1
|
Major histocompatibility complex class II expression deficiency caused by a RFXANK founder mutation: a survey of 35 patients. Blood 2011; 118:5108-18. [DOI: 10.1182/blood-2011-05-352716] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AbstractInherited deficiency of major histocompatibility complex (MHC) class II molecules impairs antigen presentation to CD4+ T cells and results in combined immunodeficiency (CID). Autosomal-recessive mutations in the RFXANK gene account for two-thirds of all cases of MHC class II deficiency. We describe here the genetic, clinical, and immunologic features of 35 patients from 30 unrelated kindreds from North Africa sharing the same RFXANK founder mutation, a 26-bp deletion called I5E6-25_I5E6 + 1), and date the founder event responsible for this mutation in this population to approximately 2250 years ago (95% confidence interval [CI]: 1750-3025 years). Ten of the 23 patients who underwent hematopoietic stem cell transplantation (HSCT) were cured, with the recovery of almost normal immune functions. Five of the patients from this cohort who did not undergo HSCT had a poor prognosis and eventually died (at ages of 1-17 years). However, 7 patients who did not undergo HSCT (at ages of 6-32 years) are still alive on Ig treatment and antibiotic prophylaxis. RFXANK deficiency is a severe, often fatal CID for which HSCT is the only curative treatment. However, some patients may survive for relatively long periods if multiple prophylactic measures are implemented.
Collapse
|
2
|
Holling TM, Schooten E, Langerak AW, van den Elsen PJ. Regulation of MHC class II expression in human T-cell malignancies. Blood 2003; 103:1438-44. [PMID: 14563641 DOI: 10.1182/blood-2003-05-1491] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of major histocompatibility complex (MHC) class II molecules in human activated T cells is under normal circumstances regulated exclusively by the CIITA-PIII subtype of the class II transactivator (CIITA). In this study, we show that the absence of MHC class II expression in leukemic T cells was due to a lack of expression of CIITA, whereas in T-lymphoma cells, expression of CIITA correlated with expression of MHC class II. Interestingly, activation of a CIITA-promoter (P)III-reporter construct was not affected in leukemic T cells. This revealed that the absence of endogenous CIITA expression was not caused by a lack of transcription factors critical for CIITA-PIII activation but suggests the involvement of an epigenetic silencing mechanism. Subsequent analysis showed that the lack of human leukocyte antigen-DR (HLA-DR) expression correlated with hypermethylation of CIITA-PIII in leukemic T-cell lines and in primary T-cell acute lymphoblastic leukemia (T-ALL) and a T-cell prolymphocytic leukemia (T-PLL). Treatment of leukemic T-cell lines with a demethylation agent showed re-expression of CIITA-PIII and HLA-DRA. Furthermore, in vitro methylation of CIITA-PIII and subsequent assessment of CIITA-PIII activity in Jurkat leukemic T cells resulted in reduction of constitutive and CREB-1 (cyclic adenosine monophosphate [cAMP]-response element binding protein 1)-induced promoter activity. Together, these results argue for an important role of DNA hyper-methylation in the control of CIITA expression in leukemic T cells.
Collapse
Affiliation(s)
- Tjadine M Holling
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | |
Collapse
|
3
|
Villard J, Masternak K, Lisowska-Grospierre B, Fischer A, Reith W. MHC class II deficiency: a disease of gene regulation. Medicine (Baltimore) 2001; 80:405-18. [PMID: 11704716 DOI: 10.1097/00005792-200111000-00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- J Villard
- Immunology and Transplant Unit, Division of Immunology and Allergology, Geneva University Hospital, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
4
|
Osborne A, Zhang H, Yang WM, Seto E, Blanck G. Histone deacetylase activity represses gamma interferon-inducible HLA-DR gene expression following the establishment of a DNase I-hypersensitive chromatin conformation. Mol Cell Biol 2001; 21:6495-506. [PMID: 11533238 PMCID: PMC99796 DOI: 10.1128/mcb.21.19.6495-6506.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the retinoblastoma tumor suppressor protein (Rb) is required for gamma interferon (IFN-gamma)-inducible major histocompatibility complex class II gene expression and transcriptionally productive HLA-DRA promoter occupancy in several human tumor cell lines. Treatment of these Rb-defective tumor cell lines with histone deacetylase (HDAC) inhibitors rescued IFN-gamma-inducible HLA-DRA and -DRB mRNA and cell surface protein expression, demonstrating repression of these genes by endogenous cellular HDAC activity. Additionally, Rb-defective, transcriptionally incompetent tumor cells retained the HLA-DRA promoter DNase I-hypersensitive site. Thus, HDAC-mediated repression of the HLA-DRA promoter occurs following the establishment of an apparent nucleosome-free promoter region and before transcriptionally productive occupancy of the promoter by the required transactivators. Repression of HLA-DRA promoter activation by HDAC activity likely involves a YY1 binding element located in the first exon of the HLA-DRA gene. Chromatin immunoprecipitation experiments localized YY1 to the HLA-DRA gene in Rb-defective tumor cells. Additionally, mutation of the YY1 binding site prevented repression of the promoter by HDAC1 and partially prevented activation of the promoter by trichostatin A. Mutation of the octamer element also significantly reduced the ability of HDAC1 to confer repression of inducible HLA-DRA promoter activation. Treatment of Rb-defective tumor cells with HDAC inhibitors greatly reduced the DNA binding activity of Oct-1, a repressor of inducible HLA-DRA promoter activation. These findings represent the first evidence that HDAC activity can repress IFN-gamma-inducible HLA class II gene expression and also demonstrate that HDAC activity can contribute to promoter repression following the establishment of a DNase I-hypersensitive chromatin conformation.
Collapse
Affiliation(s)
- A Osborne
- Department of Biochemistry and Molecular Biology, College of Medicine, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
5
|
Nagarajan UM, Peijnenburg A, Gobin SJ, Boss JM, van den elsen PJ. Novel mutations within the RFX-B gene and partial rescue of MHC and related genes through exogenous class II transactivator in RFX-B-deficient cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3666-74. [PMID: 10725724 DOI: 10.4049/jimmunol.164.7.3666] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II deficiency or bare lymphocyte syndrome is a severe combined immunodeficiency caused by defects in MHC-specific regulatory factors. Fibroblasts derived from two recently identified bare lymphocyte syndrome patients, EBA and FZA, were found to contain novel mutations in the RFX-B gene. RFX-B encodes a component of the RFX transcription factor that functions in the assembly of multiple transcription factors on MHC class II promoters. Unlike RFX5- and RFXAP-deficient cells, transfection of exogenous class II transactivator (CIITA) into these RFX-B-deficient fibroblasts resulted in the induction of HLA-DR and HLA-DP and, to a lesser extent, HLA-DQ. Similarly, CIITA-mediated induction of MHC class I, beta2-microglobulin, and invariant chain genes was also found in these RFX-B-deficient fibroblasts. Expression of wild-type RFX-B completely reverted the noted deficiencies in these cells. Transfection of CIITA into Ramia cells, a B cell line that does not produce a stable RFX-B mRNA, resulted in induction of an MHC class II reporter, suggesting that CIITA overexpression may partially override the RFX-B defect.
Collapse
Affiliation(s)
- U M Nagarajan
- Department of Microbiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
6
|
Peijnenburg A, Van Eggermond MJCA, Gobin SJP, Van den Berg R, Godthelp BC, Vossen JMJJ, Van den Elsen PJ. Discoordinate Expression of Invariant Chain and MHC Class II Genes in Class II Transactivator-Transfected Fibroblasts Defective for RFX5. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
MHC class II deficiency or bare lymphocyte syndrome is a severe combined immunodeficiency caused by defects in MHC-specific transcription factors. In the present study, we show that fibroblasts derived from a recently identified bare lymphocyte syndrome patient, SSI, were mutated for RFX5, one of the DNA-binding components of the RFX complex. Despite the lack of functional RFX5 and resulting MHC class II-deficient phenotype, transfection of exogenous class II transactivator (CIITA) in these fibroblasts can overcome this defect, resulting in the expression of HLA-DR, but not of DP, DQ, and invariant chain. The lack of invariant chain expression correlated with lack of CIITA-mediated transactivation of the invariant chain promoter in transient transfection assays in SSI fibroblast cells. Consequently, these CIITA transfectants lacked Ag-presenting functions.
Collapse
|
7
|
Incomplete T-Cell Immune Reconstitution in Two Major Histocompatibility Complex Class II–Deficiency/Bare Lymphocyte Syndrome Patients After HLA-Identical Sibling Bone Marrow Transplantation. Blood 1999. [DOI: 10.1182/blood.v94.1.348.413k05_348_358] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the effects of major histocompatibility complex (MHC) class II expression on T-cell development, we have investigated T-cell immune reconstitution in two MHC class II–deficiency patients after allogeneic bone marrow transplantation (allo-BMT). Our study showed that the induction of MHC class II antigen expression on BM graft-derived T cells in these allo-BMT recipients was hampered upon T-cell activation. This reduction was most striking in the CD8+ T-cell subset. Furthermore, the peripheral T-cell receptor (TCR) repertoire in these graft-derived MHC class II–expressing CD4+ and in the CD8+ T-cell fractions was found to be restricted on the basis of TCR complementarity determining region 3 (CDR3) size profiles. Interestingly, the T-cell immune response to tetanus toxoid (TT) was found to be comparable to that of the donor. However, when comparing recipient-derived TT-specific T cells with donor-derived T cells, differences were observed in TCR gene segment usage and in the hydropathicity index of the CDR3 regions. Together, these results reveal the impact of an environment lacking endogenous MHC class II on the development of the T-cell immune repertoire after allo-BMT.
Collapse
|
8
|
Cressman DE, Chin KC, Taxman DJ, Ting JP. A defect in the nuclear translocation of CIITA causes a form of type II bare lymphocyte syndrome. Immunity 1999; 10:163-71. [PMID: 10072069 DOI: 10.1016/s1074-7613(00)80017-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The severe immunodeficiency type II bare lymphocyte syndrome (BLS) lacks class II MHC gene transcription. One defect from a complementation group A type II BLS patient is a 24 aa deletion in the MHC class II transactivator (CIITA). We show here that the molecular defect present in this protein is a failure of CIITA to undergo nuclear translocation. This defect was mapped to a position-dependent, novel nuclear localization sequence that cannot be functionally replaced by a classical NLS. Fusion of this 5 aa motif to an unrelated protein leads to nuclear translocation. Furthermore, this motif is not critical for transactivation function. This is a description of a genetic disease resulting from a novel defect in the subcellular localization of a transcriptional coactivator.
Collapse
Affiliation(s)
- D E Cressman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295, USA
| | | | | | | |
Collapse
|
9
|
Gobin SJ, Peijnenburg A, van Eggermond M, van Zutphen M, van den Berg R, van den Elsen PJ. The RFX complex is crucial for the constitutive and CIITA-mediated transactivation of MHC class I and beta2-microglobulin genes. Immunity 1998; 9:531-41. [PMID: 9806639 DOI: 10.1016/s1074-7613(00)80636-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In type III bare lymphocyte syndrome (BLS) patients, defects in the RFX protein complex result in a lack of MHC class II and reduced MHC class I cell surface expression. Using type III BLS cell lines, we demonstrate that the RFX subunits RFX5 and RFXAP are crucial for constitutive and CIITA-induced MHC class I and beta2m transactivation. Similar to MHC class II, the promoters of MHC class I and beta2m contain an S-X-Y region of which the X1 box is crucial for constitutive and CIITA-induced MHC class I and beta2m transactivation. Thus, the RFX complex is part of a regulatory pathway linking the transactivation of MHC class I and II and their accessory genes.
Collapse
Affiliation(s)
- S J Gobin
- Department of Immunohematology and Blood Bank, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
van den Elsen PJ, Peijnenburg A, van Eggermond MC, Gobin SJ. Shared regulatory elements in the promoters of MHC class I and class II genes. IMMUNOLOGY TODAY 1998; 19:308-12. [PMID: 9666603 DOI: 10.1016/s0167-5699(98)01287-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P J van den Elsen
- Dept of Immunohaematology and Blood Bank, Leiden University Medical Center, The Netherlands
| | | | | | | |
Collapse
|
11
|
Eibl MM, Wolf HM. Biologic consequences of defective major histocompatibility complex class II presentation. Curr Top Microbiol Immunol 1998; 232:217-40. [PMID: 9557400 DOI: 10.1007/978-3-642-72045-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M M Eibl
- Institute of Immunology, University of Vienna, Austria
| | | |
Collapse
|
12
|
Abstract
MHC class II deficiency is a severe primary immunodeficiency characterized by the absence of Major Histocompatibility Complex class II gene expression. It is genetically heterogenous and can result from defects in several different transacting regulatory factors required for transcription of MHC class II genes. Cell lines from MHC class II deficiency patients have been assigned to three complementation groups (A, B, C). An in vitro generated cell line (6.1.6) was reported to be the sole representative of a fourth group (group D). The molecular defect in 6.1.6 resides in the recently cloned RFXAP gene. Direct complementation experiments and mutation analysis were performed with cell lines from several MHC class II deficiency patients in which the affected gene had not been identified. These experiments have allowed us to define a previously unrecognized MHC class II deficiency complementation group containing patients having mutations in the RFXAP gene.
Collapse
Affiliation(s)
- J Villard
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | |
Collapse
|
13
|
Villard J, Lisowska-Grospierre B, van den Elsen P, Fischer A, Reith W, Mach B. Mutation of RFXAP, a regulator of MHC class II genes, in primary MHC class II deficiency. N Engl J Med 1997; 337:748-53. [PMID: 9287230 DOI: 10.1056/nejm199709113371104] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Major-histocompatibility-complex (MHC) class II deficiency is an autosomal recessive primary immunodeficiency disease in which MHC class II molecules are absent. It is a genetically heterogeneous disease of gene regulation resulting from defects in several transactivating genes that regulate the expression of MHC class II genes. The mutations responsible for MHC class II deficiency are classified according to complementation group (a group in which the phenotype remains uncorrected in pairwise fusions of cells). There are three known complementation groups (A, B, and C). METHODS To elucidate the genetic defect in patients with MHC class II deficiency that was not classified genetically, we performed direct complementation assays with the three genes known to regulate the expression of MHC class II genes, CIITA, RFX5, and RFXAP, and the relevant mutations were identified in each patient. RESULTS Mutations in the RFXAP gene were found in three patients from unrelated families, and the resulting defect was classified as belonging to a novel complementation group (D). Transfection with the wild-type RFXAP gene restored the expression of MHC class II molecules in the patients' cells. CONCLUSIONS Mutations in a novel MHC class II transactivating factor, RFXAP, can cause MHC class II deficiency. These mutations abolish the expression of MHC class II genes and lead to the same clinical picture of immunodeficiency as in patients with mutations in the other two MHC class II regulatory genes.
Collapse
Affiliation(s)
- J Villard
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Douhan J, Lieberson R, Knoll JH, Zhou H, Glimcher LH. An isotype-specific activator of major histocompatibility complex (MHC) class II genes that is independent of class II transactivator. J Exp Med 1997; 185:1885-95. [PMID: 9166418 PMCID: PMC2196342 DOI: 10.1084/jem.185.11.1885] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1996] [Revised: 04/03/1997] [Indexed: 02/04/2023] Open
Abstract
Patients with one type of major histocompatibility complex class II combined immunodeficiency have mutations in a gene termed class II transactivator (CIITA), which coordinately controls the transcription of the three major human class II genes, HLA-DR, -DQ, and -DP. However, the experimentally derived B-lymphoblastoid cell line, clone 13, expresses high levels of HLADQ in the absence of HLA-DR and HLA-DP, despite its mapping by complementation analysis to this group. It was possible that one of the clone 13 CIITA alleles bore a mutation that allowed HLA-DQ, but not HLA-DR or -DP transcription. Alternatively, another factor, distinct from CIITA, might control HLA-DQ expression. We report here that ectopic expression of CIITA cDNAs derived by reverse transcriptase polymerase chain reaction from clone 13 do not restore expression of HLA-DQ in another CIITA-deficient cell line, RJ2.2.5. In addition, no CIITA protein is detectable in clone 13 nuclear extracts. In contrast, somatic cell fusion between clone 13 and RJ2.2.5 restored expression of the HLA-DQ haplotype encoded by the RJ2.2.5 DQB gene. Taken together, these data demonstrate the existence of an HLA-DQ isotype-specific trans-acting factor, which functions independently of CIITA.
Collapse
Affiliation(s)
- J Douhan
- Harvard School of Public Health, Department of Cancer Biology, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
15
|
Lennon A, Ottone C, Peijnenburg A, Hamon-Benais C, Colland F, Gobin S, van den Elsen P, Fellous M, Bono R, Alcaïde-Loridan C. The RAG cell line defines a new complementation group of MHC class II deficiency. Immunogenetics 1996; 43:352-9. [PMID: 8606055 DOI: 10.1007/bf02199803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously described RAG, a mouse adenocarcinoma cell line, as deficient for the induction of major histocompatibility (MHC) class II antigens by IFN-gamma, but responding normally for MHC class I antigen stimulation and anti-viral protection. We had established that the fusion of RAG with various human cell lines restored the induction of MHC class II antigens, whenever the human chromosome 16 was present in somatic cell hybrids. Here we show that the RAG cell line does not exhibit any induction by IFN-gamma of DMA, DMB, and the invariant chain (Ii) mRNAs, and that the induction is restored in somatic cell hybrids containing human chromosome 16. In order to define the gene (designated F16) affected in the RAG cells, we performed a complementation analysis by fusing RAG with previously described human cell lines defective for MHC class II antigen expression (e.g., BLS cell lines), and which belong to five different complementation groups. Our data show that the resulting somatic cell hybrids present an inducible expression of mouse MHC class II antigens, Ii, DMA, and DMB. Therefore, the RAG cell line represents a yet undescribed cellular mutant affected in the expression of MHC class II antigens. In addition, we demonstrate that MHC class II antigens can be constitutively expressed in the RAG cell line when transfected with the cDNA encoding human CIITA driven by the RSV LTR promoter. Since the complementation analysis assessed that F16 and CIITA are distinct, our data suggest that F16 is required for the expression of CIITA.
Collapse
Affiliation(s)
- A Lennon
- Unité d'Immunogénétique Humaine, INSERM, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Candotti F, Blaese RM. THE USE OF GENE THERAPY FOR IMMUNODEFICIENCY DISEASE. Radiol Clin North Am 1996. [DOI: 10.1016/s0033-8389(22)00235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Mach B, Steimle V, Martinez-Soria E, Reith W. Regulation of MHC class II genes: lessons from a disease. Annu Rev Immunol 1996; 14:301-31. [PMID: 8717517 DOI: 10.1146/annurev.immunol.14.1.301] [Citation(s) in RCA: 372] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Precise regulation of major histocompatibility complex class II (MHC-II) gene expression plays a crucial role in the control of the immune response. A major breakthrough in the elucidation of the molecular mechanisms involved in MHC-II regulation has recently come from the study of patients that suffer from a primary immunodeficiency resulting from regulatory defects in MHC-II expression. A genetic complementation cloning approach has led to the isolation of CIITA and RFX5, two essential MHC-II gene transactivators. CIITA and RFX5 are mutated in these patients, and the wild-type genes are capable of correcting their defect in MHC-II expression. The identification of these regulatory factors has furthered our understanding of the molecular mechanisms that regulate MHC-II genes. CIITA was found to be a non-DNA binding transactivator that functions as a molecular switch controlling both constitutive and inducible MHC-II expression. The finding that RFX5 is a subunit of the nuclear RFX-complex has confirmed that a deficiency in the binding of this complex is indeed the molecular basis for MHC-II deficiency in the majority of patients. Furthermore, the study of RFX has demonstrated that MHC-II promoter activity is dependent on the binding of higher-order complexes that are formed by highly specific cooperative binding interactions between certain MHC-II promoter-binding proteins. Two of these proteins belong to families of which the other members, although capable of binding to the same DNA motifs, are probably not directly involved in the control of MHC-II expression. Finally, the facts that CIITA and RFX5 are both essential and highly specific for MHC-II genes make possible novel strategies designed to achieve immunomodulation via transcriptional intervention.
Collapse
Affiliation(s)
- B Mach
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
19
|
Steimle V, Reith W, Mach B. Major histocompatibility complex class II deficiency: a disease of gene regulation. Adv Immunol 1996; 61:327-40. [PMID: 8834499 DOI: 10.1016/s0065-2776(08)60870-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- V Steimle
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | |
Collapse
|
20
|
Reith W, Steimle V, Mach B. Molecular defects in the bare lymphocyte syndrome and regulation of MHC class II genes. IMMUNOLOGY TODAY 1995; 16:539-46. [PMID: 7495492 DOI: 10.1016/0167-5699(95)80048-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The complex pattern of expression of major histocompatibility complex (MHC) class II molecules plays an essential role in the control of the immune response. Our understanding of the molecular mechanisms controlling this expression has benefited greatly from the identification of the regulatory factors defective in two forms of a hereditary disease of MHC class II regulation: bare lymphocyte syndrome. This has also provided new tools for the experimental modulation of MHC class II expression.
Collapse
Affiliation(s)
- W Reith
- Louis Jeantet Laboratory of Molecular Genetics, Dept of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | |
Collapse
|