1
|
Vaganov AV. Phylogenetic comparative morphological analysis of fern spores in subfamily Pteridoideae (Pteridaceae, Pteridophyta). Microsc Res Tech 2021; 85:487-498. [PMID: 34467588 DOI: 10.1002/jemt.23921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 11/06/2022]
Abstract
Scanning electron microscopy (SEM) was used to characterize spore morphology of 24 taxa of the subfamily Pteridoideae C. Chr. ex Crabbe, Jermy & Mickel of the family Pteridaceae E.D.M. Kirchn. The family is considered to be one of the most taxonomically confusing families due to its high level of polymorphism. The standardized data on spore morphology of the subfamily Pteridoideae were projected onto the final phylogenetic tree in the Mesquite program. This approach made it possible to carry out a comprehensive interdisciplinary analysis of the evolution of spore morphology characters of the subfamily Pteridoideae, as well as to assess the relationships in the family Pteridaceae. The equatorial ridge (cingulum, "flange") has been proven as one of the key spore morphology features, which confirms the close relationship of "Onychium clade" with Pteris. The species-specific characters of the subfamily are fold and tubercle along laesura, equatorial ridge on proximal and distal side, tubercle, and folds on proximal and distal side. The knowledge will help to solve the problems of taxonomy in the family Preridaceae and to supplement the information on the natural classification of the subfamily Pteridoideae.
Collapse
Affiliation(s)
- Alexey V Vaganov
- South-Siberian Botanical Garden, Altai State University, Barnaul, Russia.,Sakhalin Branch of the Botanical Garden Institute of the Far Eastern Branch of the Russian Academy of Sciences, Yuzhno-Sakhalinsk, Russia
| |
Collapse
|
2
|
Vassou SL, Nithaniyal S, Raju B, Parani M. Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in Ayurvedic medicine. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16 Suppl 1:186. [PMID: 27454470 PMCID: PMC4959393 DOI: 10.1186/s12906-016-1086-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Ayurveda is a system of traditional medicine that originated in ancient India, and it is still in practice. Medicinal plants are the backbone of Ayurveda, which heavily relies on the plant-derived therapeutics. While Ayurveda is becoming more popular in several countries throughout the World, lack of authenticated medicinal plant raw drugs is a growing concern. Our aim was to DNA barcode the medicinal plants that are listed in the Ayurvedic Pharmacopoeia of India (API) to create a reference DNA barcode library, and to use the same to authenticate the raw drugs that are sold in markets. Methods We have DNA barcoded 347 medicinal plants using rbcL marker, and curated rbcL DNA barcodes for 27 medicinal plants from public databases. These sequences were used to create Ayurvedic Pharmacopoeia of India - Reference DNA Barcode Library (API-RDBL). This library was used to authenticate 100 medicinal plant raw drugs, which were in the form of powders (82) and seeds (18). Results Ayurvedic Pharmacopoeia of India - Reference DNA Barcode Library (API-RDBL) was created with high quality and authentic rbcL barcodes for 374 out of the 395 medicinal plants that are included in the API. The rbcL DNA barcode differentiated 319 species (85 %) with the pairwise divergence ranging between 0.2 and 29.9 %. PCR amplification and DNA sequencing success rate of rbcL marker was 100 % even for the poorly preserved medicinal plant raw drugs that were collected from local markets. DNA barcoding revealed that only 79 % raw drugs were authentic, and the remaining 21 % samples were adulterated. Further, adulteration was found to be much higher with powders (ca. 25 %) when compared to seeds (ca. 5 %). Conclusions The present study demonstrated the utility of DNA barcoding in authenticating medicinal plant raw drugs, and found that approximately one fifth of the market samples were adulterated. Powdered raw drugs, which are very difficult to be identified by taxonomists as well as common people, seem to be the easy target for adulteration. Developing a quality control protocol for medicinal plant raw drugs by incorporating DNA barcoding as a component is essential to ensure safety to the consumers. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1086-0) contains supplementary material, which is available to authorized users.
Collapse
|
3
|
Wang Y, Chen Q, Chen T, Tang H, Liu L, Wang X. Phylogenetic Insights into Chinese Rubus (Rosaceae) from Multiple Chloroplast and Nuclear DNAs. FRONTIERS IN PLANT SCIENCE 2016; 7:968. [PMID: 27446191 PMCID: PMC4925702 DOI: 10.3389/fpls.2016.00968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/16/2016] [Indexed: 05/09/2023]
Abstract
Rubus L. is a large and taxonomically complex genus, species of which exhibit apomixis, polyploidy, and frequent hybridization. Most of Chinese Rubus are assigned in two major sections, Idaeobatus and Malachobatus. To explore the phylogenetic relationships within Chinese Rubus, inferences upon three chloroplast DNA (rbcL, rpl20-rps12, and trnG-trnS), nuclear ribosomal ITS, and two low-copy nuclear markers (GBSSI-2 and PEPC) were deduced in 142 Rubus taxa from 17 subsections in 6 sections. nrITS and GBSSI-2 were the most informative among the six DNA regions assessed. Phylogenetic relationships within Rubus were well-resolved by combined nuclear datasets rather than chloroplast markers. The phylogenetic inferences strongly supported that section Idaeobatus was a polyphyletic group with four distant clades. All samples of sect. Malachobatus formed a monophyletic clade, in which R. tsangorum and R. amphidasys of sect. Dalibardastrum, and R. peltatus from subsection Peltati of sect. Idaeobatus were always nested. Rubus pentagonus (2n = 2x = 14) from subsect. Alpestres of sect. Idaeobatus was a sister group to the polyploid sect. Malachobatus, as well as the polytomy of three sect. Cyalctis members. This suggests that some polyploids of Malachobatus might originate from common ancestors, via polyploidization of hybrids between R. pentagonus and sect. Cylactis species. They had experienced species explosion in a short time. Section Dalibardastrum species have potential parental lineages from subsects. Moluccani and Stipulosi of sect. Malachobatus. Based on molecular phylogenies, we also provided recommendations for the taxonomic treatments of four taxa. In addition, our results showed certain incongruence between chloroplast and nuclear markers, which might be due to hybridization and introgression.
Collapse
Affiliation(s)
- Yan Wang
- College of Horticulture, Sichuan Agricultural UniversityChengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural UniversityChengdu, China
| | - Tao Chen
- College of Horticulture, Sichuan Agricultural UniversityChengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural UniversityChengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural UniversityChengdu, China
| | - Lin Liu
- Agricultural and Animal Husbandry College of Tibet UniversityLinzhi, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural UniversityChengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
4
|
Abstract
BACKGROUND AND AIMS Throughout the history of fern classification, familial and generic concepts have been highly labile. Many classifications and evolutionary schemes have been proposed during the last two centuries, reflecting different interpretations of the available evidence. Knowledge of fern structure and life histories has increased through time, providing more evidence on which to base ideas of possible relationships, and classification has changed accordingly. This paper reviews previous classifications of ferns and presents ideas on how to achieve a more stable consensus. SCOPE An historical overview is provided from the first to the most recent fern classifications, from which conclusions are drawn on past changes and future trends. The problematic concept of family in ferns is discussed, with a particular focus on how this has changed over time. The history of molecular studies and the most recent findings are also presented. KEY RESULTS Fern classification generally shows a trend from highly artificial, based on an interpretation of a few extrinsic characters, via natural classifications derived from a multitude of intrinsic characters, towards more evolutionary circumscriptions of groups that do not in general align well with the distribution of these previously used characters. It also shows a progression from a few broad family concepts to systems that recognized many more narrowly and highly controversially circumscribed families; currently, the number of families recognized is stabilizing somewhere between these extremes. Placement of many genera was uncertain until the arrival of molecular phylogenetics, which has rapidly been improving our understanding of fern relationships. As a collective category, the so-called 'fern allies' (e.g. Lycopodiales, Psilotaceae, Equisetaceae) were unsurprisingly found to be polyphyletic, and the term should be abandoned. Lycopodiaceae, Selaginellaceae and Isoëtaceae form a clade (the lycopods) that is sister to all other vascular plants, whereas the whisk ferns (Psilotaceae), often included in the lycopods or believed to be associated with the first vascular plants, are sister to Ophioglossaceae and thus belong to the fern clade. The horsetails (Equisetaceae) are also members of the fern clade (sometimes inappropriately called 'monilophytes'), but, within that clade, their placement is still uncertain. Leptosporangiate ferns are better understood, although deep relationships within this group are still unresolved. Earlier, almost all leptosporangiate ferns were placed in a single family (Polypodiaceae or Dennstaedtiaceae), but these families have been redefined to narrower more natural entities. CONCLUSIONS Concluding this paper, a classification is presented based on our current understanding of relationships of fern and lycopod clades. Major changes in our understanding of these families are highlighted, illustrating issues of classification in relation to convergent evolution and false homologies. Problems with the current classification and groups that still need study are pointed out. A summary phylogenetic tree is also presented. A new classification in which Aspleniaceae, Cyatheaceae, Polypodiaceae and Schizaeaceae are expanded in comparison with the most recent classifications is presented, which is a modification of those proposed by Smith et al. (2006, 2008) and Christenhusz et al. (2011). These classifications are now finding a wider acceptance and use, and even though a few amendments are made based on recently published results from molecular analyses, we have aimed for a stable family and generic classification of ferns.
Collapse
Affiliation(s)
| | - Mark W. Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
5
|
Identification of Curcuma plants and curcumin content level by DNA polymorphisms in the trnS-trnfM intergenic spacer in chloroplast DNA. J Nat Med 2008; 63:75-9. [PMID: 18688695 DOI: 10.1007/s11418-008-0283-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
With the goal of developing an accurate plant identification method, molecular analysis based on polymorphisms of the nucleotide sequence of chloroplast DNA (cpDNA) was performed in order to distinguish four Curcuma species: C. longa, C. aromatica, C. zedoaria, and C. xanthorrhiza. Nineteen regions of cpDNA were amplified successfully via polymerase chain reaction (PCR) using total DNA of all Curcuma plants. Using the intergenic spacer between trnS and trnfM (trnSfM), all four Curcuma plant species were correctly identified. In addition, the number of AT repeats in the trnSfM region was predictive of the curcumin content in the rhizome of C. longa.
Collapse
|
6
|
Murdock AG. Phylogeny of marattioid ferns (Marattiaceae): inferring a root in the absence of a closely related outgroup. AMERICAN JOURNAL OF BOTANY 2008; 95:626-641. [PMID: 21632388 DOI: 10.3732/ajb.2007308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Closely related outgroups are optimal for rooting phylogenetic trees; however, such ideal outgroups are not always available. A phylogeny of the marattioid ferns (Marattiaceae), an ancient lineage with no close relatives, was reconstructed using nucleotide sequences of multiple chloroplast regions (rps4 + rps4-trnS spacer, trnS-trnG spacer + trnG intron, rbcL, atpB), from 88 collections, selected to cover the broadest possible range of morphologies and geographic distributions within the extant taxa. Because marattioid ferns are phylogenetically isolated from other lineages, and internal branches are relatively short, rooting was problematic. Root placement was strongly affected by long-branch attraction under maximum parsimony and by model choice under maximum likelihood. A multifaceted approach to rooting was employed to isolate the sources of bias and produce a consensus root position. In a statistical comparison of all possible root positions with three different outgroups, most root positions were not significantly less optimal than the maximum likelihood root position, including the consensus root position. This phylogeny has several important taxonomic implications for marattioid ferns: Marattia in the broad sense is paraphyletic; the Hawaiian endemic Marattia douglasii is most closely related to tropical American taxa; and Angiopteris is monophyletic only if Archangiopteris and Macroglossum are included.
Collapse
Affiliation(s)
- Andrew G Murdock
- Department of Integrative Biology, University of California, Berkeley, 1001 Valley Life Sciences Bldg., California 94720-2465 USA
| |
Collapse
|
7
|
Schuettpelz E, Pryer KM. Reconciling Extreme Branch Length Differences: Decoupling Time and Rate through the Evolutionary History of Filmy Ferns. Syst Biol 2006; 55:485-502. [PMID: 16861211 DOI: 10.1080/10635150600755438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The rate of molecular evolution is not constant across the Tree of Life. Characterizing rate discrepancies and evaluating the relative roles of time and rate along branches through the past are both critical to a full understanding of evolutionary history. In this study, we explore the interactions of time and rate in filmy ferns (Hymenophyllaceae), a lineage with extreme branch length differences between the two major clades. We test for the presence of significant rate discrepancies within and between these clades, and we separate time and rate across the filmy fern phylogeny to simultaneously yield an evolutionary time scale of filmy fern diversification and reconstructions of ancestral rates of molecular evolution. Our results indicate that the branch length disparity observed between the major lineages of filmy ferns is indeed due to a significant difference in molecular evolutionary rate. The estimation of divergence times reveals that the timing of crown group diversification was not concurrent for the two lineages, and the reconstruction of ancestral rates of molecular evolution points to a substantial rate deceleration in one of the clades. Further analysis suggests that this may be due to a genome-wide deceleration in the rate of nucleotide substitution.
Collapse
Affiliation(s)
- Eric Schuettpelz
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
8
|
Small RL, Lickey EB, Shaw J, Hauk WD. Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. Mol Phylogenet Evol 2005; 36:509-22. [PMID: 15935702 DOI: 10.1016/j.ympev.2005.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 04/06/2005] [Accepted: 04/20/2005] [Indexed: 11/19/2022]
Abstract
Noncoding DNA sequences from numerous regions of the chloroplast genome have provided a significant source of characters for phylogenetic studies in seed plants. In lycophytes and monilophytes (leptosporangiate ferns, eusporangiate ferns, Psilotaceae, and Equisetaceae), on the other hand, relatively few noncoding chloroplast DNA regions have been explored. We screened 30 lycophyte and monilophyte species to determine the potential utility of PCR amplification primers for 18 noncoding chloroplast DNA regions that have previously been used in seed plant studies. Of these primer sets eight appear to be nearly universally capable of amplifying lycophyte and monilophyte DNAs, and an additional six are useful in at least some groups. To further explore the application of noncoding chloroplast DNA, we analyzed the relative phylogenetic utility of five cpDNA regions for resolving relationships in Botrychium s.l. (Ophioglossaceae). Previous studies have evaluated both the gene rbcL and the trnL(UAA)-trnF(GAA) intergenic spacer in this group. To these published data we added sequences of the trnS(GCU)-trnG(UUC) intergenic spacer + the trnG(UUC) intron region, the trnS(GGA)-rpS4 intergenic spacer+rpS4 gene, and the rpL16 intron. Both the trnS(GCU)-trnG(UUC) and rpL16 regions are highly variable in angiosperms and the trnS(GGA)-rpS4 region has been widely used in monilophyte phylogenetic studies. Phylogenetic resolution was equivalent across regions, but the strength of support for the phylogenies varied among regions. Of the five sampled regions the trnS(GCU)-trnG(UUC) spacer+trnG(UUC) intron region provided the strongest support for the inferred phylogeny.
Collapse
Affiliation(s)
- Randall L Small
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | |
Collapse
|
9
|
Lu JM, Li DZ, Gao LM, Cheng X, Wu D. Paraphyly of Cyrtomium (Dryopteridaceae): evidence from rbcL and trnL-F sequence data. JOURNAL OF PLANT RESEARCH 2005; 118:129-135. [PMID: 15818470 DOI: 10.1007/s10265-005-0201-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 02/03/2005] [Indexed: 05/24/2023]
Abstract
Cyrtomium is an Asiatic genus characterized by anastomosing veins with included veinlets, and comprises about 40 species. We sequenced rbcL and trnL-F sequences of 19 species of Cyrtomium and eight species from related genera in order to elucidate a molecular phylogeny of the genus using maximum-parsimony methods. The phylogenetic trees did not agree with traditional classifications. Cyrtomium was resolved as paraphyletic, and a clade including subseries Balansana of Cyrtomium, Cyrtogonellum, Polystichum subacutidens and Cyrtomidictyum (the BCPC clade) and a second one containing Cyrtomium sensu stricto were monophyletic. The results also implied that: (1) C. uniseriale was synonymous with C. balansae; (2) C. falcatum was likely the female parent of C. devexiscapulae; and (3) based on the rbcL and trnL-F sequence data, C. nephrolepioides and C. grossum were the female parents of C. shingianum and C. chingianum, respectively, although other evidence is needed for the confirmation of this hypothesis.
Collapse
Affiliation(s)
- Jin-Mei Lu
- Laboratory of Plant Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Heilongtan, Kunming, Yunnan Province, 650204, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Hauk WD, Parks CR, Chase MW. Phylogenetic studies of Ophioglossaceae: evidence from rbcL and trnL-F plastid DNA sequences and morphology. Mol Phylogenet Evol 2003; 28:131-51. [PMID: 12801476 DOI: 10.1016/s1055-7903(03)00032-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ophioglossaceae are a putatively ancient lineage of ferns in which the aerial portion of the plant is composed of a single leaf. The simplicity of foliar morphology has limited the number of characters available for constructing classifications and contributed to taxonomic difficulties at nearly every level of classification within the family. Analysis of plastid DNA rbcL sequences from 36 species representing the diversity of Ophioglossaceae supported the monophyly of the family. Intrafamilial relationships were examined using rbcL and trnL-F plastid DNA sequences and morphological data. Individual and combined analyses of the three data sets revealed two main clades within the family, here termed ophioglossoid and botrychioid. In the botrychioid clade, Helminthostachys was sister to a broadly defined Botrychium, within which Botrychium in the narrow sense of some authors and Sceptridium were sister. Botrypus was paraphyletic, with Botrypus virginianus sister to Botrychium plus Sceptridium, and with Botrypus strictus sister to all other botrychioid species except Helminthostachys. In the ophioglossoid clade, Ophioglossum in the narrow sense was sister to Cheiroglossa plus Ophioderma, but relationships within Ophioglossum were not well supported.
Collapse
Affiliation(s)
- Warren D Hauk
- University of North Carolina, Chapel Hill, NC 27516, USA.
| | | | | |
Collapse
|
11
|
Simmons MP, Ochoterena H, Freudenstein JV. Amino acid vs. nucleotide characters: challenging preconceived notions. Mol Phylogenet Evol 2002; 24:78-90. [PMID: 12128030 DOI: 10.1016/s1055-7903(02)00202-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 567-terminal analysis of atpB, rbcL, and 18S rDNA was used as an empirical example to test the use of amino acid vs. nucleotide characters for protein-coding genes at deeper taxonomic levels. Nucleotides for atpB and rbcL had 6.5 times the amount of possible synapomorphy as amino acids. Based on parsimony analyses with unordered character states, nucleotides outperformed amino acids for all three measures of phylogenetic signal used (resolution, branch support, and congruence with independent evidence). The nucleotide tree was much more resolved than the amino acid tree, for both large and small clades. Nearly twice the percentage of well-supported clades resolved in the 18S rDNA tree were resolved using nucleotides (91.8%) relative to amino acids (49.2%). The well-supported clades resolved by both character types were much better supported by nucleotides (98.7% vs. 83.8% average jackknife support). The faster evolving nucleotides with a smaller average character-state space outperformed the slower evolving amino acids with a larger average character-state space. Nucleotides outperformed amino acids even with 90% of the terminals deleted. The lack of resolution on the amino acid trees appears to be caused by a lack of congruence among the amino acids, not a lack of replacement substitutions.
Collapse
Affiliation(s)
- Mark P Simmons
- The Ohio State University Herbarium, 1315 Kinnear Road, Columbus, OH 43212, USA.
| | | | | |
Collapse
|
12
|
Wikström N, Kenrick P. Evolution of Lycopodiaceae (Lycopsida): estimating divergence times from rbcL gene sequences by use of nonparametric rate smoothing. Mol Phylogenet Evol 2001; 19:177-86. [PMID: 11341801 DOI: 10.1006/mpev.2001.0936] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By use of nonparametric rate smoothing and nucleotide sequences of the rbcL gene, divergence times in Lycopodiaceae are estimated. The results show that much extant species diversity in Lycopodiaceae stems from relatively recent cladogenic events. These results corroborate previous ideas based on paleobotanical and biogeographical data. Previous molecular phylogenetic analyses recognized a split into neotropical and paleotropical clades in Huperzia, which contains 85-90% of all living species. Connecting this biogeographical pattern with continent movements, the diversification of this epiphytic group was suggested to coincide with that of angiosperms in the mid to Late Cretaceous. Results presented here are consistent with this idea, and the diversification of the two clades is resolved as Late Cretacous (78 and 95 Myr). In the related genera Lycopodium and Lycopodiella, the patterns are somewhat different. Here species diversity is scattered among different subgeneric groups. Most of the high-diversity subgeneric groups seem to have diversified very recently (Late Tertiary), whereas the cladogenic events leading to these groups are much older (Early to Late Cretaceous). Our analysis shows that, although much living species diversity stems from relatively recent cladogenesis, the origins of the family (Early Carboniferous) and generic crown groups (Early Permian to Early Jurassic) are much more ancient events.
Collapse
Affiliation(s)
- N Wikström
- Department of Botany, Stockholm University, Stockholm, S-10691, Sweden
| | | |
Collapse
|
13
|
Sano R, Takamiya M, Ito M, Kurita S, Hasebe M. Phylogeny of the lady fern group, tribe Physematieae (Dryopteridaceae), based on chloroplast rbcL gene sequences. Mol Phylogenet Evol 2000; 15:403-13. [PMID: 10860649 DOI: 10.1006/mpev.1999.0708] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotide sequences of the chloroplast gene rbcL from 42 species of the fern tribe Physematieae (Dryopteridaceae) were analyzed to gain insights into the inter- and intrageneric relationships and the generic circumscriptions in the tribe. The phylogenetic relationships were inferred using the neighbor-joining and maximum-parsimony methods, and both methods produced largely congruent trees. These trees reveal that: (1) Athyrium, Cornopteris, Pseudocystopteris, and Anisocampium form a clade and Athyrium is polyphyletic; (2) Deparia sensu lato is monophyletic and Dictyodroma formosana is included in the Deparia clade; (3) Diplaziopsis forms a clade with Homalosorus, which is isolated from the other genera of the Physematieae; (4) Monomelangium is included in the monophyletic Diplazium clade; and (5) Rhachidosorus is not closely related to either Athyrium or Diplazium.
Collapse
Affiliation(s)
- R Sano
- National Institute for Basic Biology, Okazaki, 38 Nishigonaka, Myodaiji-cho, 444-8585, Japan
| | | | | | | | | |
Collapse
|
14
|
Divergence of the phytochrome gene family predates angiosperm evolution and suggests thatSelaginella andEquisetum arose prior toPsilotum. J Mol Evol 1995. [DOI: 10.1007/bf01215179] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Hasebe M, Omori T, Nakazawa M, Sano T, Kato M, Iwatsuki K. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc Natl Acad Sci U S A 1994; 91:5730-4. [PMID: 8202555 PMCID: PMC44070 DOI: 10.1073/pnas.91.12.5730] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pteriodophytes have a longer evolutionary history than any other vascular land plant and, therefore, have endured greater loss of phylogenetically informative information. This factor has resulted in substantial disagreements in evaluating characters and, thus, controversy in establishing a stable classification. To compare competing classifications, we obtained DNA sequences of a chloroplast gene. The sequence of 1206 nt of the large subunit of the ribulose-bisphosphate carboxylase gene (rbcL) was determined from 58 species, representing almost all families of leptosporangiate ferns. Phlogenetic trees were inferred by the neighbor-joining and the parsimony methods. The two methods produced almost identical phylogenetic trees that provided insights concerning major general evolutionary trends in the leptosporangiate ferns. Interesting findings were as follows: (i) two morphologically distinct heterosporous water ferns, Marsilea and Salvinia, are sister genera; (ii) the tree ferns (Cyatheaceae, Dicksoniaceae, and Metaxyaceae) are monophyletic; and (iii) polypodioids are distantly related to the gleichenioids in spite of the similarity of their exindusiate soral morphology and are close to the higher indusiate ferns. In addition, the affinities of several "problematic genera" were assessed.
Collapse
Affiliation(s)
- M Hasebe
- Botanical Gardens, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|