
| | - Arnault Graindorge
- Université de Lyon, Lyon, France
- Research group on «Bacterial Opportunistic Pathogens and Environment», UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, and Ecole Nationale Vétérinaire de Lyon, France
| | - Benoit Cournoyer
- Université de Lyon, Lyon, France
- Research group on «Bacterial Opportunistic Pathogens and Environment», UMR5557 Ecologie Microbienne, Université Lyon 1, CNRS, and Ecole Nationale Vétérinaire de Lyon, France
- UMR CNRS 5557 Ecologie Microbienne, Mendel Bldg., 5floor, Université Lyon 1, 69622 Villeurbanne Cedex, France
| |
Collapse
|
33
|
Thomas MS. Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 2007; 20:431-52. [PMID: 17295049 DOI: 10.1007/s10534-006-9065-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 11/28/2006] [Indexed: 01/21/2023]
Abstract
The Burkholderia cepacia complex (Bcc) is comprised of at least 10 closely related species of Gram-negative proteobacteria that are associated with infections in certain groups of immunocompromised individuals, particularly those with cystic fibrosis. Infections in humans tend to occur in the lungs, which present an iron-restricted environment to a prospective pathogen, and accordingly members of the Bcc appear to possess efficient mechanisms for iron capture. These bacteria specify up to four different types of siderophore (ornibactin, pyochelin, cepabactin and cepaciachelin) that employ the full repertoire of iron-binding groups present in most naturally occurring siderophores. Members of the Bcc are also capable of utilising some exogenous siderophores that they are not able to synthesise. In addition to siderophore-mediated mechanisms of iron uptake, the Bcc possess mechanisms for acquiring iron from haem and from ferritin. The Bcc therefore appear to be well-equipped for life in an iron-poor environment.
Collapse
Affiliation(s)
- Mark S Thomas
- Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
34
|
Agnoli K, Lowe CA, Farmer KL, Husnain SI, Thomas MS. The ornibactin biosynthesis and transport genes of Burkholderia cenocepacia are regulated by an extracytoplasmic function sigma factor which is a part of the Fur regulon. J Bacteriol 2006; 188:3631-44. [PMID: 16672617 PMCID: PMC1482860 DOI: 10.1128/jb.188.10.3631-3644.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 02/13/2006] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia mutants that fail to produce the siderophore ornibactin were obtained following mutagenesis with mini-Tn5Tp. These mutants were shown to be growth restricted under conditions of iron depletion. In eight of the mutants, the transposon had integrated into one of two genes, orbI and orbJ, encoding nonribosomal peptide synthetases. In the other mutant, the transposon had inserted into an open reading frame, orbS, located upstream from orbI. The polypeptide product of orbS exhibits a high degree of similarity to the Pseudomonas aeruginosa extracytoplasmic function (ECF) sigma factor PvdS but possesses an N-terminal extension of approximately 29 amino acids that is not present in PvdS. Three predicted OrbS-dependent promoters were identified within the ornibactin gene cluster, based on their similarity to PvdS-dependent promoters. The iron-regulated activity of these promoters was shown to require OrbS. Transcription of the orbS gene was found to be under the control of an iron-regulated sigma(70)-dependent promoter. This promoter, but not the OrbS-dependent promoters, was shown to be a target for repression by the global regulator Fur. Our results demonstrate that production of ornibactin by B. cenocepacia in response to iron starvation requires transcription of an operon that is dependent on the Fur-regulated ECF sigma factor gene orbS. A mechanism is also proposed for the biosynthesis of ornibactin.
Collapse
Affiliation(s)
- Kirsty Agnoli
- Division of Genomic Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, UK
| | | | | | | | | |
Collapse
|
35
|
Abstract
Iron is essential for the growth of nearly all microorganisms yet iron is only sparingly soluble near the neutral pH, aerobic conditions in which many microorganisms grow. The pH of ocean water is even higher, thereby further lowering the concentration of dissolved ferric ion. To compound the problem of availability, the total iron concentration is surprisingly low in surface ocean water, yet nevertheless, marine microorganisms still require iron for growth. Like terrestrial bacterial, bacteria isolated from open ocean water often produce siderophores, which are low molecular weight chelating ligands that facilitate the microbial acquisition of iron. The present review summarizes the structures of siderophores produced by marine bacteria and the emerging characteristics that distinguish marine siderophores.
Collapse
Affiliation(s)
- Alison Butler
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93111-9510, USA.
| |
Collapse
|
36
|
Visser MB, Majumdar S, Hani E, Sokol PA. Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun 2004; 72:2850-7. [PMID: 15102796 PMCID: PMC387874 DOI: 10.1128/iai.72.5.2850-2857.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, orbA, the gene encoding the outer membrane receptor for ferric-ornibactin, was identified in Burkholderia cenocepacia K56-2, a strain which produces ornibactin, salicylic acid, and negligible amounts of pyochelin. A K56-2 orbA mutant was less virulent than the parent strain in a rat agar bead infection model. In this study, an orbA mutant of B. cenocepacia Pc715j which produces pyochelin in addition to ornibactin and salicylic acid was constructed. The gene encoding the outer membrane receptor for ferric-pyochelin (fptA) was also identified. An fptA mutant was constructed in Pc715j and shown to be deficient in [(59)Fe]pyochelin uptake. A 75-kDa iron-regulated protein was identified in outer membrane preparations of Pc715j that was absent in outer membrane preparations of Pc715jfptA::tp. Pc715jfptA::tp and Pc715jorbA::tp produced smaller amounts of their corresponding siderophores. Both Pc715jorbA::tp and Pc715jfptA::tp were able to grow in iron starvation conditions in vitro. In the agar bead model, the Pc715jorbA::tp mutant was cleared from the lung, indicating that the pyochelin uptake system does not compensate for the absence of a functional ornibactin system. Pc715jfptA::tp persisted in rat lung infections in numbers similar to those of the parent strain, indicating that the ferric-ornibactin uptake system could compensate for the defect in ferric-pyochelin uptake in vivo. These studies suggest that the ornibactin uptake system is the most important siderophore-mediated iron transport system in B. cenocepacia lung infections.
Collapse
Affiliation(s)
- M B Visser
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
37
|
Weaver VB, Kolter R. Burkholderia spp. alter Pseudomonas aeruginosa physiology through iron sequestration. J Bacteriol 2004; 186:2376-84. [PMID: 15060040 PMCID: PMC412164 DOI: 10.1128/jb.186.8.2376-2384.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa and members of the Burkholderia cepacia complex often coexist in both the soil and the lungs of cystic fibrosis patients. To gain an understanding of how these different species affect each other's physiology when coexisting, we performed a screen to identify P. aeruginosa genes that are induced in the presence of Burkholderia: A random gene fusion library was constructed in P. aeruginosa PA14 by using a transposon containing a promoterless lacZ gene. Fusion strains were screened for their ability to be induced in the presence of Burkholderia strains in a cross-streak assay. Three fusion strains were induced specifically by Burkholderia species; all three had transposon insertions in genes known to be iron regulated. One of these fusion strains, containing a transposon insertion in gene PA4467, was used to characterize the inducing activity from Burkholderia: Biochemical and genetic evidence demonstrate that ornibactin, a siderophore produced by nearly all B. cepacia strains, can induce P. aeruginosa PA4467. Significantly, PA4467 is induced early in coculture with an ornibactin-producing but not an ornibactin-deficient B. cepacia strain, indicating that ornibactin can be produced by B. cepacia and detected by P. aeruginosa when the two species coexist.
Collapse
Affiliation(s)
- Valerie B Weaver
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
38
|
Farmer KL, Thomas MS. Isolation and characterization of Burkholderia cenocepacia mutants deficient in pyochelin production: pyochelin biosynthesis is sensitive to sulfur availability. J Bacteriol 2004; 186:270-7. [PMID: 14702294 PMCID: PMC305768 DOI: 10.1128/jb.186.2.270-277.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Burkholderia cenocepacia produces the yellow-green fluorescent siderophore, pyochelin. To isolate mutants which do not produce this siderophore, we mutagenized B. cenocepacia with the transposon mini-Tn5Tp. Two nonfluorescent mutants were identified which were unable to produce pyochelin. In both mutants, the transposon had integrated into a gene encoding an orthologue of CysW, a component of the sulfate/thiosulfate transporter. The cysW gene was located within a putative operon encoding other components of the transporter and a polypeptide exhibiting high homology to the LysR-type regulators CysB and Cbl. Sulfate uptake assays confirmed that both mutants were defective in sulfate transport. Growth in the presence of cysteine, but not methionine, restored the ability of the mutants to produce pyochelin, suggesting that the failure to produce the siderophore was the result of a depleted intracellular pool of cysteine, a biosynthetic precursor of pyochelin. Consistent with this, the wild-type strain did not produce pyochelin when grown in the presence of lower concentrations of sulfate that still supported efficient growth. We also showed that whereas methionine and certain organosulfonates can serve as sole sulfur sources for this bacterium, they do not facilitate pyochelin biosynthesis. These observations suggest that, under conditions of sulfur depletion, cysteine cannot be spared for production of pyochelin even under iron starvation conditions.
Collapse
Affiliation(s)
- Kate L Farmer
- Division of Genomic Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | | |
Collapse
|
39
|
Abstract
The Gram-negative bacterium Burkholderia cepacia has recently emerged as an important opportunistic pathogen in humans. This review focuses on the cellular aspects of B. cepacia infection and the dynamics of the B. cepacia-host cell interaction, including recent advances in our understanding of the ability of B. cepacia to adhere to, enter, and survive intracellularly within human cells.
Collapse
Affiliation(s)
- C D Mohr
- Department of Microbiology, University of Minnesota Medical School, Minneapolis Minnesota, 55455-0312, USA.
| | | | | |
Collapse
|
40
|
Lewenza S, Sokol PA. Regulation of ornibactin biosynthesis and N-acyl-L-homoserine lactone production by CepR in Burkholderia cepacia. J Bacteriol 2001; 183:2212-8. [PMID: 11244059 PMCID: PMC95126 DOI: 10.1128/jb.183.7.2212-2218.2001] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CepR-CepI quorum-sensing system has been shown to regulate production of the siderophore ornibactin, extracellular proteases, and N-octanoyl-homoserine-L-lactone (OHL) in Burkholderia cepacia strain K56-2. To examine the effect of cepIR on production of other siderophores, cepR mutants were constructed in strains that produce pyochelin in addition to salicylic acid and ornibactins. Pc715j-R1 (cepR::tp) hyperproduced ornibactin but produced parental levels of pyochelin and salicylic acid, suggesting that CepR is a negative regulator of ornibactin synthesis but not pyochelin or salicylic acid. Pc715j-R1 was also protease deficient and OHL negative. The effects of cepR on ornibactin biosynthetic genes were examined by constructing cepR pvdA-lacZ and cepR pvdD-lacZ mutants and monitoring beta-galactosidase activity. There was an increase in expression of pvdA in the cepR mutant compared to the level in its parent strain in both low- and high-iron media during stationary phase. When the outer membrane protein profiles of a cepR mutant and the wild-type strain were compared on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, there did not appear to be any difference in levels of expression of the ornibactin receptor. Experiments with cepI-lacZ and cepR-lacZ transcriptional fusions indicated that cepI was not expressed in the cepR mutant and that cepR acts as a negative regulator of its own expression. By a thin-layer chromatography assay for N-acyl homoserine lactones, OHL and N-hexanoyl-L-homoserine lactone (HHL) were detectable in K56-2 and Pc715j, both wild-type strains. OHL was not detectable and HHL was only weakly detectable in the cepI and cepR mutants. These results suggest that CepR is both a positive and negative transcriptional regulator and that CepR may influence the expression of ornibactin biosynthetic genes in addition to the expression of the cepIR quorum-sensing system.
Collapse
Affiliation(s)
- S Lewenza
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
41
|
Parke JL, Gurian-Sherman D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:225-258. [PMID: 11701865 DOI: 10.1146/annurev.phyto.39.1.225] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Burkholderia cepacia complex (Bcc) consists of several species of closely related and extremely versatile gram-negative bacteria found naturally in soil, water, and the rhizosphere of plants. Strains of Bcc have been used in biological control of plant diseases and bioremediation, while some strains are plant pathogens or opportunistic pathogens of humans with cystic fibrosis. The ecological versatility of these bacteria is likely due to their unusually large genomes, which are often comprised of several (typically two or three) large replicons, as well as their ability to use a large array of compounds as sole carbon sources. The original species B. cepacia has been split into eight genetic species (genomovars), including five named species, but taxonomic distinctions have not enabled biological control strains to be clearly distinguished from human pathogenic strains. This has led to a reassessment of the risk of several strains registered by the U.S. Environmental Protection Agency for biological control. We review the biology of Bcc bacteria, especially how our growing knowledge of Bcc ecology and pathogenicity might be used in risk assessment. The capability of this bacterial complex to cause disease in plants and humans, as well as to control plant diseases, affords a rare opportunity to explore traits that may function in all three environments.
Collapse
Affiliation(s)
- J L Parke
- Department of Botany and Plant Pathology, Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331-7306, USA.
| | | |
Collapse
|
42
|
Sokol PA, Darling P, Lewenza S, Corbett CR, Kooi CD. Identification of a siderophore receptor required for ferric ornibactin uptake in Burkholderia cepacia. Infect Immun 2000; 68:6554-60. [PMID: 11083764 PMCID: PMC97749 DOI: 10.1128/iai.68.12.6554-6560.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ornibactins are linear hydroxamate siderophores produced by Burkholderia cepacia with peptide structures similar to that of pyoverdines produced by the fluorescent pseudomonads. The gene encoding the outer membrane receptor (orbA) was identified, sequenced, and demonstrated to have significant homology with hydroxamate receptors produced by other organisms. The orbA precursor was predicted to be a protein with a molecular mass of 81 kDa. An orbA mutant was constructed and demonstrated to be unable to take up (59)Fe-ornibactins or to grow in medium supplemented with ornibactins. Outer membrane protein profiles from the parent strain, K56-2, revealed an iron-regulated outer membrane protein of 78 kDa that was not detectable in the K56orbA::tp mutant. When this mutant harbored a plasmid containing the orbA gene, the 78-kDa protein was present in the outer membrane protein profiles and the mutant was able to utilize ornibactin to acquire iron. The orbA mutant was less virulent in a chronic respiratory infection model than the parent strain, indicating that ornibactin uptake and utilization are important in the pathogenesis of B. cepacia respiratory infections.
Collapse
Affiliation(s)
- P A Sokol
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | |
Collapse
|
43
|
Sokol PA, Darling P, Woods DE, Mahenthiralingam E, Kooi C. Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding L-ornithine N(5)-oxygenase. Infect Immun 1999; 67:4443-55. [PMID: 10456885 PMCID: PMC96763 DOI: 10.1128/iai.67.9.4443-4455.1999] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cepacia is a frequent cause of respiratory infections in cystic fibrosis patients. B. cepacia has been shown to produce at least four siderophores which may play a role in the virulence of this organism. To characterize genes involved in the synthesis of siderophores, Tn5-OT182 mutants were isolated in strain K56-2, which produces two siderophores, salicylic acid (SA) and ornibactins. Two mutants were characterized that did not produce zones on Chrome Azurol S agar in a commonly used assay to detect siderophore activity. These mutants were determined to produce sevenfold more SA than K56-2 yet did not produce detectable amounts of ornibactins. These mutants, designated I117 and T10, had a transposon insertion in genes with significant homology to pyoverdine biosynthesis genes of Pseudomonas aeruginosa. I117 contained an insertion in a pvdA homolog, the gene for the enzyme L-ornithine N(5)-oxygenase, which catalyzes the hydroxylation of L-ornithine. Ornibactin synthesis in this mutant was partially restored when the precursor L-N(5)-OH-Orn was added to the culture medium. T10 contained an insertion in a pvdD homolog, which is a peptide synthetase involved in pyoverdine synthesis. beta-Galactosidase activity was iron regulated in both I117 and T10, suggesting that the transposon was inserted downstream of an iron-regulated promoter. Tn5-OT182 contains a lacZ gene that is expressed when inserted downstream of an active promoter. Both I117 and T10 were deficient in uptake of iron complexed to either ornibactins or SA, suggesting that transposon insertions in ornibactin biosynthesis genes also affected other components of the iron transport mechanism. The B. cepacia pvdA homolog was approximately 47% identical and 59% similar to L-ornithine N(5)-oxygenase from P. aeruginosa. Three clones were identified from a K56-2 cosmid library that partially restored ornibactin production, SA production, and SA uptake to parental levels but did not affect the rate of (59)Fe-ornibactin uptake in I117. A chromosomal pvdA deletion mutant was constructed that had a phenotype similar to that of I117 except that it did not hyperproduce SA. The pvdA mutants were less virulent than the parent strain in chronic and acute models of respiratory infection. A functional pvdA gene appears to be required for effective colonization and persistence in B. cepacia lung infections.
Collapse
Affiliation(s)
- P A Sokol
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, Alberta T2N 4N1.
| | | | | | | | | |
Collapse
|
44
|
Dharakul T, Tassaneetrithep B, Trakulsomboon S, Songsivilai S. Phylogenetic analysis of Ara+ and Ara- Burkholderia pseudomallei isolates and development of a multiplex PCR procedure for rapid discrimination between the two biotypes. J Clin Microbiol 1999; 37:1906-12. [PMID: 10325345 PMCID: PMC84982 DOI: 10.1128/jcm.37.6.1906-1912.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A Burkholderia pseudomallei-like organism has recently been identified among some soil isolates of B. pseudomallei in an area with endemic melioidosis. This organism is almost identical to B. pseudomallei in terms of morphological and biochemical profiles, except that it differs in ability to assimilate L-arabinose. These Ara+ isolates are also less virulent than the Ara- isolates in animal models. In addition, clinical isolates of B. pseudomallei available to date are almost exclusively Ara-. These features suggested that these two organisms may belong to distinctive species. In this study, the 16S rRNA-encoding genes from five clinical (four Ara- and one Ara+) and nine soil isolates (five Ara- and four Ara+) of B. pseudomallei were sequenced. The nucleotide sequences and phylogenetic analysis indicated that the 16S rRNA-encoding gene of the Ara+ biotype was similar to but distinctively different from that of the Ara- soil isolates, which were identical to the classical clinical isolates of B. pseudomallei. The nucleotide sequence differences in the 16S rRNA-encoding gene appeared to be specific for the Ara+ or Ara- biotypes. The differences were, however, not sufficient for classification into a new species within the genus Burkholderia. A simple and rapid multiplex PCR procedure was developed to discriminate between Ara- and Ara+ B. pseudomallei isolates. This new method could also be incorporated into our previously reported nested PCR system for detecting B. pseudomallei in clinical specimens.
Collapse
Affiliation(s)
- T Dharakul
- Laboratory of Cellular and Molecular Immunology, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | | | | |
Collapse
|
45
|
Darling P, Chan M, Cox AD, Sokol PA. Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 1998; 66:874-7. [PMID: 9453660 PMCID: PMC107988 DOI: 10.1128/iai.66.2.874-877.1998] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sixty-one Burkholderia cepacia isolates from patients with cystic fibrosis (CF) and four plant isolates were screened for production of the siderophores salicylic acid (SA), pyochelin, cepabactin, and ornibactins and fingerprinted by a PCR-based randomly amplified polymorphic DNA (RAPD) method. Of the 24 RAPD types determined, 22 (92%) were associated with isolates that produced SA, 21 (87%) were associated with isolates that produced ornibactins, 15 (60%) were associated with isolates that produced pyochelin, and 3 (12%) were associated with isolates that produced cepabactin. Of the 24 RAPD types plus 2 phenotypic variants of types 1 and 9, 3 were associated with isolates that produced all four siderophores, 8 were associated with isolates that produced three siderophores, 12 were associated with isolates that produced two siderophores, and 3 were associated with isolates that produced only one siderophore. These results suggest that the numbers and types of siderophores produced by CF isolates of B. cepacia correlate with RAPD type and that SA and ornibactins are the most prevalent siderophores produced.
Collapse
Affiliation(s)
- P Darling
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, Alberta, Canada
| | | | | | | |
Collapse
|
46
|
Gaur D, Wilkinson SG. Lipopolysaccharide from Burkholderia vietnamiensis strain LMG 6999 contains two polymers identical to those present in the reference strain for Burkholderia cepacia serogroup O4. FEMS Microbiol Lett 1997; 157:183-8. [PMID: 9418254 DOI: 10.1111/j.1574-6968.1997.tb12771.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipopolysaccharide was isolated from strain LMG 6999 of Burkholderia vietnamiensis. Degradative and NMR spectroscopic studies established the presence of two polymeric fractions based on the following trisaccharide repeating units: I:-->3)-alpha-D-Galp-(1-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc- (1-->; II:-->3)-alpha-D-GalpNAc-(1-->3)-beta-D-GalpNAc-(1-->4)- alpha-L-Rhap-(1-->. The same polymers have previously been found together in lipopolysaccharide from the reference strain for Burkholderia cepacia serogroup O4 and, individually, in those from B. cepacia serogroups C (I) and A (II).
Collapse
Affiliation(s)
- D Gaur
- School of Chemistry, University of Hull, UK
| | | |
Collapse
|
47
|
Gaur D, Wilkinson SG. Structure of the O-specific polysaccharide from Burkholderia vietnamiensis strain LMG 6998. Carbohydr Res 1996; 295:179-84. [PMID: 9002192 DOI: 10.1016/s0008-6215(96)90138-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The putative O-specific polymer containing D-mannose and L-rhamnose was isolated from the lipopolysaccharide obtained from cells walls of Burkholderia vietnamiensis strain LMG 6998. NMR and degradative studies showed that the polymer has a linear trisaccharide repeating-unit of the structure shown. The same polymer carrying an O-acetyl group at position 3 of the 4-substituted mannose residue has previously been found as the O antigen in the related species Burkholderia cepacia serogroup J. [formula: see text]
Collapse
Affiliation(s)
- D Gaur
- School of Chemistry, University of Hull, UK
| | | |
Collapse
|
48
|
Gilis A, Khan MA, Cornelis P, Meyer JM, Mergeay M, van der Lelie D. Siderophore-mediated iron uptake in Alcaligenes eutrophus CH34 and identification of aleB encoding the ferric iron-alcaligin E receptor. J Bacteriol 1996; 178:5499-507. [PMID: 8808942 PMCID: PMC178374 DOI: 10.1128/jb.178.18.5499-5507.1996] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Siderophore production in response to iron limitation was observed in Alcaligenes eutrophus CH34, and the corresponding siderophore was named alcaligin E. Alcaligin E was characterized as a phenolate-type siderophore containing neither catecholate nor hydroxamate groups. Alcaligin E promoted the growth of siderophore-deficient A. eutrophus mutants under iron-restricted conditions and promoted 59Fe uptake by iron-limited cells. However, the growth of the Sid- mutant AE1152, which was obtained from CH34 by Tn5-Tc mutagenesis, was completely inhibited by the addition of alcaligin E. AE1152 also showed strongly reduced 59Fe uptake in the presence of alcaligin E. This indicates that a gene, designated aleB, which is involved in transport of ferric iron-alcaligin E across the membrane is inactivated. The aleB gene was cloned, and its putative amino acid sequence showed strong similarity to those of ferric iron-siderophore receptor proteins. Both wild-type strain CH34 and aleB mutant AE1152 were able to use the same heterologous siderophores, indicating that AleB is involved only in ferric iron-alcaligin E uptake. Interestingly, no utilization of pyochelin, which is also a phenolate-type siderophore, was observed for A. eutrophus CH34. Genetic studies of different Sid- mutants, obtained after transposon mutagenesis, showed that the genes involved in alcaligin E and ferric iron-alcaligin E receptor biosynthesis are clustered in a 20-kb region on the A. eutrophus CH34 chromosome in the proximity of the cys-232 locus.
Collapse
Affiliation(s)
- A Gilis
- Milieutechnologie, Vlaamse Instelling voor Technologisch Onderzoek, Mol, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Champomier-Vergès MC, Stintzi A, Meyer JM. Acquisition of iron by the non-siderophore-producing Pseudomonas fragi. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 5):1191-1199. [PMID: 8704960 DOI: 10.1099/13500872-142-5-1191] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The iron requirement, siderophore production and iron uptake mechanisms of the type strain Pseudomonas fragi ATCC 4973 and five P. fragi isolates from meat were analysed. The strains exhibited a high sensitivity to iron starvation: their growth was strongly inhibited in medium supplemented with the iron chelator ethylenediamine di(hydroxyphenylacetic acid) or in medium treated with 8-hydroxyquinoline to remove contaminating iron. No siderophores were detectable in the growth supernatants of iron-starved cells. Cross-feeding experiments in iron-depleted medium showed, however, that the bacterial growth could be strongly stimulated by siderophores of foreign origin including desferriferrioxamine B, enterobactin and some pyoverdines. Moreover, all the strains were capable of efficiently using the iron sources present in their natural environment, i.e., transferrin, lactoferrin and haemoglobin. Iron starvation led to the specific production of supplementary outer-membrane proteins of apparent molecular mass ranging from 80 to 88 kDa. Furthermore, growth in the presence of exogenous siderophores resulted, in some strains, in the induction of siderophore-mediated iron uptake systems. For one strain the concomitant synthesis of an iron-regulated, siderophore-inducible outer-membrane protein was observed.
Collapse
Affiliation(s)
| | - Alain Stintzi
- Laboratoire de Microbiologie et Génétique, Unité de Recherche Associée au Centre National de la Recherche Scientifique no. D-1481, Université Louis-Pasteur, 28 rue Goethe, 67083 Strasbourg, France
| | - Jean-Marie Meyer
- Laboratoire de Microbiologie et Génétique, Unité de Recherche Associée au Centre National de la Recherche Scientifique no. D-1481, Université Louis-Pasteur, 28 rue Goethe, 67083 Strasbourg, France
| |
Collapse
|