1
|
Mattijssen S, Welting TJM, Pruijn GJM. RNase MRP and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:102-16. [DOI: 10.1002/wrna.9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandy Mattijssen
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Center Maastricht, The Netherlands
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Tullo A, Rossmanith W, Imre EM, Sbisà E, Saccone C, Karwan RM. RNase Mitochondrial RNA Processing Cleaves RNA from the Rat Mitochondrial Displacement Loop at the Origin of Heavy-Strand DNA Replication. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0657p.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Moraes CT, Srivastava S, Kirkinezos I, Oca-Cossio J, van Waveren C, Woischnick M, Diaz F. Mitochondrial DNA structure and function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:3-23. [PMID: 12512335 DOI: 10.1016/s0074-7742(02)53002-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Carlos T Moraes
- Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Paluh JL, Clayton DA. Mutational analysis of the gene for Schizosaccharomyces pombe RNase MRP RNA, mrp1, using plasmid shuffle by counterselection on canavanine. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(199611)12:14<1393::aid-yea29>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Steinborn R, Müller M, Brem G. Genetic variation in functionally important domains of the bovine mtDNA control region. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1397:295-304. [PMID: 9582441 DOI: 10.1016/s0167-4781(98)00019-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA sequences of the mitochondrial control region (CR) of 32 unrelated Austrian cattle were analysed in order to determine the extent of variability in functionally important domains. Using sequencing of PCR products, allele-specific PCR (AS-PCR) and primer introduced restriction analysis (PIRA), 43 differences were observed. They included 33 transitions, five transversions, one deletion and four differences in the number of consecutive cytosines. Twenty-three of these polymorphisms have not been reported before. In addition, we analysed all available European cattle sequences for this region. The transcriptional start sites, the conserved sequence block CSB 1 and both binding sites for the mitochondrial transcription factor mtTFA were highly conserved. We found a transition in each of the inter-specifically conserved Mt4 and Mt5 elements, three nucleotide substitutions in the termination-associated sequence TAS-A and six polymorphisms in the conserved sequence block CSB 2+3, a region which has been implicated in mitochondrial RNA processing.
Collapse
Affiliation(s)
- R Steinborn
- Department of Animal Biotechnology at IFA, A-3430 Tulln, Austria.
| | | | | |
Collapse
|
6
|
Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C. Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 1997; 205:125-40. [PMID: 9461386 DOI: 10.1016/s0378-1119(97)00404-6] [Citation(s) in RCA: 348] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper reports the first comprehensive analysis of Displacement loop (D-loop) region sequences from ten different mammalian orders. It represents a systematic evolutionary study at the molecular level on regulatory homologous regions in organisms belonging to a well defined class, mammalia, which radiated about 150 million years ago (Mya). We have aligned and analyzed 26 complete D-loop region sequences available in the literature and the fat dormouse sequence, recently determined in our laboratory. The novelty of our alignment consists of the extensive manual revision of the preliminary output obtained by computer program to optimize sequence similarity, particularly for the two peripheral domains displaying heterogeneity in length and the presence of repeated sequences. The multialignment is available at the WWW site: http://www.ba.cnr.it/dloop.html. Our comparative study has allowed us to identify new conserved sequence blocks present in all the species under consideration and events of insertion/deletion which have important implications in both functional and evolutionary aspects. In particular we have detected two blocks, about 60 bp long, extended termination associated sequences (ETAS1 and ETAS2) conserved in all the organisms considered. Evaluation against experimental work suggests a possible functional role of ETAS1 and ETAS2 in the regulation of replication and transcription and targeted experimental approaches. The analyses on conserved sequence blocks (CSBs) clearly indicate that CSB1 is the only very essential element, common to all mammalian mt genomes, while CSB2 and CSB3 could be involved in different though related functions, probably species specific, and thus more linked to nuclear mitochondrial coevolutionary processes. Our hypothesis on the different functional implications of the conserved elements, CSBs and TASs, reported so far as main regulatory signals, would explain the different conservation of these elements in evolution. Moreover the intra-order comparison of the D-loop regions highlights peculiar features useful to define the evolutionary dynamics of this region in closely related species.
Collapse
Affiliation(s)
- E Sbisà
- Centro di Studio sui Mitocondri e Metabolismo Energetico, CNR, Bari, Italy
| | | | | | | | | |
Collapse
|
7
|
Abstract
The discovery that mutations in mitochondrial DNA (mtDNA) can be pathogenic in humans has increased interest in understanding mtDNA maintenance. The functional state of mtDNA requires a great number of factors for gene expression, DNA replication, and DNA repair. These processes are ultimately controlled by the cell nucleus, because the requisite proteins are all encoded by nuclear genes and imported into the mitochondrion. DNA replication and transcription are linked in vertebrate mitochondria because RNA transcripts initiated at the light-strand promoter are the primers for mtDNA replication at the heavy-strand origin. Study of this transcription-primed DNA replication mechanism has led to isolation of key factors involved in mtDNA replication and transcription and to elucidation of unique nucleic acid structures formed at this origin. Because features of a transcription-primed mechanism appear to be conserved in vertebrates, a general model for initiation of vertebrate heavy-strand DNA synthesis is proposed. In many organisms, mtDNA maintenance requires not only faithful mtDNA replication, but also mtDNA repair and recombination. The extent to which these latter two processes are involved in mtDNA maintenance in vertebrates is also appraised.
Collapse
Affiliation(s)
- G S Shadel
- Department of Biochemistry, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
8
|
Paluh JL, Clayton DA. Mutational analysis of the gene for Schizosaccharomyces pombe RNase MRP RNA, mrp1, using plasmid shuffle by counterselection on canavanine. Yeast 1996; 12:1393-405. [PMID: 8948095 DOI: 10.1002/(sici)1097-0061(199611)12:14%3c1393::aid-yea29%3e3.0.co;2-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reverse genetics in fission yeast is hindered by the lack of a versatile established plasmid shuffle system. In order to screen efficiently and accurately through plasmid-borne mutations in the essential gene for the RNA component of RNase MRP, mrp1, we have developed a system for plasmid shuffling in fission yeast using counterselection on canavanine. The system takes advantage of the ability of the Saccharomyces cerevisiae CAN1 gene to complement a Schizosaccharomyces pombe can1-1 mutation. Two general use plasmids were constructed that allow directional cloning and initial selection for histidine before counterselection by canavanine. The strain constructed for plasmid shuffling carries auxotrophic markers for ade6, leul, ura4 and his3 along with the can1-1 mutation. Using this system we examined several partial deletions and point mutations in conserved nucleotides of Schizosaccharomyces pombe RNase MRP RNA for their ability to complement a chromosomal deletion of the mrp1 gene. The degree of background canavanine resistance as well as plasmid-plasmid recombination encountered in these experiments was sufficiently low to suggest that the system we have set up for counterselection by canavanine in fission yeast using multicopy plasmids will be widely useful.
Collapse
Affiliation(s)
- J L Paluh
- Department of Cell and Molecular Biology, University of California, Berkeley 94720-3200, USA
| | | |
Collapse
|
9
|
Sbisà E, Pesole G, Tullo A, Saccone C. The evolution of the RNase P- and RNase MRP-associated RNAs: phylogenetic analysis and nucleotide substitution rate. J Mol Evol 1996; 43:46-57. [PMID: 8660429 DOI: 10.1007/bf02352299] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report a detailed evolutionary study of the RNase P- and RNase MRP- associated RNAs. The analyses were performed on all the available complete sequences of RNase MRP (vertebrates, yeast, plant), nuclear RNase P (vertebrates, yeast), and mitochondrial RNase P (yeast) RNAs. For the first time the phylogenetic distance between these sequences and the nucleotide substitution rates have been quantitatively measured.The analyses were performed by considering the optimal multiple alignments obtained mostly by maximizing similarity between primary sequences. RNase P RNA and MRP RNA display evolutionary dynamics following the molecular clock. Both have similar rates and evolve about one order of magnitude faster than the corresponding small rRNA sequences which have been, so far, the most common gene markers used for phylogeny. However, small rRNAs evolve too slowly to solve close phylogenetic relationships such as those between mammals. The quicker rate of RNase P and MRP RNA allowed us to assess phylogenetic relationships between mammals and other vertebrate species and yeast strains. The phylogenetic data obtained with yeasts perfectly agree with those obtained by functional assays, thus demonstrating the potential offered by this approach for laboratory experiments.
Collapse
Affiliation(s)
- E Sbisà
- Centro di Studio sui Mitocondri e Metabolismo Energetico, CNR. Via Amendola, 165/A, 70126 Bari, Italy
| | | | | | | |
Collapse
|
10
|
Abstract
The DNA sequences of the control region of the mitochondrial genome of fifty unrelated sheep were determined in order to ascertain the extent and distribution of its variability. A consensus sequence was derived, and 1081 differences from it were observed amongst the fifty animals. Some constant groups of differences were observed that were held in common by a number of animals, which thus fell into two main groups, although neither group was typical of any of the breeds sampled. The consensus sequence also allowed comparison between the control region sequences of sheep and other mammals. The sequence contains four tandem repeats of a 75 base-pair motif that accounts for the difference in its size from the cattle control region, to which it is otherwise very similar. Comparison with the cattle sequence allowed the determination of the homologues of various functionally important sites. The homologues of the transcription promoters, the origin of replication and the central conserved sequence block were all identified by this method.
Collapse
Affiliation(s)
- N J Wood
- University of Queensland, North Queensland Clinical School, Australia
| | | |
Collapse
|
11
|
Abstract
RNase P, the enzyme response for 5'-end processing of tRNAs and 4.5S RNA, has been extensively characterized from E. coli. The RNA component of E. coli RNase P, without the protein, has the enzymatic activity and is the first true RNA enzyme to be characterized. RNase P and MRP are two distinct nuclear ribonucleoprotein (RNP) particles characterized in many eukaryotic cells including human, yeast and plant cells. There are many similarities between RNase P and MRP. These include: (1) sequence specific endonuclease activity; (2) homology at the primary and secondary structure levels; and (3) common proteins in both the RNPs. It is likely that RNase P and MRP originated from a common ancestor.
Collapse
Affiliation(s)
- R Reddy
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
12
|
Abstract
A growing list of small nucleolar RNAs (snoRNAs) has been characterized in eukaryotes. They are transcribed by RNA polymerase II or III; some snoRNAs are encoded in the introns of other genes. The nonintronic polymerase II transcribed snoRNAs receive a trimethylguanosine cap, probably in the nucleus, and move to the nucleolus. snoRNAs are complexed with proteins, sometimes including fibrillarin. Localization and maintenance in the nucleolus of some snoRNAs requires the presence of initial precursor rRNA (pre-rRNA). Many snoRNAs have conserved sequence boxes C and D and a 3' terminal stem; the role of these features are discussed. Functional assays done for a few snoRNAs indicate their roles in rRNA processing for cleavage of the external and internal transcribed spacers (ETS and ITS). U3 is the most abundant snoRNA and is needed for cleavage of ETS1 and ITS1; experimental results on U3 binding sites in pre-rRNA are reviewed. 18S rRNA production also needs U14, U22, and snR30 snoRNAs, whereas U8 snoRNA is needed for 5.8S and 28S rRNA production. Other snoRNAs that are complementary to 18S or 28S rRNA might act as chaperones to mediate RNA folding. Whether snoRNAs join together in a large rRNA processing complex (the "processome") is not yet clear. It has been hypothesized that such complexes could anchor the ends of loops in pre-rRNA containing 18S or 28S rRNA, thereby replacing base-paired stems found in pre-rRNA of prokaryotes.
Collapse
|
13
|
Paluh JL, Clayton DA. Schizosaccharomyces pombe RNase MRP RNA is homologous to metazoan RNase MRP RNAs and may provide clues to interrelationships between RNase MRP and RNase P. Yeast 1995; 11:1249-64. [PMID: 8553696 DOI: 10.1002/yea.320111305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
RNase MRP and RNase P ribonucleoproteins are structurally and functionally similar across a large evolutionary distance. To better characterize possible complex interrelationships between these two enzymes, we have employed the fission yeast Schizosaccharomyces pombe. Unlike Saccharomyces cerevisiae, S. pombe is believed to harbour only one genetic locus for the RNA component of RNase P and does not contain a known mitochondrially encoded RNase P RNA. We have identified the single nuclear gene for the RNA component of RNase MRP in S. pombe, mrp-1, by homology to vertebrate RNase MRP RNAs. The mrp-1 gene encodes an RNA of maximum mature length 400 nucleotides that shares a high degree of identity, in evolutionarily conserved regions, to both vertebrate RNase MRP RNAs and S. pombe RNase P RNA. Disruption of mrp-1 in the diploid strain SP826 and sporulation of tetrads resulted in a 2 dead:2 viable segregation, consistent with the gene being essential. Lethality is rescued by a plasmid-borne copy of mrp-1. Partially purified ribonucleoprotein RNase MRP activity correctly and efficiently processed all previously characterized heterologous mitochondrial RNA substrates. The compact mitochondrial genome of S. pombe contains sequence elements with > 50% identity to mammalian D-loop CSBI and CSBII elements. The identification of mrp-1 in S. pombe should facilitate not only comparisons between the related ribonucleoproteins RNase MRP and RNase P, but should also provide an opportunity for genetic elucidation of RNase MRP function in a situation reflective of the animal kingdom.
Collapse
Affiliation(s)
- J L Paluh
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5427, USA
| | | |
Collapse
|
14
|
Tracy RL, Stern DB. Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet 1995; 28:205-16. [PMID: 8529266 DOI: 10.1007/bf00309779] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A diversity of promoter structures. It is evident that tremendous diversity exists between the modes of mitochondrial transcription initiation in the different eukaryotic kingdoms, at least in terms of promoter structures. Within vertebrates, a single promoter for each strand exists, which may be unidirectional or bidirectional. In fungi and plants, multiple promoters are found, and in each case, both the extent and the primary sequences of promoters are distinct. Promoter multiplicity in fungi, plants and trypanosomes reflects the larger genome size and scattering of genes relative to animals. However, the dual roles of certain promoters in transcription and replication, at least in yeast, raises the interesting question of how the relative amounts of RNA versus DNA synthesis are regulated, possibly via cis-elements downstream from the promoters. Mitochondrial RNA polymerases. With respect to mitochondrial RNA polymerases, characterization of human, mouse, Xenopus and yeast enzymes suggests a marked degree of conservation in their behavior and protein composition. In general, these systems consist of a relatively non-selective core enzyme, which itself is unable to recognize promoters, and at least one dissociable specificity factor, which confers selectivity to the core subunit. In most of these systems, components of the RNA polymerase have been shown to induce a conformational change in their respective promoters and have also been assigned the role of a primase in the replication of mtDNA. While studies of the yeast RNA polymerase have suggested it has both eubacterial (mtTFB) and bacteriophage (RPO41) origins, it is not yet clear whether these characteristics will be conserved in the mitochondrial RNA polymerases of all eukaryotes. mtTFA-mtTFB; conserved but dissimilar functions. With respect to transcription factors, mtTFA has been found in both vertebrates and yeast, and may be a ubiquitous protein in mitochondria. However, the divergence in non-HMG portions of the proteins, combined with differences in promoter structure, has apparently relegated mtTFA to alternative, or at least non-identical, physiological roles in vertebrates and fungi. The relative ease with which mtTFA can be purified (Fisher et al. 1991) suggests that, where present, it should be facile to detect. mtTFB may represent a eubacterial sigma factor adapted for interaction with the mitochondrial RNA polymerase.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R L Tracy
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
15
|
Tullo A, Rossmanith W, Imre EM, Sbisà E, Saccone C, Karwan RM. RNase mitochondrial RNA processing cleaves RNA from the rat mitochondrial displacement loop at the origin of heavy-strand DNA replication. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:657-62. [PMID: 7532584 DOI: 10.1111/j.1432-1033.1995.tb20185.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ribonuclease mitochondrial RNA processing cleaves RNAs from the mammalian mitochondrial main non-coding regulatory region, called the displacement loop. Our data demonstrate that rat cells contain a site-specific ribonuclease mitochondrial RNA processing activity. We found that this enzyme processes the rat mitochondrial displacement-loop RNA substrate at the level of the conserved sequence block 1, a result which is different from that for mouse. This finding correlates with the in-vivo transcriptional analysis of the rat displacement-loop region. Processing by homologous and heterologous ribonuclease mitochondrial RNA enzymes occurs in the same manner, suggesting a conserved mode of substrate recognition.
Collapse
Affiliation(s)
- A Tullo
- Centro di Studio sui Mitocondri e Metabolismo Energetico, C. N. R. Bari, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Nuclear-mitochondrial coevolution of RNA processing enzymes and cellular function. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/b978-0-444-82235-2.50028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Abstract
This is an update containing small RNA sequences deposited in GenBank recently. Over four hundred small RNA sequences are available in this and earlier complications.
Collapse
Affiliation(s)
- J Gu
- Baylor College of Medicine, Pharmacology Department, Houston, TX 77030
| | | |
Collapse
|
18
|
Affiliation(s)
- D A Clayton
- Department of Developmental Biology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, CA 94305-5427
| |
Collapse
|
19
|
Ghivizzani SC, Mackay SL, Madsen CS, Laipis PJ, Hauswirth WW. Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J Mol Evol 1993; 37:36-7. [PMID: 8360917 DOI: 10.1007/bf00170460] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mitochondrial D-loop region of the pig, Sus scrofa, was found to be several hundred base pairs larger than the corresponding region in cow, a related artiodactyl species, primarily because of an insertion containing the tandemly repeated sequence CGTGCGTACA. Porcine mitochondrial DNA from the tissue of a single animal exhibits a large population of length polymorphs, each member of which may have as few as 14 or as many as 29 of these repeat units. This intracellular variability may be due to the repeated and self-complementary properties of this sequence, which would favor mispairing and lead to replication slippage. The repeat domain is unusual in that symmetry properties suggest it may assume alternative conformations including cruciforms and left-handed (Z) DNA. It also appears to be the longest known, naturally occurring, alternating purine-pyrimidine sequence. In order to understand the functional significance of this heteroplasmic domain that potentially disrupts a key regulatory region in the mitochondrial genome, RNA and DNA mapping studies were conducted which located this region between the H-strand replication origin and the putative L-strand transcriptional start site. H-strand RNA analysis demonstrated that this heteroplasmic region is transcribed and, therefore, that priming for H-strand DNA replication in mitochondria is independent of the primer RNA length or secondary structure.
Collapse
Affiliation(s)
- S C Ghivizzani
- Department of Immunology and Medical Microbiology, University of Florida, College of Medicine, Gainesville 32610-0266
| | | | | | | | | |
Collapse
|