1
|
Gao Y, Yang X, Hua L, Wang M, Ge Q, Wang W, Wang N, Ma J, Ge H. Crystal structure of an aspartate aminotransferase Lpg0070 from Legionella pneumophila. Biochem Biophys Res Commun 2023; 689:149230. [PMID: 37984176 DOI: 10.1016/j.bbrc.2023.149230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Legionella pneumophila aspartate aminotransferase (Lpg0070) is a member of the transaminase and belongs to the pyridoxal 5'-phosphate (PLP)-dependent superfamily. It is responsible for the transfer of α-amino between aspartate and α-ketoglutarate to form glutamate and oxaloacetate. Here, we report the crystal structure of Lpg0070 at the resolution of 2.14 Å and 1.7 Å, in apo-form and PLP-bound, respectively. Our structural analysis revealed the specific residues involved in the PLP binding and free form against PLP-bound supported conformational changes before substrate recognition. In vitro enzyme activity proves that the absence of the N-terminal arm reduces the enzyme activity of Lpg0070. These data provide further evidence to support the N-terminal arm plays a crucial role in catalytic activity.
Collapse
Affiliation(s)
- Yongshan Gao
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xiaowen Yang
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Lan Hua
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Min Wang
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Qing Ge
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Weiqiang Wang
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Na Wang
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Jinming Ma
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Honghua Ge
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Mittermayer F, Helmerson C, Duvetorp M, Johannesson K, Panova M. The molecular background of the aspartate aminotransferase polymorphism in Littorina snails maintained by strong selection on small spatial scales. Gene 2023:147517. [PMID: 37257792 DOI: 10.1016/j.gene.2023.147517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Allozymes present several classical examples of divergent selection, including the variation in the cytosolic aspartate aminotransferase (AAT) in the intertidal snails Littorina saxatilis. AAT is a part of the asparate-malate shuttle, in the interidal molluscs involved in the anaerobic respiration during desiccation. Previous allozyme studies reported the sharp gradient in the frequencies of the AAT100and the AAT120 alleles between the low and high shores in the Northern Europe and the differences in their enzymatic activity, supporting the role of AAT in adaptation to desiccation. However, the populations in the Iberian Peninsula showed the opposite allele cline. Using the mRNA sequencing and the genome pool-seq analyses we characterize DNA sequences of the different AAT alleles, report the amino acid replacements behind the allozyme variation and show that same allozyme alleles in Northern and Southern populations have different protein sequences. Gene phylogeny reveals that the AAT100 and the northern AAT120 alleles represent the old polymorphism, shared among the closely related species of Littorina, while the southern AAT120 allele is more recently derived from AAT100. Further, we show that the Aat gene is expressed at constitutive level in different genotypes and conditions, supporting the role of structural variation in regulation of enzyme activity. Finally, we report the location and the structure of the gene in the L. saxatilis genome and the presence of two additional non-functional gene copies. Altogether, we provide a missing link between the classical allozyme studies and the genome scans and bring together the results produced over decades of the genetic research.
Collapse
Affiliation(s)
- Felix Mittermayer
- Research Division Marine Ecology, Research Unit Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany; Department of Marine Sciences, University of Gothenburg, Tjärnö, 45296 Strömstad, Sweden
| | - Cecilia Helmerson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo; Department of Marine Sciences, University of Gothenburg, Tjärnö, 45296 Strömstad, Sweden
| | - Mårten Duvetorp
- Department of Marine Sciences, University of Gothenburg, Tjärnö, 45296 Strömstad, Sweden
| | - Kerstin Johannesson
- Department of Marine Sciences, University of Gothenburg, Tjärnö, 45296 Strömstad, Sweden
| | - Marina Panova
- Department of Marine Sciences, University of Gothenburg, Tjärnö, 45296 Strömstad, Sweden.
| |
Collapse
|
3
|
Crawford RA, Ashe MP, Hubbard SJ, Pavitt GD. Cytosolic aspartate aminotransferase moonlights as a ribosome-binding modulator of Gcn2 activity during oxidative stress. eLife 2022; 11:73466. [PMID: 35621265 PMCID: PMC9191892 DOI: 10.7554/elife.73466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of translation is a fundamental facet of the cellular response to rapidly changing external conditions. Specific RNA-binding proteins (RBPs) co-ordinate the translational regulation of distinct mRNA cohorts during stress. To identify RBPs with previously under-appreciated roles in translational control, we used polysome profiling and mass spectrometry to identify and quantify proteins associated with translating ribosomes in unstressed yeast cells and during oxidative stress and amino acid starvation, which both induce the integrated stress response (ISR). Over 800 proteins were identified across polysome gradient fractions, including ribosomal proteins, translation factors, and many others without previously described translation-related roles, including numerous metabolic enzymes. We identified variations in patterns of PE in both unstressed and stressed cells and identified proteins enriched in heavy polysomes during stress. Genetic screening of polysome-enriched RBPs identified the cytosolic aspartate aminotransferase, Aat2, as a ribosome-associated protein whose deletion conferred growth sensitivity to oxidative stress. Loss of Aat2 caused aberrantly high activation of the ISR via enhanced eIF2α phosphorylation and GCN4 activation. Importantly, non-catalytic AAT2 mutants retained polysome association and did not show heightened stress sensitivity. Aat2 therefore has a separate ribosome-associated translational regulatory or 'moonlighting' function that modulates the ISR independent of its aspartate aminotransferase activity.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Simon J Hubbard
- Division of Evolution, Infection and Genomics, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Han M, Zhang C, Suglo P, Sun S, Wang M, Su T. l-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation. Molecules 2021; 26:molecules26071887. [PMID: 33810495 PMCID: PMC8037285 DOI: 10.3390/molecules26071887] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/07/2023] Open
Abstract
L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Can Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Peter Suglo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Shuyue Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Mingyao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (C.Z.); (P.S.); (S.S.); (M.W.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence:
| |
Collapse
|
5
|
Hejri S, Salimi A, Malboobi MA, Fatehi F. Comparative proteome analyses of rhizomania resistant transgenic sugar beets based on RNA silencing mechanism. GM CROPS & FOOD 2021; 12:419-433. [PMID: 34494497 PMCID: PMC8820250 DOI: 10.1080/21645698.2021.1954467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rhizomania is an economically important disease of sugar beet, which is caused by Beet necrotic yellow vein virus (BNYVV). As previously shown, RNA silencing mechanism effectively inhibit the viral propagation in transgenic sugar beet plants. To investigate possible proteomic changes induced by gene insertion and/or RNA silencing mechanism, the root protein profiles of wild type sugar beet genotype 9597, as a control, and transgenic events named 6018-T3:S6-44 (S6) and 219-T3:S3-13.2 (S3) were compared by two-dimensional gel electrophoresis. The accumulation levels of 25 and 24 proteins were differentially regulated in S3 and S6 plants, respectively. The accumulation of 15 spots were increased or decreased more than 2-fold. Additionally, 10 spots repressed or induced in both, while seven spots showed variable results in two events. All the differentially expressed spots were analyzed by MALDI-TOF-TOF mass spectrometry. The functional analysis of differentially accumulated proteins showed that most of them are related to the metabolism and defense/stress response. None of these recognized proteins were allergens or toxic proteins except for a spot identified as phenylcoumaran benzylic ether reductase, Pyrc5, which was decreased in the genetically modified S6 plant. These data are in favor of substantial equivalence of the transgenic plants in comparison to their related wild type cultivar since the proteomic profile of sugar beet root was not remarkably affected by gene transfer and activation RNA silencing mechanism.
Collapse
Affiliation(s)
- Sara Hejri
- Department of Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Plant Biology, Faculty of Biosciences, Kharazmi University, Tehran, Iran
| | - Azam Salimi
- Department of Plant Biology, Faculty of Biosciences, Kharazmi University, Tehran, Iran
| | - Mohammad Ali Malboobi
- Department of Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University, Tehran, Iran
| |
Collapse
|
6
|
Turner LA, Bucking C. The role of intestinal bacteria in the ammonia detoxification ability of teleost fish. ACTA ACUST UNITED AC 2019; 222:jeb.209882. [PMID: 31753905 DOI: 10.1242/jeb.209882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022]
Abstract
Protein catabolism during digestion generates appreciable levels of ammonia in the gastrointestinal tract (GIT) lumen. Amelioration by the enterocyte, via enzymes such as glutamine synthetase (GS), glutamate dehydrogenase (GDH), and alanine and aspartate aminotransferases (ALT; AST), is found in teleost fish. Conservation of these enzymes across bacterial phyla suggests that the GIT microbiome could also contribute to ammonia detoxification by providing supplemental activity. Hence, the GIT microbiome, enzyme activities and ammonia detoxification were investigated in two fish occupying dissimilar niches: the carnivorous rainbow darter and the algivorous central stoneroller. There was a strong effect of fish species on the activity levels of GS, GDH, AST and ALT, as well as GIT lumen ammonia concentration, and bacterial composition of the GIT microbiome. Furthermore, removal of the intestinal bacteria impacted intestinal activities of GS and ALT in the herbivorous fish but not in the carnivore. The repeatability and robustness of this relationship was tested across field locations and years. Within an individual waterbody, there was no impact of sampling location on any of these factors. However, different waterbodies affected enzyme activities and luminal ammonia concentrations in both fish, while only the central stoneroller intestinal bacteria populations varied. Overall, a relationship between GIT bacteria, enzyme activity and ammonia detoxification was observed in herbivorous fish while the carnivorous fish displayed a correlation between enzyme activity and ammonia detoxification alone that was independent of the GIT microbiome. This could suggest that carnivorous fish are less dependent on non-host mechanisms for ammonia regulation in the GIT.
Collapse
Affiliation(s)
- Leah A Turner
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Carol Bucking
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
7
|
Reidman S, Cohen A, Kupiec M, Weisman R. The cytosolic form of aspartate aminotransferase is required for full activation of TOR complex 1 in fission yeast. J Biol Chem 2019; 294:18244-18255. [PMID: 31641022 DOI: 10.1074/jbc.ra119.010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
The evolutionarily conserved TOR complex 1 (TORC1) activates cell growth and proliferation in response to nutritional signals. In the fission yeast Schizosaccharomyces pombe, TORC1 is essential for vegetative growth, and its activity is regulated in response to nitrogen quantity and quality. Yet, how TORC1 senses nitrogen is poorly understood. Rapamycin, a specific TOR inhibitor, inhibits growth in S. pombe only under conditions in which the activity of TORC1 is compromised. In a genetic screen for rapamycin-sensitive mutations, we isolated caa1-1, a loss-of-function mutation of the cytosolic form of aspartate aminotransferase (Caa1). We demonstrate that loss of caa1 + partially mimics loss of TORC1 activity and that Caa1 is required for full TORC1 activity. Disruption of caa1 + resulted in aspartate auxotrophy, a finding that prompted us to assess the role of aspartate in TORC1 activation. We found that the amino acids glutamine, asparagine, arginine, aspartate, and serine activate TORC1 most efficiently following nitrogen starvation. The glutamine synthetase inhibitor l-methionine sulfoximine abolished the ability of asparagine, arginine, aspartate, or serine, but not that of glutamine, to induce TORC1 activity, consistent with a central role for glutamine in activating TORC1. Neither addition of aspartate nor addition of glutamine restored TORC1 activity in caa1-deleted cells or in cells carrying a Caa1 variant with a catalytic site substitution, suggesting that the catalytic activity of Caa1 is required for TORC1 activation. Taken together, our results reveal the contribution of the key metabolic enzyme Caa1 to TORC1 activity in S. pombe.
Collapse
Affiliation(s)
- Sophie Reidman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel
| | - Adiel Cohen
- Department of Natural and Life Sciences, the Open University of Israel, University Road 1, 4353701 Ra'anana, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural and Life Sciences, the Open University of Israel, University Road 1, 4353701 Ra'anana, Israel.
| |
Collapse
|
8
|
Jeong SY, Jin H, Chang JH. Crystal structure of L-aspartate aminotransferase from Schizosaccharomyces pombe. PLoS One 2019; 14:e0221975. [PMID: 31465495 PMCID: PMC6715241 DOI: 10.1371/journal.pone.0221975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/18/2019] [Indexed: 01/01/2023] Open
Abstract
L-aspartate aminotransferase is a pyridoxal 5'-phosphate-dependent transaminase that catalyzes reversible transfer of an α-amino group from aspartate to α-ketoglutarate or from glutamate to oxaloacetate. L-aspartate aminotransferase not only mediates amino acid and carbohydrate metabolism but also regulates the cellular level of amino acids by catalyzing amino acid degradation and biosynthesis. To expand our structural information, we determined the crystal structure of L-aspartate aminotransferase from Schizosaccharomyces pombe at 2.1 Å resolution. A structural comparison between two yeast L-aspartate aminotransferases revealed conserved enzymatic mechanism mediated by the open-closed conformational change. Compared with higher eukaryotic species, L-aspartate aminotransferases showed distinguishable inter-subunit interaction between the N-terminal arm and a large domain of the opposite subunit. Interestingly, structural homology search showed varied conformation of the N-terminal arm among 71 structures of the family. Therefore, we classified pyridoxal 5'-phosphate-dependent enzymes into eight subclasses based on the structural feature of N-terminal arms. In addition, structure and sequence comparisons showed strong relationships among the eight subclasses. Our results may provide insights into structure-based evolutionary aspects of pyridoxal 5'-phosphate-dependent enzymes.
Collapse
Affiliation(s)
- Soo Yeon Jeong
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| | - Hyeonseok Jin
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (HJ); (JHC)
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (HJ); (JHC)
| |
Collapse
|
9
|
Uncovering mechanisms of global ocean change effects on the Dungeness crab (Cancer magister) through metabolomics analysis. Sci Rep 2019; 9:10717. [PMID: 31341175 PMCID: PMC6656712 DOI: 10.1038/s41598-019-46947-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/04/2019] [Indexed: 01/22/2023] Open
Abstract
The Dungeness crab is an economically and ecologically important species distributed along the North American Pacific coast. To predict how Dungeness crab may physiologically respond to future global ocean change on a molecular level, we performed untargeted metabolomic approaches on individual Dungeness crab juveniles reared in treatments that mimicked current and projected future pH and dissolved oxygen conditions. We found 94 metabolites and 127 lipids responded in a condition-specific manner, with a greater number of known compounds more strongly responding to low oxygen than low pH exposure. Pathway analysis of these compounds revealed that juveniles may respond to low oxygen through evolutionarily conserved processes including downregulating glutathione biosynthesis and upregulating glycogen storage, and may respond to low pH by increasing ATP production. Most interestingly, we found that the response of juveniles to combined low pH and low oxygen exposure was most similar to the low oxygen exposure response, indicating low oxygen may drive the physiology of juvenile crabs more than pH. Our study elucidates metabolic dynamics that expand our overall understanding of how the species might respond to future ocean conditions and provides a comprehensive dataset that could be used in future ocean acidification response studies.
Collapse
|
10
|
Wang R, Zhang M, Liu H, Xu J, Yu J, He F, Zhang X, Dong S, Dou D. PsAAT3, an oomycete-specific aspartate aminotransferase, is required for full pathogenicity of the oomycete pathogen Phytophthora sojae. Fungal Biol 2016; 120:620-630. [PMID: 27020161 DOI: 10.1016/j.funbio.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 12/29/2022]
Abstract
Pathogen nutrient acquisition and metabolism are critical for successful infection and colonization. However, the nutrient requirements and metabolic pathways related to pathogenesis in oomycete pathogens are unknown. In this study, we bioinformatically identified Phytophthora sojae aspartate aminotransferases (AATs), which are key enzymes that coordinate carbon and nitrogen metabolism. We demonstrated that P. sojae encodes more AATs than the analysed fungi. Some of the AATs contained additional prephenate dehydratase and/or prephenate dehydrogenase domains in their N-termini, which are unique to oomycetes. Silencing of PsAAT3, an infection-inducible expression gene, reduced P. sojae pathogenicity on soybean plants and affected the growth under N-starving condition, suggesting that PsAAT3 is involved in pathogen pathogenicity and nitrogen utilisation during infection. Our results suggest that P. sojae and other oomycete pathogens may have distinct amino acid metabolism pathways and that PsAAT3 is important for its full pathogenicity.
Collapse
Affiliation(s)
- Rongbo Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hong Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feng He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
11
|
Bradbury MW, Stump D, Guarnieri F, Berk PD. Molecular modeling and functional confirmation of a predicted fatty acid binding site of mitochondrial aspartate aminotransferase. J Mol Biol 2011; 412:412-22. [PMID: 21803047 PMCID: PMC3167029 DOI: 10.1016/j.jmb.2011.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 10/18/2022]
Abstract
Molecular interactions are necessary for proteins to perform their functions. The identification of a putative plasma membrane fatty acid transporter as mitochondrial aspartate aminotransferase (mAsp-AT) indicated that the protein must have a fatty acid binding site. Molecular modeling suggests that such a site exists in the form of a 500-Å(3) hydrophobic cleft on the surface of the molecule and identifies specific amino acid residues that are likely to be important for binding. The modeling and comparison with the cytosolic isoform indicated that two residues (Arg201 and Ala219) were likely to be important to the structure and function of the binding site. These residues were mutated to determine if they were essential to that function. Expression constructs with wild-type or mutated cDNAs were produced for bacteria and eukaryotic cells. Proteins expressed in Escherichia coli were tested for oleate binding affinity, which was decreased in the mutant proteins. 3T3 fibroblasts were transfected with expression constructs for both normal and mutated forms. Plasma membrane expression was documented by indirect immunofluorescence before [(3)H]oleic acid uptake kinetics were assayed. The V(max) for uptake was significantly increased by overexpression of the wild-type protein but changed little after transfection with mutated proteins, despite their presence on the plasma membrane. The hydrophobic cleft in mAsp-AT can serve as a fatty acid binding site. Specific residues are essential for normal fatty acid binding, without which fatty acid uptake is compromised. These results confirm the function of this protein as a fatty acid binding protein.
Collapse
Affiliation(s)
- Michael W. Bradbury
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, PA 16509
| | - Decherd Stump
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Frank Guarnieri
- Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA 23298
- Department of Biomedical Engineering, Boston University, Boston, MA 02218
- Phase III Pharmaceuticals, Brooklyn, NY 11223
| | - Paul D. Berk
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
12
|
Han XX, Chabowski A, Tandon NN, Calles-Escandon J, Glatz JFC, Luiken JJFP, Bonen A. Metabolic challenges reveal impaired fatty acid metabolism and translocation of FAT/CD36 but not FABPpm in obese Zucker rat muscle. Am J Physiol Endocrinol Metab 2007; 293:E566-75. [PMID: 17519284 DOI: 10.1152/ajpendo.00106.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined, in muscle of lean and obese Zucker rats, basal, insulin-induced, and contraction-induced fatty acid transporter translocation and fatty acid uptake, esterification, and oxidation. In lean rats, insulin and contraction induced the translocation of the fatty acid transporter FAT/CD36 (43 and 41%, respectively) and plasma membrane-associated fatty acid binding protein (FABPpm; 19 and 60%) and increased fatty acid uptake (63 and 40%, respectively). Insulin and contraction increased lean muscle palmitate esterification and oxidation 72 and 61%, respectively. In obese rat muscle, basal levels of sarcolemmal FAT/CD36 (+33%) and FABPpm (+14%) and fatty acid uptake (+30%) and esterification (+32%) were increased, whereas fatty acid oxidation was reduced (-28%). Insulin stimulation of obese rat muscle increased plasmalemmal FABPpm (+15%) but not plasmalemmal FAT/CD36, blunted fatty acid uptake and esterification, and failed to reduce fatty acid oxidation. In contracting obese rat muscle, the increases in fatty acid uptake and esterification and FABPpm translocation were normal, but FAT/CD36 translocation was impaired and fatty acid oxidation was blunted. There was no relationship between plasmalemmal fatty acid transporters and palmitate partitioning. In conclusion, fatty acid metabolism is impaired at several levels in muscles of obese Zucker rats; specifically, they are 1) insulin resistant with respect to FAT/CD36 translocation and fatty acid uptake, esterification, and oxidation and 2) contraction resistant with respect to fatty acid oxidation and FAT/CD36 translocation, but, conversely, 3) obese muscles are neither insulin nor contraction resistant at the level of FABPpm. Finally, 4) there is no evidence that plasmalemmal fatty acid transporters contribute to the channeling of fatty acids to specific metabolic destinations within the muscle.
Collapse
Affiliation(s)
- Xiao-Xia Han
- Dept. of Human Health and Nutritional Sciences, Univ. of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | |
Collapse
|
13
|
de la Torre F, De Santis L, Suárez MF, Crespillo R, Cánovas FM. Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: implications for plant amino acid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:414-25. [PMID: 16623902 DOI: 10.1111/j.1365-313x.2006.02713.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this paper, we report the identification of genes from pine (PpAAT), Arabidopsis (AtAAT) and rice (OsAAT) encoding a novel class of aspartate aminotransferase (AAT, EC 2.6.1.1) in plants. The enzyme is unrelated to other eukaryotic AATs from plants and animals but similar to bacterial enzymes. Phylogenetic analysis indicates that this prokaryotic-type AAT is closely related to cyanobacterial enzymes, suggesting it might have an endosymbiotic origin. Interestingly, most of the essential residues involved in the interaction with the substrate and the attachment of pyridoxal phosphate cofactor in the active site of the enzyme were conserved in the deduced polypeptide. The polypeptide is processed in planta to a mature subunit of 45 kDa that is immunologically distinct from the cytosolic, mitochondrial and chloroplastic isoforms of AAT previously characterized in plants. Functional expression of PpAAT sequences in Escherichia coli showed that the processed precursor is assembled into a catalytically active homodimeric holoenzyme that is strictly specific for aspartate. These atypical genes are predominantly expressed in green tissues of pine, Arabidopsis and rice, suggesting a key role of this AAT in nitrogen metabolism associated with photosynthetic activity. Moreover, immunological analyses revealed that the plant prokaryotic-type AAT is a nuclear-encoded chloroplast protein. This implies that two plastidic AAT co-exist in plants: a eukaryotic type previously characterized and the prokaryotic type described here. The respective roles of these two enzymes in plant amino acid metabolism are discussed.
Collapse
Affiliation(s)
- Fernando de la Torre
- Departamento de Biología Molecular y Bioquímica, Instituto Andaluz de Biotecnología, Unidad Asociada UMA-CSIC, Campus Universitario de Teatinos, Universidad de Málaga, 29071-Málaga, Spain
| | | | | | | | | |
Collapse
|
14
|
Cellular uptake of long chain free fatty acids: the structure and function of plasma membrane fatty acid binding protein. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)33004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Gupta RS. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 1998; 62:1435-91. [PMID: 9841678 PMCID: PMC98952 DOI: 10.1128/mmbr.62.4.1435-1491.1998] [Citation(s) in RCA: 386] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes.
Collapse
Affiliation(s)
- R S Gupta
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
16
|
Abstract
The number of known three-dimensional structures of vitamin B6-dependent enzymes has doubled in the past two years. A fourth type of fold for B6-dependent enzymes, involving a TIM-barrel domain, has been discovered. Alanine racemase is the first known representative of this new fold. Significant progress has been made in understanding the allosteric effects in the tryptophan synthase reaction.
Collapse
Affiliation(s)
- J N Jansonius
- Biozentrum University of Basel Klingelbergstrasse 70 CH-4056 Basel Switzerland.
| |
Collapse
|
17
|
Abstract
Rhizobia are a diverse group of Gram-negative bacteria comprised of the genera Rhizobium, Bradyrhizobium, Mesorhizobium, Sinorhizobium and Azorhizobium. A unifying characteristic of the rhizobia is their capacity to reduce (fix) atmospheric nitrogen in symbiotic association with a compatible plant host. Symbiotic nitrogen fixation requires a substantial input of energy from the rhizobial symbiont. This review focuses on recent studies of rhizobial carbon metabolism which have demonstrated the importance of a functional tricarboxylic acid (TCA) cycle in allowing rhizobia to efficiently colonize the plant host and/or develop an effective nitrogen fixing symbiosis. Several anaplerotic pathways have also been shown to maintain TCA cycle activity under specific conditions. Biochemical and physiological characterization of carbon metabolic mutants, along with the analysis of cloned genes and their corresponding gene products, have greatly advanced our understanding of the function of enzymes such as citrate synthase, oxoglutarate dehydrogenase, pyruvate carboxylase and malic enzymes. However, much remains to be learned about the control and function of these and other key metabolic enzymes in rhizobia.
Collapse
Affiliation(s)
- M F Dunn
- Departamento de Ecología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
18
|
Jeffery CJ, Barry T, Doonan S, Petsko GA, Ringe D. Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase. Protein Sci 1998; 7:1380-7. [PMID: 9655342 PMCID: PMC2144045 DOI: 10.1002/pro.5560070614] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The crystal structure of Saccharomyces cerevisiae cytoplasmic aspartate aminotransferase (EC 2.6.1.1) has been determined to 2.05 A resolution in the presence of the cofactor pyridoxal-5'-phosphate and the competitive inhibitor maleate. The structure was solved by the method of molecular replacement. The final value of the crystallographic R-factor after refinement was 23.1% with good geometry of the final model. The yeast cytoplasmic enzyme is a homodimer with two identical active sites containing residues from each subunit. It is found in the "closed" conformation with a bound maleate inhibitor in each active site. It shares the same three-dimensional fold and active site residues as the aspartate aminotransferases from Escherichia coli, chicken cytoplasm, and chicken mitochondria, although it shares less than 50% sequence identity with any of them. The availability of four similar enzyme structures from distant regions of the evolutionary tree provides a measure of tolerated changes that can arise during millions of years of evolution.
Collapse
Affiliation(s)
- C J Jeffery
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | | | | | |
Collapse
|
19
|
Zhou SL, Gordon RE, Bradbury M, Stump D, Kiang CL, Berk PD. Ethanol up-regulates fatty acid uptake and plasma membrane expression and export of mitochondrial aspartate aminotransferase in HepG2 cells. Hepatology 1998; 27:1064-74. [PMID: 9537447 DOI: 10.1002/hep.510270423] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To explain the increased plasma mitochondrial aspartate aminotransferase (mAspAT) observed in alcoholics, we cultured HepG2 hepatoma cells in ethanol. Acute (24 hour) exposure to 0, 20, 40, or 80 mmol/L ethanol produced a dose-dependent (r = .98) increase in mAspAT messenger RNA (mRNA) of < or = thirteen-fold, with no significant change in the cellular content of mAspAT or of several other enzymes. The recovery of mAspAT in the medium over 24 hours of ethanol exposure correlated with both ethanol concentration and with mAspAT mRNA (r = .90), reaching 808% of cellular enzyme content/24 hours at 80 mmol/L. Recovery of all other enzymes studied was < or = 20% of cellular content and unaffected by ethanol. Plasma membrane mAspAT content also correlated with mAspAT mRNA (r = .96) and mitochondrial levels were unchanged. No mitochondrial morphologic abnormalities were observed at any ethanol concentration studied. In cells cultured chronically at 0 to 80 mmol/L ethanol, fatty acid uptake Vmax increased in parallel with plasma membrane expression of mAspAT (r = .98). Cellular triglyceride content was highly correlated with Vmax. Thus, the data suggest that: 1) the increased plasma mAspAT observed in alcoholics may reflect pharmacologic upregulation of mAspAT mRNA and of mAspAT synthesis by ethanol; and 2) increased mAspAT-mediated fatty acid uptake may contribute to alcoholic fatty liver.
Collapse
Affiliation(s)
- S L Zhou
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
21
|
Piotte CP, Marshall CJ, Hubbard MJ, Collet C, Grigor MR. Lysozyme and alpha-lactalbumin from the milk of a marsupial, the common brush-tailed possum (Trichosurus vulpecula). BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1336:235-42. [PMID: 9305795 DOI: 10.1016/s0304-4165(97)00033-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysozyme and alpha-lactalbumin have been identified using N-terminal sequence analysis of whey proteins from the common brush-tailed possum, Trichosurus vulpecula after separation by two-dimensional denaturing electrophoresis. Both proteins were purified from pooled possum milk using ion exchange chromatography and gave mass values of 14,896 and 13,985 Da respectively by MALDI-TOF mass spectrometry. Clones containing the full coding sequences of the genes for both proteins were isolated from a possum mammary cDNA library and the DNA sequence of the coding region determined. The inferred protein sequences were used in phylogenetic analysis of both protein classes. These showed that the T. vulpecula alpha-lactalbumin, along with other marsupial alpha-lactalbumins, formed a family distinct from the eutherian alpha-lactalbumins and the alpha-lactalbumin of a monotreme, the platypus, consistent with the separate evolution of the marsupials. By contrast the T. vulpecula lysozyme was shown to be similar to the ruminant stomach lysozymes and primate lysozymes and quite distinct from the Ca2+-binding lysozymes found in the milk of the echidna and horse.
Collapse
Affiliation(s)
- C P Piotte
- Department of Biochemistry and Centre for Gene Research, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
22
|
Gupta RS, Bustard K, Falah M, Singh D. Sequencing of heat shock protein 70 (DnaK) homologs from Deinococcus proteolyticus and Thermomicrobium roseum and their integration in a protein-based phylogeny of prokaryotes. J Bacteriol 1997; 179:345-57. [PMID: 8990285 PMCID: PMC178703 DOI: 10.1128/jb.179.2.345-357.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 70-kDa heat shock protein (hsp70) sequences define one of the most conserved proteins known to date. The hsp70 genes from Deinococcus proteolyticus and Thermomicrobium roseum, which were chosen as representatives of two of the most deeply branching divisions in the 16S rRNA trees, were cloned and sequenced. hsp70 from both these species as well as Thermus aquaticus contained a large insert in the N-terminal quadrant, which has been observed before as a unique characteristic of gram-negative eubacteria and eukaryotes and is not found in any gram-positive bacteria or archaebacteria. Phylogenetic analysis of hsp70 sequences shows that all of the gram-negative eubacterial species examined to date (which includes members from the genera Deinococcus and Thermus, green nonsulfur bacteria, cyanobacteria, chlamydiae, spirochetes, and alpha-, beta-, and gamma-subdivisions of proteobacteria) form a monophyletic group (excluding eukaryotic homologs which are derived from this group via endosybitic means) strongly supported by the bootstrap scores. A closer affinity of the Deinococcus and Thermus species to the cyanobacteria than to the other available gram-negative sequences is also observed in the present work. In the hsp7O trees, D. proteolyticus and T. aquaticus were found to be the most deeply branching species within the gram-negative eubacteria. The hsp70 homologs from gram-positive bacteria branched separately from gram-negative bacteria and exhibited a closer relationship to and shared sequence signatures with the archaebacteria. A polyphyletic branching of archaebacteria within gram-positive bacteria is strongly favored by different phylogenetic methods. These observations differ from the rRNA-based phylogenies where both gram-negative and gram-positive species are indicated to be polyphyletic. While it remains unclear whether parts of the genome may have variant evolutionary histories, these results call into question the general validity of the currently favored three-domain dogma.
Collapse
Affiliation(s)
- R S Gupta
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Sensen CW, Klenk HP, Singh RK, Allard G, Chan CC, Liu QY, Penny SL, Young F, Schenk ME, Gaasterland T, Doolittle WF, Ragan MA, Charlebois RL. Organizational characteristics and information content of an archaeal genome: 156 kb of sequence from Sulfolobus solfataricus P2. Mol Microbiol 1996; 22:175-91. [PMID: 8899719 DOI: 10.1111/j.1365-2958.1996.tb02666.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have initiated a project to sequence the 3 Mbp genome of the thermoacidophilic archaebacterium Sulfolobus solfataricus P2. Cosmids were selected from a provisional set of minimally overlapping clones, subcloned in pUC18, and sequenced using a hybrid (random plus directed) strategy to give two blocks of contiguous unique sequence, respectively, 100,389 and 56,105 bp. These two contigs contain a total of 163 open reading frames (ORFs) in 26-29 putative operons; 56 ORFs could be identified with reasonable certainty. Clusters of ORFs potentially encode proteins of glycogen biosynthesis, oxidative decarboxylation of pyruvate, ATP-dependent transport across membranes, isoprenoid biosynthesis, protein synthesis, and ribosomes. Putative promoters occur upstream of most ORFs. Thirty per cent of the predicted strong and medium-strength promoters can initiate transcription at the start codon or within 10 nucleotides upstream, indicating a process of initial mRNA-ribosome contact unlike that of most eubacterial genes. A novel termination motif is proposed to account for 15 additional terminations. The two contigs differ in densities of ORFs, insertion elements and repeated sequences; together they contain two copies of the previously reported insertion sequence ISC 1217, five additional IS elements representing four novel types, four classes of long non-IS repeated sequences, and numerous short, perfect repeats.
Collapse
Affiliation(s)
- C W Sensen
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|