1
|
Randhawa K, Jahani-Asl A. CLIC1 regulation of cancer stem cells in glioblastoma. CURRENT TOPICS IN MEMBRANES 2023; 92:99-123. [PMID: 38007271 DOI: 10.1016/bs.ctm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Chloride intracellular channel 1 (CLIC1) has emerged as a therapeutic target in various cancers. CLIC1 promotes cell cycle progression and cancer stem cell (CSC) self-renewal. Furthermore, CLIC1 is shown to play diverse roles in proliferation, cell volume regulation, tumour invasion, migration, and angiogenesis. In glioblastoma (GB), CLIC1 facilitates the G1/S phase transition and tightly regulates glioma stem-like cells (GSCs), a rare population of self-renewing CSCs with central roles in tumour resistance to therapy and tumour recurrence. CLIC1 is found as either a monomeric soluble protein or as a non-covalent dimeric protein that can form an ion channel. The ratio of dimeric to monomeric protein is altered in GSCs and depends on the cell redox state. Elucidating the mechanisms underlying the alterations in CLIC1 expression and structural transitions will further our understanding of its role in GSC biology. This review will highlight the role of CLIC1 in GSCs and its significance in facilitating different hallmarks of cancer.
Collapse
Affiliation(s)
- Kamaldeep Randhawa
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Varela L, Hendry AC, Cassar J, Martin-Escolano R, Cantoni D, Ossa F, Edwards JC, Abdul-Salam V, Ortega-Roldan JL. A Zn2+-triggered two-step mechanism of CLIC1 membrane insertion and activation into chloride channels. J Cell Sci 2022; 135:jcs259704. [PMID: 35833483 PMCID: PMC9511705 DOI: 10.1242/jcs.259704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
The chloride intracellular channel (CLIC) protein family displays the unique feature of altering its structure from a soluble form to a membrane-bound chloride channel. CLIC1, a member of this family, is found in the cytoplasm or in internal and plasma membranes, with membrane relocalisation linked to endothelial disfunction, tumour proliferation and metastasis. The molecular switch promoting CLIC1 activation remains under investigation. Here, cellular Cl- efflux assays and immunofluorescence microscopy studies have identified intracellular Zn2+ release as the trigger for CLIC1 activation and membrane insertion. Biophysical assays confirmed specific binding to Zn2+, inducing membrane association and enhancing Cl- efflux in a pH-dependent manner. Together, our results identify a two-step mechanism with Zn2+ binding as the molecular switch promoting CLIC1 membrane insertion, followed by pH-mediated activation of Cl- efflux.
Collapse
Affiliation(s)
- Lorena Varela
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Alex C. Hendry
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Joseph Cassar
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Diego Cantoni
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME7 4TB, UK
| | - Felipe Ossa
- Centre for Cardiovascular Medicine and Device Innovation, William Harvey Research Institute (WHRI), Faculty of Medicine and Dentistry, Queen Mary University of London, Room 213, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John C. Edwards
- Department of Internal Medicine, St Louis University, 3635 Vista Ave., St Louis, MO 63110, USA
| | - Vahitha Abdul-Salam
- Centre for Cardiovascular Medicine and Device Innovation, William Harvey Research Institute (WHRI), Faculty of Medicine and Dentistry, Queen Mary University of London, Room 213, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | | |
Collapse
|
3
|
Zhang Y, Ying H, Xu Y. Comparative genomics and metagenomics of the metallomes. Metallomics 2019; 11:1026-1043. [DOI: 10.1039/c9mt00023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent achievements and advances in comparative genomic and metagenomic analyses of trace metals were reviewed and discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huimin Ying
- Department of Endocrinology
- Hangzhou Xixi Hospital
- Hangzhou
- P. R. China
| | - Yinzhen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
4
|
Trace Elements and Healthcare: A Bioinformatics Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1005:63-98. [PMID: 28916929 DOI: 10.1007/978-981-10-5717-5_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.
Collapse
|
5
|
Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme. Appl Environ Microbiol 2016; 82:6344-6356. [PMID: 27542935 DOI: 10.1128/aem.01336-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/11/2016] [Indexed: 11/20/2022] Open
Abstract
In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB-) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the synthesis of active uptake systems. The Pst phosphate transport system is one such system, responsible for the internalization of phosphate when cells are in phosphate-limited environments. Our investigations reveal the presence of multiple Pst phosphate uptake systems that exist across three distinct operons in Nostoc punctiforme and functionally characterize the role of the gene product PstB1 as being crucial for the maintenance of phosphate accumulation. We demonstrate that the genes pstB2, pstB3, and pstB4 show alterations in expression to compensate for the deletion of pstB1 The overall outcomes of this work provide insights as to the complex transport mechanisms that exist in cyanobacteria like N. punctiforme, allowing them to thrive in low-phosphate environments.
Collapse
|
6
|
Hudek L, Pearson L, Michalczyk AA, Bräu L, Neilan BA, Ackland ML. Characterization of two cation diffusion facilitators NpunF0707 and NpunF1794 in Nostoc punctiforme. J Appl Microbiol 2015; 119:1357-70. [PMID: 26299407 DOI: 10.1111/jam.12942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/15/2015] [Accepted: 08/11/2015] [Indexed: 11/28/2022]
Abstract
AIMS To characterize genes involved in maintaining homeostatic levels of zinc in the cyanobacterium Nostoc punctiforme. METHODS AND RESULTS Metal efflux transporters play a central role in maintaining homeostatic levels of trace elements such as zinc. Sequence analyses of the N. punctiforme genome identified two potential cation diffusion facilitator (CDF) metal efflux transporters, Npun_F0707 (Cdf31) and Npun_F1794 (Cdf33). Deletion of either Cdf31or Cdf33 resulted in increased zinc retention over 3 h. Interestingly, Cdf31(-) and Cdf33(-) mutants showed no change in sensitivity to zinc exposure in comparison with the wild type, suggesting some compensatory capacity for the loss of each other. Using qRT-PCR, a possible interaction was observed between the two cdf's, where the Cdf31(-) mutant had a more profound effect on cdf33 expression than Cdf33(-) did on cdf31. Over-expression of Cdf31 and Cdf33 in ZntA(-) - and ZitB(-) -deficient Escherichia coli revealed function similarities between the ZntA and ZitB of E. coli and the cyanobacterial transporters. CONCLUSIONS The data presented shed light on the function of two important transporters that regulate zinc homeostasis in N. punctiforme. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows for the first time the functional characterization of two cyanobacterial zinc efflux proteins belonging to the CDF family.
Collapse
Affiliation(s)
- L Hudek
- Centre for Regional and Rural Futures, Deakin University, Burwood, Melbourne, Vic., Australia.,Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic., Australia
| | - L Pearson
- Australian Centre for Astrobiology and School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW, Australia
| | - A A Michalczyk
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic., Australia
| | - L Bräu
- Centre for Regional and Rural Futures, Deakin University, Burwood, Melbourne, Vic., Australia.,Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic., Australia
| | - B A Neilan
- Australian Centre for Astrobiology and School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW, Australia
| | - M L Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic., Australia
| |
Collapse
|
7
|
Hudek L, Bräu L, Michalczyk AA, Neilan BA, Meeks JC, Ackland ML. The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme. Appl Microbiol Biotechnol 2015; 99:10559-74. [PMID: 26290176 DOI: 10.1007/s00253-015-6922-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/02/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022]
Abstract
Analysis of cellular response to zinc exposure provides insights into how organisms maintain homeostatic levels of zinc that are essential, while avoiding potentially toxic cytosolic levels. Using the cyanobacterium Nostoc punctiforme as a model, qRT-PCR analyses established a profile of the changes in relative mRNA levels of the ZntA-like zinc efflux transporter NpunR4017 in response to extracellular zinc. In cells treated with 18 μM of zinc for 1 h, NpunR4017 mRNA levels increased by up to 1300 % above basal levels. The accumulation and retention of radiolabelled (65)Zn by NpunR4107-deficient and overexpressing strains were compared to wild-type levels. Disruption of NpunR4017 resulted in a significant increase in zinc accumulation up to 24 % greater than the wild type, while cells overexpressing NpunR4107 accumulated 22 % less than the wild type. Accumulation of (65)Zn in ZntA(-) Escherichia coli overexpressing NpunR4017 was reduced by up to 21 %, indicating the capacity for NpunR4017 to compensate for the loss of ZntA. These findings establish the newly identified NpunR4017 as a zinc efflux transporter and a key transporter for maintaining zinc homeostasis in N. punctiforme.
Collapse
Affiliation(s)
- L Hudek
- Centre for Regional and Rural Futures, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia. .,Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia.
| | - L Bräu
- Centre for Regional and Rural Futures, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia.,School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | - A A Michalczyk
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia.,School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | - B A Neilan
- Australian Centre for Astrobiology and School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J C Meeks
- Department of Microbiology, University of California, Davis, CA, 95616, USA
| | - M L Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia.,School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| |
Collapse
|
8
|
Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML. Functional characterization of the twin ZIP/SLC39 metal transporters, NpunF3111 and NpunF2202 in Nostoc punctiforme. Appl Microbiol Biotechnol 2013; 97:8649-62. [PMID: 23812332 DOI: 10.1007/s00253-013-5047-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
The ZIP family of metal transporters is involved in the transport of Zn(2+) and other metal cations from the extracellular environment and/or organelles into the cytoplasm of prokaryotes, eukaryotes and archaeotes. In the present study, we identified twin ZIP transporters, Zip11 (Npun_F3111) and Zip63 (Npun_F2202) encoded within the genome of the filamentous cyanobacterium, Nostoc punctiforme PCC73120. Sequence-based analyses and structural predictions confirmed that these cyanobacterial transporters belong to the SLC39 subfamily of metal transporters. Quantitative real-time (QRT)-PCR analyses suggested that the enzymes encoded by zip11 and zip63 have a broad allocrite range that includes zinc as well as cadmium, cobalt, copper, manganese and nickel. Inactivation of either zip11 or zip63 via insertional mutagenesis in N. punctiforme resulted in reduced expression of both genes, highlighting a possible co-regulation mechanism. Uptake experiments using (65)Zn demonstrated that both zip mutants had diminished zinc uptake capacity, with the deletion of zip11 resulting in the greatest overall reduction in (65)Zn uptake. Over-expression of Zip11 and Zip63 in an E. coli mutant strain (ZupT736::kan) restored divalent metal cation uptake, providing further evidence that these transporters are involved in Zn uptake in N. punctiforme. Our findings show the functional role of these twin metal uptake transporters in N. punctiforme, which are independently expressed in the presence of an array of metals. Both Zip11 and Zip63 are required for the maintenance of homeostatic levels of intracellular zinc N. punctiforme, although Zip11 appears to be the primary zinc transporter in this cyanobacterium, both ZIP's may be part of a larger metal uptake system with shared regulatory elements.
Collapse
Affiliation(s)
- L Hudek
- Centre for Cellular and Molecular Biology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | | | | | | | | |
Collapse
|
9
|
Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML. Molecular and cellular characterisation of the zinc uptake (Znu) system ofNostoc punctiforme. FEMS Microbiol Ecol 2013; 86:149-71. [DOI: 10.1111/1574-6941.12153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lee Hudek
- Centre for Cellular and Molecular Biology; School of Life and Environmental Sciences; Deakin University; Burwood; Vic.; Australia
| | - Leanne A. Pearson
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - Agnes Michalczyk
- Centre for Cellular and Molecular Biology; School of Life and Environmental Sciences; Deakin University; Burwood; Vic.; Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney; NSW; Australia
| | - M. Leigh Ackland
- Centre for Cellular and Molecular Biology; School of Life and Environmental Sciences; Deakin University; Burwood; Vic.; Australia
| |
Collapse
|
10
|
hZip1 (hSLC39A1) regulates zinc homoeostasis in gut epithelial cells. GENES AND NUTRITION 2013; 8:475-86. [PMID: 23378263 DOI: 10.1007/s12263-013-0332-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
Zinc is an essential trace element required for enzyme catalysis, gene regulation and signal transduction. Zinc absorption takes place in the small intestine; however, the mechanisms by which cells accumulate zinc are not entirely clear. Zip1 (SLC39A1) is a predicted transmembrane protein that is postulated, but not conclusively proven to mediate zinc influx in gut cells. The aim of this study was to investigate a role for hZip1 in mediating zinc uptake in human enterocytes. Both hZip1 mRNA and protein were detected in human intestinal tissue. In non-differentiated Caco-2 human gut cells, hZip1 was partially localised to the endoplasmic reticulum. In contrast, in differentiated Caco-2 cells cultured in extracellular matrix, the hZip1 protein was located in proximity to the apical microvilli. Lack of surface antibody binding and internalisation indicated that hZip1 was not present on the plasma membrane. Functional studies to establish a role for hZip1 in cellular zinc accumulation were carried out using (65)Zn. In Caco-2 cells harbouring an hZip1 overexpression construct, cellular zinc accumulation was enhanced relative to the control. Conversely, Caco-2 cells with an hZip1 siRNA construct showed reduced zinc accumulation. In summary, we show that the Caco-2 cell differentiation endorses targeting of hZip1 to a region near the apical domain. Given the absence of hZip1 at the apical plasma membrane, we propose that hZip1 may act as an intracellular sensor to regulate zinc homoeostasis in human gut cells.
Collapse
|
11
|
Abstract
Biological trace metals are needed in small quantities, but used by all living organisms. They are employed in key cellular functions in a variety of biological processes, resulting in the various degree of dependence of organisms on metals. Most effort in the field has been placed on experimental studies of metal utilization pathways and metal-dependent proteins. On the other hand, systemic level analyses of metalloproteomes (or metallomes) have been limited for most metals. In this chapter, we focus on the recent advances in comparative genomics, which provides many insights into evolution and function of metal utilization. These studies suggested that iron and zinc are widely used in biology (presumably by all organisms), whereas some other metals such as copper, molybdenum, nickel, and cobalt, show scattered occurrence in various groups of organisms. For these metals, most user proteins are well characterized and their dependence on a specific element is evolutionarily conserved. We also discuss evolutionary dynamics of the dependence of user proteins on different metals. Overall, comparative genomics analysis of metallomes provides a foundation for the systemic level understanding of metal utilization as well as for investigating the general features, functions, and evolutionary dynamics of metal use in the three domains of life.
Collapse
|
12
|
Hudek L, Rai S, Michalczyk A, Rai LC, Neilan BA, Ackland ML. Physiological metal uptake by Nostoc punctiforme. Biometals 2012; 25:893-903. [DOI: 10.1007/s10534-012-9556-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
|
13
|
Zhang Y, Gladyshev VN. General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni, and Se. J Biol Chem 2009; 285:3393-405. [PMID: 19887375 DOI: 10.1074/jbc.m109.071746] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trace elements are used by all organisms and provide proteins with unique coordination and catalytic and electron transfer properties. Although many trace element-containing proteins are well characterized, little is known about the general trends in trace element utilization. We carried out comparative genomic analyses of copper, molybdenum, nickel, cobalt (in the form of vitamin B(12)), and selenium (in the form of selenocysteine) in 747 sequenced organisms at the following levels: (i) transporters and transport-related proteins, (ii) cofactor biosynthesis traits, and (iii) trace element-dependent proteins. Few organisms were found to utilize all five trace elements, whereas many symbionts, parasites, and yeasts used only one or none of these elements. Investigation of metalloproteomes and selenoproteomes revealed examples of increased utilization of proteins that use copper in land plants, cobalt in Dehalococcoides and Dictyostelium, and selenium in fish and algae, whereas nematodes were found to have great diversity of copper transporters. These analyses also characterized trace element metabolism in common model organisms and suggested new model organisms for experimental studies of individual trace elements. Mismatches in the occurrence of user proteins and corresponding transport systems revealed deficiencies in our understanding of trace element biology. Biological interactions among some trace elements were observed; however, such links were limited, and trace elements generally had unique utilization patterns. Finally, environmental factors, such as oxygen requirement and habitat, correlated with the utilization of certain trace elements. These data provide insights into the general features of utilization and evolution of trace elements in the three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
14
|
Zhang Y, Gladyshev VN. Comparative Genomics of Trace Elements: Emerging Dynamic View of Trace Element Utilization and Function. Chem Rev 2009; 109:4828-61. [DOI: 10.1021/cr800557s] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Zhang
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664
| | - Vadim N. Gladyshev
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664
| |
Collapse
|
15
|
Song YM, Lin PY, Chen MD. The effects of calcium channel blocker benidipine and calmodulin antagonist W7 on GDP-binding capacity of brown adipose tissue in mice. Biol Trace Elem Res 2009; 127:245-50. [PMID: 18953505 DOI: 10.1007/s12011-008-8244-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 09/15/2008] [Indexed: 11/30/2022]
Abstract
It has been suggested that increased dietary calcium intake can attenuate obesity. Calcium antagonists, such as benidipine, also have been shown to have an anti-obesity effect. However, the mechanism for calcium-related anti-obesity effect has not yet been established. A defective brown adipose tissue thermogenesis has been shown in obese rodents. This study was designed to examine the direct effects of calcium channel blocker benidipine and calmodulin antagonist W7 administration on the adaptive thermogenesis in brown adipose tissue taken from the genetically obese mice and their lean controls. The GDP binding to brown-fat cell mitochondria was used as a brown adipose tissue thermogenic index. The results show that benidipine treatment had no marked effect on brown-fat cell GDP-binding capacities in both obese and lean mice. However, GDP-binding capacities were significantly reduced in both obese and lean mice after the W7 administration. The results of this study support the previous finding that benidipine did not have direct thermogenic effect on brown adipose tissue and suggest that the change in intracellular calmodulin availability might contribute to the adaptive thermogenesis in brown adipose tissue.
Collapse
Affiliation(s)
- Yuh-Min Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan, Republic of China
| | | | | |
Collapse
|
16
|
Bioinformatic and expression analyses of genes mediating zinc homeostasis in Nostoc punctiforme. Appl Environ Microbiol 2008; 75:784-91. [PMID: 19011078 DOI: 10.1128/aem.02481-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc homeostasis was investigated in Nostoc punctiforme. Cell tolerance to Zn(2+) over 14 days showed that ZnCl(2) levels above 22 microM significantly reduced cell viability. After 3 days in 22 microM ZnCl(2), ca. 12% of the Zn(2+) was in an EDTA-resistant component, suggesting an intracellular localization. Zinquin fluorescence was detected within cells exposed to concentrations up to 37 microM relative to 0 microM treatment. Radiolabeled (65)Zn showed Zn(2+) uptake increased over a 3-day period, while efflux occurred more rapidly within a 3-h time period. Four putative genes involved in Zn(2+) uptake and efflux in N. punctiforme were identified: (i) the predicted Co/Zn/Cd cation transporter, putative CDF; (ii) the predicted divalent heavy-metal cation transporter, putative Zip; (iii) the ATPase component and Fe/Zn uptake regulation protein, putative Fur; and (iv) an ABC-type Mn/Zn transport system, putative zinc ZnuC, ZnuABC system component. Quantitative real-time PCR indicated the responsiveness of all four genes to 22 microM ZnCl(2) within 3 h, followed by a reduction to below basal levels after 24 h by putative ZIP, ZnuC, and Fur and a reduction to below basal level after 72 h by putative CDF efflux gene. These results demonstrate differential regulation of zinc transporters over time, indicating a role for them in zinc homeostasis in N. punctiforme.
Collapse
|
17
|
Glover CN, Bury NR, Hogstrand C. Intestinal zinc uptake in freshwater rainbow trout: evidence for apical pathways associated with potassium efflux and modified by calcium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:214-21. [PMID: 15157623 DOI: 10.1016/j.bbamem.2004.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 03/01/2004] [Accepted: 03/19/2004] [Indexed: 11/20/2022]
Abstract
Understanding the mechanisms of intestinal zinc uptake in fish is of considerable interest from both nutritional and toxicological perspectives. In this study, properties of zinc transport across the apical membrane of freshwater rainbow trout intestinal epithelia were examined using right-side-out brush border membrane vesicles (BBMV's). Extravesicular calcium was found to have complex actions on zinc uptake. At a low zinc concentration of 1 microM, calcium (0.1-2 mM) significantly stimulated zinc uptake. In contrast, calcium inhibited zinc uptake at higher zinc levels (100 microM). Lanthanum and cadmium in the external medium did not block zinc uptake, suggesting that interactions between zinc and calcium were not exerted at a calcium channel. Copper also failed to exercise any inhibitory action. Zinc association with the BBMV's was enhanced by an outward potassium gradient. This stimulatory effect was only present at a zinc concentration of 100 microM. The potassium channel blocker, tetraethylammonium chloride inhibited zinc uptake at this relatively high zinc concentration, suggesting the presence of a low affinity zinc uptake pathway linked to potassium efflux. The present study provides evidence that the mechanism of intestinal zinc uptake in rainbow trout is pharmacologically very different from that of the piscine gill and the mammalian intestine.
Collapse
Affiliation(s)
- Chris N Glover
- School of Health and Life Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NN, UK.
| | | | | |
Collapse
|
18
|
Mouat MF, Greenspan P, Byerley LO, Grider A. Zinc uptake into MCF-10A cells is inhibited by cholesterol depletion. J Nutr Biochem 2003; 14:74-80. [PMID: 12667598 DOI: 10.1016/s0955-2863(02)00250-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanism for cellular Zn uptake was investigated by depleting cell cholesterol levels, a treatment that disrupts lipid rafts/caveolae-dependent processes and inhibits coated-pit budding. Incubation of MCF-10A human breast epithelial cells with hydroxypropyl-beta-cyclodextrin significantly lowered cell cholesterol levels and significantly inhibited cellular zinc uptake measured at 10 min, but had no effect on 2-deoxyglucose uptake. Replacing potassium for sodium in the uptake buffer significantly stimulated Zn uptake by 20%. The effects of potassium depletion and chlorpromazine on Zn uptake were investigated to determine the contribution of coated-pit endocytosis. Potassium depletion following hypotonic shock significantly inhibited Zn uptake into MCF-10A cells approximately 15%. Chlorpromazine at 20 microg/ml inhibited uptake approximately 30%. The data support the hypothesis that Zn uptake into MCF-10A cells involves lipid rafts/caveolae. The relatively mild effects of potassium depletion and chlorpromazine suggest that a small portion of Zn uptake may require coated pit endocytosis.
Collapse
Affiliation(s)
- Michael F Mouat
- University of Georgia, Department of Foods and Nutrition, Athens, GA 30602, USA
| | | | | | | |
Collapse
|