1
|
Griffin MD, Malone AF. Endothelial Expression of Class II MHC Proteins: A New Layer of Complexity in Kidney Transplantation. J Am Soc Nephrol 2023; 34:727-729. [PMID: 36958047 PMCID: PMC10125630 DOI: 10.1681/asn.0000000000000115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Affiliation(s)
- Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Andrew F. Malone
- Division of Nephrology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
2
|
Petersdorf EW, O'hUigin C. The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Hum Immunol 2019; 80:67-78. [PMID: 30321633 PMCID: PMC6542361 DOI: 10.1016/j.humimm.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The MHC continues to have the most disease-associations compared to other regions of the human genome, even in the genome-wide association study (GWAS) and single nucleotide polymorphism (SNP) era. Analysis of non-coding variation and their impact on the level of expression of HLA allotypes has shed new light on the potential mechanisms underlying HLA disease associations and alloreactivity in transplantation. Next-generation sequencing (NGS) technology has the capability of delineating the phase of variants in the HLA antigen-recognition site (ARS) with non-coding regulatory polymorphisms. These relationships are critical for understanding the qualitative and quantitative implications of HLA gene diversity. This article summarizes current understanding of non-coding region variation of HLA loci, the consequences of regulatory variation on HLA expression, the role for evolution in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes. A role for phased sequencing methods for the MHC, and perspectives for future directions in basic and applied immunogenetic studies of the MHC are presented.
Collapse
Affiliation(s)
- Effie W Petersdorf
- University of Washington, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-115, Seattle, WA 98109, United States.
| | - Colm O'hUigin
- Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Microbiome and Genetics Core, Building 37, Room 4140B, Bethesda, MD 20852, United States.
| |
Collapse
|
3
|
Ramsuran V, Hernández-Sanchez PG, O'hUigin C, Sharma G, Spence N, Augusto DG, Gao X, García-Sepúlveda CA, Kaur G, Mehra NK, Carrington M. Sequence and Phylogenetic Analysis of the Untranslated Promoter Regions for HLA Class I Genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2320-2329. [PMID: 28148735 PMCID: PMC5340644 DOI: 10.4049/jimmunol.1601679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/02/2017] [Indexed: 01/09/2023]
Abstract
Polymorphisms located within the MHC have been linked to many disease outcomes by mechanisms not yet fully understood in most cases. Variants located within untranslated regions of HLA genes are involved in allele-specific expression and may therefore underlie some of these disease associations. We determined sequences extending nearly 2 kb upstream of the transcription start site for 68 alleles from 57 major lineages of classical HLA class I genes. The nucleotide diversity within this promoter segment roughly follows that seen within the coding regions, with HLA-B showing the highest (∼1.9%), followed by HLA-A (∼1.8%), and HLA-C showing the lowest diversity (∼0.9%). Despite its greater diversity, HLA-B mRNA expression levels determined in 178 European Americans do not vary in an allele- or lineage-specific manner, unlike the differential expression levels of HLA-A or HLA-C reported previously. Close proximity of promoter sequences in phylogenetic trees is roughly reflected by similarity of expression pattern for most HLA-A and -C loci. Although promoter sequence divergence might impact promoter activity, we observed no clear link between the phylogenetic structures as represented by pairwise nucleotide differences in the promoter regions with estimated differences in mRNA expression levels for the classical class I loci. Further, no pair of class I loci showed coordinated expression levels, suggesting that distinct mechanisms across loci determine their expression level under nonstimulated conditions. These data serve as a foundation for more in-depth analysis of the functional consequences of promoter region variation within the classical HLA class I loci.
Collapse
Affiliation(s)
- Veron Ramsuran
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Pedro G Hernández-Sanchez
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Laboratorio de Genómica Viral y Humana, Facultad de Medicina de la Universidad Autónoma de San Luis Potosi, 78210 San Luis Potosi, Mexico
| | - Colm O'hUigin
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Gaurav Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
- Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; and
| | - Niamh Spence
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; and
| | - Danillo G Augusto
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, CEP 81531-980, Brazil
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Christian A García-Sepúlveda
- Laboratorio de Genómica Viral y Humana, Facultad de Medicina de la Universidad Autónoma de San Luis Potosi, 78210 San Luis Potosi, Mexico
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702;
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
4
|
lachmi KW, Lin L, Kornum BR, Rico T, Lo B, Aran A, Mignot E. DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status. Hum Immunol 2012; 73:405-10. [PMID: 22326585 PMCID: PMC3501142 DOI: 10.1016/j.humimm.2012.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 01/06/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single-allele human leukocyte antigen (HLA) associations. In this study, we explored genome-wide expression in peripheral white blood cells of 50 narcolepsy versus 47 controls (half of whom were DQB1*06:02 positive) and observed the largest differences between the groups in the signal from HLA probes. Further studies of HLA-DQ expression (mRNA and protein in a subset) in 125 controls and 147 narcolepsy cases did not reveal any difference, a result we explain by the lack of proper control of allelic diversity in Affymetrix HLA probes. Rather, a clear effect of DQB1*06:02 allelic dosage on DQB1*06:02 mRNA levels (1.65-fold) and protein (1.59-fold) could be demonstrated independent of disease status. These results indicate that allelic dosage is transmitted into changes in heterodimer availability, a phenomenon that may explain the increased risk for narcolepsy in DQB1*06:02 homozygotes versus heterozygotes.
Collapse
Affiliation(s)
- Karin Weiner lachmi
- Center for Sleep Sciences, Stanford University, 1050 Arastradero Road. Bldg A Lab A258, Palo Alto, CA 94304-5592, USA
| | - Ling Lin
- Center for Sleep Sciences, Stanford University, 1050 Arastradero Road. Bldg A Lab A258, Palo Alto, CA 94304-5592, USA
| | - Birgitte Rahbek Kornum
- Center for Sleep Sciences, Stanford University, 1050 Arastradero Road. Bldg A Lab A258, Palo Alto, CA 94304-5592, USA
| | - Tom Rico
- Center for Sleep Sciences, Stanford University, 1050 Arastradero Road. Bldg A Lab A258, Palo Alto, CA 94304-5592, USA
| | - Betty Lo
- Center for Sleep Sciences, Stanford University, 1050 Arastradero Road. Bldg A Lab A258, Palo Alto, CA 94304-5592, USA
| | - Adi Aran
- Center for Sleep Sciences, Stanford University, 1050 Arastradero Road. Bldg A Lab A258, Palo Alto, CA 94304-5592, USA
| | - Emmanuel Mignot
- Center for Sleep Sciences, Stanford University, 1050 Arastradero Road. Bldg A Lab A258, Palo Alto, CA 94304-5592, USA
| |
Collapse
|
5
|
Handunnetthi L, Ramagopalan SV, Ebers GC, Knight JC. Regulation of major histocompatibility complex class II gene expression, genetic variation and disease. Genes Immun 2010; 11:99-112. [PMID: 19890353 PMCID: PMC2987717 DOI: 10.1038/gene.2009.83] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/15/2009] [Indexed: 12/29/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are central to adaptive immune responses and maintenance of self-tolerance. Since the early 1970s, the MHC class II region at chromosome 6p21 has been shown to be associated with a remarkable number of autoimmune, inflammatory and infectious diseases. Given that a full explanation for most MHC class II disease associations has not been reached through analysis of structural variation alone, in this review we examine the role of genetic variation in modulating gene expression. We describe the intricate architecture of the MHC class II regulatory system, indicating how its unique characteristics may relate to observed associations with disease. There is evidence that haplotype-specific variation involving proximal promoter sequences can alter the level of gene expression, potentially modifying the emergence and expression of key phenotypic traits. Although much emphasis has been placed on cis-regulatory elements, we also examine the role of more distant enhancer elements together with the evidence of dynamic inter- and intra-chromosomal interactions and epigenetic processes. The role of genetic variation in such mechanisms may hold profound implications for susceptibility to common disease.
Collapse
Affiliation(s)
- Lahiru Handunnetthi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - Sreeram V. Ramagopalan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - George C. Ebers
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Clinical Neurology, University of Oxford, Oxford OX3 7BN, UK
| | - Julian C. Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|