1
|
Neri M, Brovelli A, Castro S, Fraisopi F, Gatica M, Herzog R, Mediano PAM, Mindlin I, Petri G, Bor D, Rosas FE, Tramacere A, Estarellas M. A Taxonomy of Neuroscientific Strategies Based on Interaction Orders. Eur J Neurosci 2025; 61:e16676. [PMID: 39906974 DOI: 10.1111/ejn.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/15/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025]
Abstract
In recent decades, neuroscience has advanced with increasingly sophisticated strategies for recording and analysing brain activity, enabling detailed investigations into the roles of functional units, such as individual neurons, brain regions and their interactions. Recently, new strategies for the investigation of cognitive functions regard the study of higher order interactions-that is, the interactions involving more than two brain regions or neurons. Although methods focusing on individual units and their interactions at various levels offer valuable and often complementary insights, each approach comes with its own set of limitations. In this context, a conceptual map to categorize and locate diverse strategies could be crucial to orient researchers and guide future research directions. To this end, we define the spectrum of orders of interaction, namely, a framework that categorizes the interactions among neurons or brain regions based on the number of elements involved in these interactions. We use a simulation of a toy model and a few case studies to demonstrate the utility and the challenges of the exploration of the spectrum. We conclude by proposing future research directions aimed at enhancing our understanding of brain function and cognition through a more nuanced methodological framework.
Collapse
Affiliation(s)
- Matteo Neri
- Institut de Neurosciences de la Timone, Aix-Marseille Université, UMR 7289 CNRS, Marseille, France
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix-Marseille Université, UMR 7289 CNRS, Marseille, France
| | - Samy Castro
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
- Institut de Neurosciences Des Systèmes (INS), Aix-Marseille Université, UMR 1106, Marseille, France
| | - Fausto Fraisopi
- Institute for Advanced Study, Aix-Marseille University, Marseille, France
| | - Marilyn Gatica
- NPLab, Network Science Institute, Northeastern University London, London, UK
| | - Ruben Herzog
- DreamTeam, Paris Brain Institute (ICM), Paris, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Ivan Mindlin
- DreamTeam, Paris Brain Institute (ICM), Paris, France
- PICNIC lab, Paris Brain Institute (ICM), Paris, France
| | - Giovanni Petri
- NPLab, Network Science Institute, Northeastern University London, London, UK
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
- NPLab, CENTAI Institute, Turin, Italy
| | - Daniel Bor
- Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Sussex Centre for Consciousness Science and Sussex AI, Department of Informatics, University of Sussex, Brighton, UK
- Center for Psychedelic Research and Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Principles of Intelligent Behavior in Biological and Social Systems (PIBBSS), Prague, Czechia
| | - Antonella Tramacere
- Department of Philosophy, Communication and Performing Arts, Roma Tre University, Rome, Italy
| | - Mar Estarellas
- Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Dutta S, Mondal A, Kundu P, Khanra P, Pal P, Hens C. Impact of phase lag on synchronization in frustrated Kuramoto model with higher-order interactions. Phys Rev E 2023; 108:034208. [PMID: 37849147 DOI: 10.1103/physreve.108.034208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 10/19/2023]
Abstract
The study of first order transition (explosive synchronization) in an ensemble (network) of coupled oscillators has been the topic of paramount interest among the researchers for more than one decade. Several frameworks have been proposed to induce explosive synchronization in a network and it has been reported that phase frustration in a network usually suppresses first order transition in the presence of pairwise interactions among the oscillators. However, on the contrary, by considering networks of phase frustrated coupled oscillators in the presence of higher-order interactions (up to 2-simplexes) we show here, under certain conditions, phase frustration can promote explosive synchronization in a network. A low-dimensional model of the network in the thermodynamic limit is derived using the Ott-Antonsen ansatz to explain this surprising result. Analytical treatment of the low-dimensional model, including bifurcation analysis, explains the apparent counter intuitive result quite clearly.
Collapse
Affiliation(s)
- Sangita Dutta
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| | - Abhijit Mondal
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| | - Prosenjit Kundu
- Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, Gujarat 382007, India
| | - Pitambar Khanra
- Department of Mathematics, State University of New York at Buffalo, Buffalo 14260, USA
| | - Pinaki Pal
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| | - Chittaranjan Hens
- Center for Computational Natural Science and Bioinformatics, International Institute of Informational Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
3
|
Dutta S, Kundu P, Khanra P, Hens C, Pal P. Perfect synchronization in complex networks with higher-order interactions. Phys Rev E 2023; 108:024304. [PMID: 37723785 DOI: 10.1103/physreve.108.024304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
Abstract
Achieving perfect synchronization in a complex network, specially in the presence of higher-order interactions (HOIs) at a targeted point in the parameter space, is an interesting, yet challenging task. Here we present a theoretical framework to achieve the same under the paradigm of the Sakaguchi-Kuramoto (SK) model. We analytically derive a frequency set to achieve perfect synchrony at some desired point in a complex network of SK oscillators with higher-order interactions. Considering the SK model with HOIs on top of the scale-free, random, and small world networks, we perform extensive numerical simulations to verify the proposed theory. Numerical simulations show that the analytically derived frequency set not only provides stable perfect synchronization in the network at a desired point but also proves to be very effective in achieving a high level of synchronization around it compared to the other choices of frequency sets. The stability and the robustness of the perfect synchronization state of the system are determined using the low-dimensional reduction of the network and by introducing a Gaussian noise around the derived frequency set, respectively.
Collapse
Affiliation(s)
- Sangita Dutta
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| | - Prosenjit Kundu
- Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, Gujarat 382007, India
| | - Pitambar Khanra
- Department of Mathematics, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Chittaranjan Hens
- Center for Computational Natural Science and Bioinformatics, International Institute of Informational Technology, Gachibowli, Hyderabad 500032, India
| | - Pinaki Pal
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
4
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
5
|
Bulso N, Roudi Y. Restricted Boltzmann Machines as Models of Interacting Variables. Neural Comput 2021; 33:2646-2681. [PMID: 34280260 DOI: 10.1162/neco_a_01420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/14/2021] [Indexed: 11/04/2022]
Abstract
We study the type of distributions that restricted Boltzmann machines (RBMs) with different activation functions can express by investigating the effect of the activation function of the hidden nodes on the marginal distribution they impose on observed bi nary nodes. We report an exact expression for these marginals in the form of a model of interacting binary variables with the explicit form of the interactions depending on the hidden node activation function. We study the properties of these interactions in detail and evaluate how the accuracy with which the RBM approximates distributions over binary variables depends on the hidden node activation function and the number of hidden nodes. When the inferred RBM parameters are weak, an intuitive pattern is found for the expression of the interaction terms, which reduces substantially the differences across activation functions. We show that the weak parameter approximation is a good approximation for different RBMs trained on the MNIST data set. Interestingly, in these cases, the mapping reveals that the inferred models are essentially low order interaction models.
Collapse
Affiliation(s)
- Nicola Bulso
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, 7491 Trondheim, Norway, and SISSA-Cognitive Neuroscience, 34136 Trieste, Italy
| | - Yasser Roudi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
6
|
Bertram L. Digital Learning Games for Mathematics and Computer Science Education: The Need for Preregistered RCTs, Standardized Methodology, and Advanced Technology. Front Psychol 2020; 11:2127. [PMID: 33178055 PMCID: PMC7593651 DOI: 10.3389/fpsyg.2020.02127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
In today's digital information society, mathematical and computational skills are becoming increasingly important. With the demand for mathematical and computational literacy rising, the question of how these skills can be effectively taught in schools is among the top priorities in education. Game-based learning promises to diversify education, increase students' interest and motivation, and offer positive and effective learning experiences. Especially digital game-based learning (DGBL) is considered an effective educational tool for improving education in classrooms of the future. Yet, learning is a complex psychological phenomenon and the effectiveness of digital games for learning cannot be taken for granted. This is partly due to a diversity of methodological approaches in the literature and partly due to theoretical and practical considerations. We present core elements of psychological theories of learning and derive arguments for and against DGBL and non-DGBL. We discuss previous literature on DGBL in mathematics education from a methodological point of view and infer the need for randomized controlled trials for effectiveness evaluations. To increase comparability of empirical results, we propose methodological standards for future educational research. The value of multidisciplinary research projects to advance the field of DGBL is discussed and a synergy of Affective Computing and Optimal Experimental Design (OED) techniques is proposed for the implementation of adaptive technologies in digital learning games. Finally, we make suggestions for game content, which would be suitable for preparing students for university-level mathematics and computer science education, and discuss the potential limitations of DGBL in the classroom.
Collapse
Affiliation(s)
- Lara Bertram
- MPRG iSearch, Max-Planck-Institute for Human Development, Berlin, Germany
- School of Psychology, Faculty of Health and Medical Sciences, Guildford, United Kingdom
| |
Collapse
|
7
|
Stapmanns J, Kühn T, Dahmen D, Luu T, Honerkamp C, Helias M. Self-consistent formulations for stochastic nonlinear neuronal dynamics. Phys Rev E 2020; 101:042124. [PMID: 32422832 DOI: 10.1103/physreve.101.042124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 12/18/2019] [Indexed: 01/28/2023]
Abstract
Neural dynamics is often investigated with tools from bifurcation theory. However, many neuron models are stochastic, mimicking fluctuations in the input from unknown parts of the brain or the spiking nature of signals. Noise changes the dynamics with respect to the deterministic model; in particular classical bifurcation theory cannot be applied. We formulate the stochastic neuron dynamics in the Martin-Siggia-Rose de Dominicis-Janssen (MSRDJ) formalism and present the fluctuation expansion of the effective action and the functional renormalization group (fRG) as two systematic ways to incorporate corrections to the mean dynamics and time-dependent statistics due to fluctuations in the presence of nonlinear neuronal gain. To formulate self-consistency equations, we derive a fundamental link between the effective action in the Onsager-Machlup (OM) formalism, which allows the study of phase transitions, and the MSRDJ effective action, which is computationally advantageous. These results in particular allow the derivation of an OM effective action for systems with non-Gaussian noise. This approach naturally leads to effective deterministic equations for the first moment of the stochastic system; they explain how nonlinearities and noise cooperate to produce memory effects. Moreover, the MSRDJ formulation yields an effective linear system that has identical power spectra and linear response. Starting from the better known loopwise approximation, we then discuss the use of the fRG as a method to obtain self-consistency beyond the mean. We present a new efficient truncation scheme for the hierarchy of flow equations for the vertex functions by adapting the Blaizot, Méndez, and Wschebor approximation from the derivative expansion to the vertex expansion. The methods are presented by means of the simplest possible example of a stochastic differential equation that has generic features of neuronal dynamics.
Collapse
Affiliation(s)
- Jonas Stapmanns
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany.,Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Tobias Kühn
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany.,Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - David Dahmen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Thomas Luu
- Institut für Kernphysik (IKP-3), Institute for Advanced Simulation (IAS-4) and Jülich Center for Hadron Physics, Jülich Research Centre, Jülich, Germany
| | - Carsten Honerkamp
- Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany.,JARA-FIT, Jülich Aachen Research Alliance-Fundamentals of Future Information Technology, Germany
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany.,Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
8
|
Gardella C, Marre O, Mora T. Modeling the Correlated Activity of Neural Populations: A Review. Neural Comput 2018; 31:233-269. [PMID: 30576613 DOI: 10.1162/neco_a_01154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The principles of neural encoding and computations are inherently collective and usually involve large populations of interacting neurons with highly correlated activities. While theories of neural function have long recognized the importance of collective effects in populations of neurons, only in the past two decades has it become possible to record from many cells simultaneously using advanced experimental techniques with single-spike resolution and to relate these correlations to function and behavior. This review focuses on the modeling and inference approaches that have been recently developed to describe the correlated spiking activity of populations of neurons. We cover a variety of models describing correlations between pairs of neurons, as well as between larger groups, synchronous or delayed in time, with or without the explicit influence of the stimulus, and including or not latent variables. We discuss the advantages and drawbacks or each method, as well as the computational challenges related to their application to recordings of ever larger populations.
Collapse
Affiliation(s)
- Christophe Gardella
- Laboratoire de physique statistique, CNRS, Sorbonne Université, Université Paris-Diderot, and École normale supérieure, 75005 Paris, France, and Institut de la Vision, INSERM, CNRS, and Sorbonne Université, 75012 Paris, France
| | - Olivier Marre
- Institut de la Vision, INSERM, CNRS, and Sorbonne Université, 75012 Paris, France
| | - Thierry Mora
- Laboratoire de physique statistique, CNRS, Sorbonne Université, Université Paris-Diderot, and École normale supérieure, 75005 Paris, France
| |
Collapse
|
9
|
Rostami V, Porta Mana P, Grün S, Helias M. Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models. PLoS Comput Biol 2017; 13:e1005762. [PMID: 28968396 PMCID: PMC5645158 DOI: 10.1371/journal.pcbi.1005762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 10/17/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would peak at high activities, that experimentally would be equivalent to 90% of the neuron population active within time-windows of few milliseconds. Several problems are connected with this bimodality: 1. The presence of the high-activity mode is unrealistic in view of observed neuronal activity and on neurobiological grounds. 2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribution cannot be found: in fact, Boltzmann learning would produce an incorrect distribution; similarly, common variants of mean-field approximations also produce an incorrect distribution. 3. The Glauber dynamics associated with the model is unrealistically bistable and cannot be used to generate realistic surrogate data. This bimodality problem is first demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque monkey. Evidence is then provided that this problem affects typical neural recordings of population sizes of a couple of hundreds or more neurons. The cause of the bimodality problem is identified as the inability of standard maximum-entropy distributions with a uniform reference measure to model neuronal inhibition. To eliminate this problem a modified maximum-entropy model is presented, which reflects a basic effect of inhibition in the form of a simple but non-uniform reference measure. This model does not lead to unrealistic bimodalities, can be found with Boltzmann learning, and has an associated Glauber dynamics which incorporates a minimal asymmetric inhibition. Networks of interacting units are ubiquitous in various fields of biology; e.g. gene regulatory networks, neuronal networks, social structures. If a limited set of observables is accessible, maximum-entropy models provide a way to construct a statistical model for such networks, under particular assumptions. The pairwise maximum-entropy model only uses the first two moments among those observables, and can be interpreted as a network with only pairwise interactions. If correlations are on average positive, we here show that the maximum entropy distribution tends to become bimodal. In the application to neuronal activity this is a problem, because the bimodality is an artefact of the statistical model and not observed in real data. This problem could also affect other fields in biology. We here explain under which conditions bimodality arises and present a solution to the problem by introducing a collective negative feedback, corresponding to a modified maximum-entropy model. This result may point to the existence of a homeostatic mechanism active in the system that is not part of our set of observable units.
Collapse
Affiliation(s)
- Vahid Rostami
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
- * E-mail:
| | - PierGianLuca Porta Mana
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
- Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Savin C, Tkačik G. Maximum entropy models as a tool for building precise neural controls. Curr Opin Neurobiol 2017; 46:120-126. [DOI: 10.1016/j.conb.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
|
11
|
A Tractable Method for Describing Complex Couplings between Neurons and Population Rate. eNeuro 2016; 3:eN-NWR-0160-15. [PMID: 27570827 PMCID: PMC4989052 DOI: 10.1523/eneuro.0160-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/21/2022] Open
Abstract
Neurons within a population are strongly correlated, but how to simply capture these correlations is still a matter of debate. Recent studies have shown that the activity of each cell is influenced by the population rate, defined as the summed activity of all neurons in the population. However, an explicit, tractable model for these interactions is still lacking. Here we build a probabilistic model of population activity that reproduces the firing rate of each cell, the distribution of the population rate, and the linear coupling between them. This model is tractable, meaning that its parameters can be learned in a few seconds on a standard computer even for large population recordings. We inferred our model for a population of 160 neurons in the salamander retina. In this population, single-cell firing rates depended in unexpected ways on the population rate. In particular, some cells had a preferred population rate at which they were most likely to fire. These complex dependencies could not be explained by a linear coupling between the cell and the population rate. We designed a more general, still tractable model that could fully account for these nonlinear dependencies. We thus provide a simple and computationally tractable way to learn models that reproduce the dependence of each neuron on the population rate.
Collapse
|
12
|
Jovanović S, Rotter S. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks. PLoS Comput Biol 2016; 12:e1004963. [PMID: 27271768 PMCID: PMC4894630 DOI: 10.1371/journal.pcbi.1004963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology—random networks of Erdős-Rényi type and networks with highly interconnected hubs—we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations. Many biological phenomena can be viewed as dynamical processes on a graph. Understanding coordinated activity of nodes in such a network is of some importance, as it helps to characterize the behavior of the complex system. Of course, the topology of a network plays a pivotal role in determining the level of coordination among its different vertices. In particular, correlations between triplets of events (here: action potentials generated by neurons) have recently garnered some interest in the theoretical neuroscience community. In this paper, we present a decomposition of an average measure of third-order coordinated activity of neurons in a spiking neuronal network in terms of the relevant topological motifs present in the underlying graph. We study different network topologies and show, in particular, that the presence of certain tree motifs in the synaptic connectivity graph greatly affects the strength of third-order correlations between spike trains of different neurons.
Collapse
Affiliation(s)
- Stojan Jovanović
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany
- CB, CSC, KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Leen DA, Shea-Brown E. A Simple Mechanism for Beyond-Pairwise Correlations in Integrate-and-Fire Neurons. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2015; 5:30. [PMID: 26265217 PMCID: PMC4554967 DOI: 10.1186/s13408-015-0030-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
The collective dynamics of neural populations are often characterized in terms of correlations in the spike activity of different neurons. We have developed an understanding of the circuit mechanisms that lead to correlations among cell pairs, but little is known about what determines the population firing statistics among larger groups of cells. Here, we examine this question for a simple, but ubiquitous, circuit feature: common fluctuating input arriving to spiking neurons of integrate-and-fire type. We show that this leads to strong beyond-pairwise correlations-that is, correlations that cannot be captured by maximum entropy models that extrapolate from pairwise statistics-as for earlier work with discrete threshold crossing (dichotomous Gaussian) models. Moreover, we find that the same is true for another widely used, doubly stochastic model of neural spiking, the linear-nonlinear cascade. We demonstrate the strong connection between the collective dynamics produced by integrate-and-fire and dichotomous Gaussian models, and show that the latter is a surprisingly accurate model of the former. Our conclusion is that beyond-pairwise correlations can be both broadly expected and possible to describe by simplified (and tractable) statistical models.
Collapse
Affiliation(s)
- David A. Leen
- />Department of Applied Mathematics, University of Washington, Seattle, WA USA
| | - Eric Shea-Brown
- />Department of Applied Mathematics, University of Washington, Seattle, WA USA
- />Department of Physiology and Biophysics, University of Washington, Seattle, WA USA
- />Program in Neuroscience, University of Washington, Seattle, WA USA
- />Allen Institute for Brain Science, Seattle, WA USA
| |
Collapse
|
14
|
Jovanović S, Hertz J, Rotter S. Cumulants of Hawkes point processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042802. [PMID: 25974542 DOI: 10.1103/physreve.91.042802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 06/04/2023]
Abstract
We derive explicit, closed-form expressions for the cumulant densities of a multivariate, self-exciting Hawkes point process, generalizing a result of Hawkes in his earlier work on the covariance density and Bartlett spectrum of such processes. To do this, we represent the Hawkes process in terms of a Poisson cluster process and show how the cumulant density formulas can be derived by enumerating all possible "family trees," representing complex interactions between point events. We also consider the problem of computing the integrated cumulants, characterizing the average measure of correlated activity between events of different types, and derive the relevant equations.
Collapse
Affiliation(s)
- Stojan Jovanović
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany and KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - John Hertz
- Institute for Neuroscience and Pharmacology and Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark and NORDITA, KTH Royal Institute of Technology and Stockholm University, 10691 Stockholm, Sweden
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
15
|
Harrison MT, Amarasingham A, Truccolo W. Spatiotemporal conditional inference and hypothesis tests for neural ensemble spiking precision. Neural Comput 2015; 27:104-50. [PMID: 25380339 PMCID: PMC4457305 DOI: 10.1162/neco_a_00681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The collective dynamics of neural ensembles create complex spike patterns with many spatial and temporal scales. Understanding the statistical structure of these patterns can help resolve fundamental questions about neural computation and neural dynamics. Spatiotemporal conditional inference (STCI) is introduced here as a semiparametric statistical framework for investigating the nature of precise spiking patterns from collections of neurons that is robust to arbitrarily complex and nonstationary coarse spiking dynamics. The main idea is to focus statistical modeling and inference not on the full distribution of the data, but rather on families of conditional distributions of precise spiking given different types of coarse spiking. The framework is then used to develop families of hypothesis tests for probing the spatiotemporal precision of spiking patterns. Relationships among different conditional distributions are used to improve multiple hypothesis-testing adjustments and design novel Monte Carlo spike resampling algorithms. Of special note are algorithms that can locally jitter spike times while still preserving the instantaneous peristimulus time histogram or the instantaneous total spike count from a group of recorded neurons. The framework can also be used to test whether first-order maximum entropy models with possibly random and time-varying parameters can account for observed patterns of spiking. STCI provides a detailed example of the generic principle of conditional inference, which may be applicable to other areas of neurostatistical analysis.
Collapse
Affiliation(s)
- Matthew T Harrison
- Division of Applied Mathematics, Brown University, Providence, RI 02912, U.S.A.
| | | | | |
Collapse
|
16
|
Reimer ICG, Staude B, Ehm W, Rotter S. Modeling and analyzing higher-order correlations in non-Poissonian spike trains. J Neurosci Methods 2012; 208:18-33. [PMID: 22561088 DOI: 10.1016/j.jneumeth.2012.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022]
Abstract
Measuring pairwise and higher-order spike correlations is crucial for studying their potential impact on neuronal information processing. In order to avoid misinterpretation of results, the tools used for data analysis need to be carefully calibrated with respect to their sensitivity and robustness. This, in turn, requires surrogate data with statistical properties common to experimental spike trains. Here, we present a novel method to generate correlated non-Poissonian spike trains and study the impact of single-neuron spike statistics on the inference of higher-order correlations. Our method to mimic cooperative neuronal spike activity allows the realization of a large variety of renewal processes with controlled higher-order correlation structure. Based on surrogate data obtained by this procedure we investigate the robustness of the recently proposed method empirical de-Poissonization (Ehm et al., 2007). It assumes Poissonian spiking, which is common also for many other estimation techniques. We observe that some degree of deviation from this assumption can generally be tolerated, that the results are more reliable for small analysis bins, and that the degree of misestimation depends on the detailed spike statistics. As a consequence of these findings we finally propose a strategy to assess the reliability of results for experimental data.
Collapse
Affiliation(s)
- Imke C G Reimer
- Bernstein Center Freiburg and Faculty of Biology, Albert-Ludwig University, Freiburg, Germany
| | | | | | | |
Collapse
|
17
|
State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLoS Comput Biol 2012; 8:e1002385. [PMID: 22412358 PMCID: PMC3297562 DOI: 10.1371/journal.pcbi.1002385] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 12/28/2011] [Indexed: 11/23/2022] Open
Abstract
Precise spike coordination between the spiking activities of multiple neurons is suggested as an indication of coordinated network activity in active cell assemblies. Spike correlation analysis aims to identify such cooperative network activity by detecting excess spike synchrony in simultaneously recorded multiple neural spike sequences. Cooperative activity is expected to organize dynamically during behavior and cognition; therefore currently available analysis techniques must be extended to enable the estimation of multiple time-varying spike interactions between neurons simultaneously. In particular, new methods must take advantage of the simultaneous observations of multiple neurons by addressing their higher-order dependencies, which cannot be revealed by pairwise analyses alone. In this paper, we develop a method for estimating time-varying spike interactions by means of a state-space analysis. Discretized parallel spike sequences are modeled as multi-variate binary processes using a log-linear model that provides a well-defined measure of higher-order spike correlation in an information geometry framework. We construct a recursive Bayesian filter/smoother for the extraction of spike interaction parameters. This method can simultaneously estimate the dynamic pairwise spike interactions of multiple single neurons, thereby extending the Ising/spin-glass model analysis of multiple neural spike train data to a nonstationary analysis. Furthermore, the method can estimate dynamic higher-order spike interactions. To validate the inclusion of the higher-order terms in the model, we construct an approximation method to assess the goodness-of-fit to spike data. In addition, we formulate a test method for the presence of higher-order spike correlation even in nonstationary spike data, e.g., data from awake behaving animals. The utility of the proposed methods is tested using simulated spike data with known underlying correlation dynamics. Finally, we apply the methods to neural spike data simultaneously recorded from the motor cortex of an awake monkey and demonstrate that the higher-order spike correlation organizes dynamically in relation to a behavioral demand. Nearly half a century ago, the Canadian psychologist D. O. Hebb postulated the formation of assemblies of tightly connected cells in cortical recurrent networks because of changes in synaptic weight (Hebb's learning rule) by repetitive sensory stimulation of the network. Consequently, the activation of such an assembly for processing sensory or behavioral information is likely to be expressed by precisely coordinated spiking activities of the participating neurons. However, the available analysis techniques for multiple parallel neural spike data do not allow us to reveal the detailed structure of transiently active assemblies as indicated by their dynamical pairwise and higher-order spike correlations. Here, we construct a state-space model of dynamic spike interactions, and present a recursive Bayesian method that makes it possible to trace multiple neurons exhibiting such precisely coordinated spiking activities in a time-varying manner. We also formulate a hypothesis test of the underlying dynamic spike correlation, which enables us to detect the assemblies activated in association with behavioral events. Therefore, the proposed method can serve as a useful tool to test Hebb's cell assembly hypothesis.
Collapse
|
18
|
Amarasingham A, Harrison MT, Hatsopoulos NG, Geman S. Conditional modeling and the jitter method of spike resampling. J Neurophysiol 2012; 107:517-31. [PMID: 22031767 PMCID: PMC3349623 DOI: 10.1152/jn.00633.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/21/2011] [Indexed: 11/22/2022] Open
Abstract
The existence and role of fine-temporal structure in the spiking activity of central neurons is the subject of an enduring debate among physiologists. To a large extent, the problem is a statistical one: what inferences can be drawn from neurons monitored in the absence of full control over their presynaptic environments? In principle, properly crafted resampling methods can still produce statistically correct hypothesis tests. We focus on the approach to resampling known as jitter. We review a wide range of jitter techniques, illustrated by both simulation experiments and selected analyses of spike data from motor cortical neurons. We rely on an intuitive and rigorous statistical framework known as conditional modeling to reveal otherwise hidden assumptions and to support precise conclusions. Among other applications, we review statistical tests for exploring any proposed limit on the rate of change of spiking probabilities, exact tests for the significance of repeated fine-temporal patterns of spikes, and the construction of acceptance bands for testing any purported relationship between sensory or motor variables and synchrony or other fine-temporal events.
Collapse
Affiliation(s)
- Asohan Amarasingham
- Department of Mathematics, The City College of New York, and Program in Cognitive Neuroscience, The Graduate Center, City University of New York, New York, New York, USA
| | | | | | | |
Collapse
|
19
|
Masud MS, Borisyuk R. Statistical technique for analysing functional connectivity of multiple spike trains. J Neurosci Methods 2011; 196:201-19. [PMID: 21236298 DOI: 10.1016/j.jneumeth.2011.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains.
Collapse
Affiliation(s)
- Mohammad Shahed Masud
- School of Computing and Mathematics, University of Plymouth, A222, Portland Square, Plymouth, PL4 8AA, UK.
| | | |
Collapse
|
20
|
Ohiorhenuan IE, Victor JD. Information-geometric measure of 3-neuron firing patterns characterizes scale-dependence in cortical networks. J Comput Neurosci 2011; 30:125-41. [PMID: 20635129 PMCID: PMC2974058 DOI: 10.1007/s10827-010-0257-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/27/2010] [Accepted: 06/18/2010] [Indexed: 12/16/2022]
Abstract
To understand the functional connectivity of neural networks, it is important to develop simple and incisive descriptors of multineuronal firing patterns. Analysis at the pairwise level has proven to be a powerful approach in the retina, but it may not suffice to understand complex cortical networks. Here we address the problem of describing interactions among triplets of neurons. We consider two approaches: an information-geometric measure (Amari 2001), which we call the "strain," and the Kullback-Leibler divergence. While both approaches can be used to assess whether firing patterns differ from those predicted by a pairwise maximum-entropy model, the strain provides additional information. Specifically, when the observed firing patterns differ from those predicted by a pairwise model, the strain indicates the nature of this difference--whether there is an excess or a deficit of synchrony--while the Kullback-Leibler divergence only indicates the magnitude of the difference. We show that the strain has technical advantages, including ease of calculation of confidence bounds and bias, and robustness to the kinds of spike-sorting errors associated with tetrode recordings. We demonstrate the biological importance of these points via an analysis of multineuronal firing patterns in primary visual cortex. There is a striking scale-dependent behavior of triplet firing patterns: deviations from the pairwise model are substantial when the neurons are within 300 microns of each other, and negligible when they are at a distance of >600 microns. The strain identifies a consistent pattern to these interactions: when triplet interactions are present, the strain is nearly always negative, indicating that there is less synchrony than would be expected from the pairwise interactions alone.
Collapse
Affiliation(s)
- Ifije E Ohiorhenuan
- Division of Systems Neurology and Neuroscience, Department of Neurology and Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
21
|
Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat Rev Neurosci 2010; 11:615-27. [PMID: 20725095 DOI: 10.1038/nrn2886] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The brain is a highly modular structure. To exploit modularity, it is necessary that spiking activity can propagate from one module to another while preserving the information it carries. Therefore, reliable propagation is one of the key properties of a candidate neural code. Surprisingly, the conditions under which spiking activity can be propagated have received comparatively little attention in the experimental literature. By contrast, several computational studies in the last decade have addressed this issue. Using feedforward networks (FFNs) as a generic network model, they have identified two dynamical activity modes that support the propagation of either asynchronous (rate code) or synchronous (temporal code) spiking. Here, we review the dichotomy of asynchronous and synchronous propagation in FFNs, propose their integration into a single extended conceptual framework and suggest experimental strategies to test our hypothesis.
Collapse
|
22
|
Complexity distribution as a measure for assembly size and temporal precision. Neural Netw 2010; 23:705-12. [DOI: 10.1016/j.neunet.2010.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 11/19/2022]
|
23
|
Staude B, Rotter S, Grün S. CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains. J Comput Neurosci 2010; 29:327-350. [PMID: 19862611 PMCID: PMC2940040 DOI: 10.1007/s10827-009-0195-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 08/07/2009] [Accepted: 09/01/2009] [Indexed: 10/24/2022]
Abstract
Recent developments in electrophysiological and optical recording techniques enable the simultaneous observation of large numbers of neurons. A meaningful interpretation of the resulting multivariate data, however, presents a serious challenge. In particular, the estimation of higher-order correlations that characterize the cooperative dynamics of groups of neurons is impeded by the combinatorial explosion of the parameter space. The resulting requirements with respect to sample size and recording time has rendered the detection of coordinated neuronal groups exceedingly difficult. Here we describe a novel approach to infer higher-order correlations in massively parallel spike trains that is less susceptible to these problems. Based on the superimposed activity of all recorded neurons, the cumulant-based inference of higher-order correlations (CuBIC) presented here exploits the fact that the absence of higher-order correlations imposes also strong constraints on correlations of lower order. Thus, estimates of only few lower-order cumulant suffice to infer higher-order correlations in the population. As a consequence, CuBIC is much better compatible with the constraints of in vivo recordings than previous approaches, which is shown by a systematic analysis of its parameter dependence.
Collapse
Affiliation(s)
- Benjamin Staude
- Unit of Statistical Neuroscience, RIKEN Brain Science Institute, Wako-Shi, Japan
- Bernstein Center for Computational Neuroscience, Freiburg & Faculty of Biology, Albert-Ludwig University, Hansastr. 9a, 79104 Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center for Computational Neuroscience, Freiburg & Faculty of Biology, Albert-Ludwig University, Hansastr. 9a, 79104 Freiburg, Germany
| | - Sonja Grün
- Unit of Statistical Neuroscience, RIKEN Brain Science Institute, Wako-Shi, Japan
- Bernstein Center for Computational Neuroscience, Berlin, Humboldt Unverstität zu, Berlin, Germany
| |
Collapse
|
24
|
Staude B, Grün S, Rotter S. Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference. Front Comput Neurosci 2010; 4. [PMID: 20725510 PMCID: PMC2906200 DOI: 10.3389/fncom.2010.00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 05/11/2010] [Indexed: 11/13/2022] Open
Abstract
The extent to which groups of neurons exhibit higher-order correlations in their spiking activity is a controversial issue in current brain research. A major difficulty is that currently available tools for the analysis of massively parallel spike trains (N >10) for higher-order correlations typically require vast sample sizes. While multiple single-cell recordings become increasingly available, experimental approaches to investigate the role of higher-order correlations suffer from the limitations of available analysis techniques. We have recently presented a novel method for cumulant-based inference of higher-order correlations (CuBIC) that detects correlations of higher order even from relatively short data stretches of length T = 10-100 s. CuBIC employs the compound Poisson process (CPP) as a statistical model for the population spike counts, and assumes spike trains to be stationary in the analyzed data stretch. In the present study, we describe a non-stationary version of the CPP by decoupling the correlation structure from the spiking intensity of the population. This allows us to adapt CuBIC to time-varying firing rates. Numerical simulations reveal that the adaptation corrects for false positive inference of correlations in data with pure rate co-variation, while allowing for temporal variations of the firing rates has a surprisingly small effect on CuBICs sensitivity for correlations.
Collapse
Affiliation(s)
- Benjamin Staude
- Bernstein Center Freiburg and Faculty of Biology, Albert-Ludwig University Freiburg, Germany
| | | | | |
Collapse
|
25
|
Abstract
Analysis of correlated spike trains is a hot topic of research in computational neuroscience. A general model of probability distributions for spikes includes too many parameters to be of use in analyzing real data. Instead, we need a simple but powerful generative model for correlated spikes. We developed a class of conditional mixture models that includes a number of existing models and analyzed its capabilities and limitations. We apply the model to dynamical aspects of neuron pools. When Hebbian cell assemblies coexist in a pool of neurons, the condition is specified by these assemblies such that the probability distribution of spikes is a mixture of those of the component assemblies. The probabilities of activation of the Hebbian assemblies change dynamically. We used this model as a basis for a competitive model governing the states of assemblies.
Collapse
Affiliation(s)
- Shun-ichi Amari
- Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, Wako-shi, Hirosawa 2-1, Saitama 351-0198, Japan.
| |
Collapse
|
26
|
Shimazaki H, Amari SI, Brown EN, Grün S. Bayes factor analysis for detection of time-dependent higher-order spike correlations. BMC Neurosci 2009. [DOI: 10.1186/1471-2202-10-s1-p99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Abstract
The mechanisms underlying neuronal coding and, in particular, the role of temporal spike coordination are hotly debated. However, this debate is often confounded by an implicit discussion about the use of appropriate analysis methods. To avoid incorrect interpretation of data, the analysis of simultaneous spike trains for precise spike correlation needs to be properly adjusted to the features of the experimental spike trains. In particular, nonstationarity of the firing of individual neurons in time or across trials, a spike train structure deviating from Poisson, or a co-occurrence of such features in parallel spike trains are potent generators of false positives. Problems can be avoided by including these features in the null hypothesis of the significance test. In this context, the use of surrogate data becomes increasingly important, because the complexity of the data typically prevents analytical solutions. This review provides an overview of the potential obstacles in the correlation analysis of parallel spike data and possible routes to overcome them. The discussion is illustrated at every stage of the argument by referring to a specific analysis tool (the Unitary Events method). The conclusions, however, are of a general nature and hold for other analysis techniques. Thorough testing and calibration of analysis tools and the impact of potentially erroneous preprocessing stages are emphasized.
Collapse
Affiliation(s)
- Sonja Grün
- Theoretical Neuroscience Group, Riken Brain Science Institute, Wako-Shi, Japan.
| |
Collapse
|
28
|
Abstract
We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector neurons in recurrent networks with excitatory or inhibitory connectivity, with rate-modulated steady-state spiking inputs. We use discrete-time finite-state Markov chains to represent network state transition probabilities, which are subsequently used to derive exact analytical solutions for mean firing rates and cross-correlations. As illustrated in several examples, the method can be used for modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We also demonstrate that increasing firing rates do not necessarily translate into increasing cross-correlations, though our results do support the contention that firing rates and cross-correlations are likely to be coupled. Our analytical solutions underscore the complexity of the relationship between firing rates and cross-correlations.
Collapse
Affiliation(s)
- Shawn Mikula
- Center for Neuroscience, University of California, Davis, CA 95618, U.S.A
| | - Ernst Niebur
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, U.S.A
| |
Collapse
|
29
|
Interpreting neurodynamics: concepts and facts. Cogn Neurodyn 2008; 2:297-318. [PMID: 19003452 DOI: 10.1007/s11571-008-9067-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022] Open
Abstract
The dynamics of neuronal systems, briefly neurodynamics, has developed into an attractive and influential research branch within neuroscience. In this paper, we discuss a number of conceptual issues in neurodynamics that are important for an appropriate interpretation and evaluation of its results. We demonstrate their relevance for selected topics of theoretical and empirical work. In particular, we refer to the notions of determinacy and stochasticity in neurodynamics across levels of microscopic, mesoscopic and macroscopic descriptions. The issue of correlations between neural, mental and behavioral states is also addressed in some detail. We propose an informed discussion of conceptual foundations with respect to neurobiological results as a viable step to a fruitful future philosophy of neuroscience.
Collapse
|
30
|
Staude B, Rotter S, Grün S. Testing for higher-order correlations in massively parallel spike trains. BMC Neurosci 2007. [PMCID: PMC4436004 DOI: 10.1186/1471-2202-8-s2-p26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Abstract
Recent technological advances as well as progress in theoretical understanding of neural systems have created a need for synthetic spike trains with controlled mean rate and pairwise cross-correlation. This report introduces and analyzes a novel algorithm for the generation of discretized spike trains with arbitrary mean rates and controlled cross correlation. Pairs of spike trains with any pairwise correlation can be generated, and higher-order correlations are compatible with common synaptic input. Relations between allowable mean rates and correlations within a population are discussed. The algorithm is highly efficient, its complexity increasing linearly with the number of spike trains generated and therefore inversely with the number of cross-correlated pairs.
Collapse
Affiliation(s)
- Ernst Niebur
- Krieger Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
32
|
Oweiss K, Jin R, Suhail Y. Identifying neuronal assemblies with local and global connectivity with scale space spectral clustering. Neurocomputing 2007. [DOI: 10.1016/j.neucom.2006.10.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Schneider G, Havenith MN, Nikolić D. Spatiotemporal Structure in Large Neuronal Networks Detected from Cross-Correlation. Neural Comput 2006; 18:2387-413. [PMID: 16907631 DOI: 10.1162/neco.2006.18.10.2387] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The analysis of neuronal information involves the detection of spatiotemporal relations between neuronal discharges. We propose a method that is based on the positions (phase offsets) of the central peaks obtained from pairwise cross-correlation histograms. Data complexity is reduced to a one-dimensional representation by using redundancies in the measured phase offsets such that each unit is assigned a “preferred firing time” relative to the other units in the group. We propose two procedures to examine the applicability of this method to experimental data sets. In addition, we propose methods that help the investigation of dynamical changes in the preferred firing times of the units. All methods are applied to a sample data set obtained from cat visual cortex.
Collapse
Affiliation(s)
- Gaby Schneider
- Department of Computer Science and Mathematics, Johann Wolfgang Goethe University, Frankfurt (Main), Germany.
| | | | | |
Collapse
|
34
|
Wennekers T, Ay N. Finite State Automata Resulting from Temporal Information Maximization and a Temporal Learning Rule. Neural Comput 2005; 17:2258-90. [PMID: 16105225 DOI: 10.1162/0899766054615671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We extend Linkser's Infomax principle for feedforward neural networks to a measure for stochastic interdependence that captures spatial and temporal signal properties in recurrent systems. This measure, stochastic interaction, quantifies the Kullback-Leibler divergence of a Markov chain from a product of split chains for the single unit processes. For unconstrained Markov chains, the maximization of stochastic interaction, also called Temporal Infomax, has been previously shown to result in almost deterministic dynamics. This letter considers Temporal Infomax on constrained Markov chains, where some of the units are clamped to prescribed stochastic processes providing input to the system. Temporal Infomax in that case leads to finite state automata, either completely deterministic or weakly nondeterministic. Transitions between internal states of these systems are almost perfectly predictable given the complete current state and the input, but the activity of each single unit alone is virtually random. The results are demonstrated by means of computer simulations and confirmed analytically. It is furthermore shown numerically that Temporal Infomax leads to a high information flow from the input to internal units and that a simple temporal learning rule can approximately achieve the optimization of temporal interaction. We relate these results to experimental data concerning the correlation dynamics and functional connectivities observed in multiple electrode recordings.
Collapse
Affiliation(s)
- Thomas Wennekers
- Centre for Theoretical and Computational Neuroscience, University of Plymouth, Plymouth PL4 8AA, UK.
| | | |
Collapse
|
35
|
|
36
|
Benucci A, Verschure PFMJ, König P. High-order events in cortical networks: a lower bound. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:051909. [PMID: 15600658 DOI: 10.1103/physreve.70.051909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 07/19/2004] [Indexed: 05/24/2023]
Abstract
It is commonly believed that information processing in cortical networks involves the collective spiking activity of neuronal assemblies. Nevertheless, due to current technical limitations in multielectrodes recording methods, it is not possible to tackle this issue with direct experimental measurements. In this study we simulate spiking activity of large ensembles of cells focusing on the temporal correlation properties of the neuronal dynamics, and demonstrate that transient, fast synchronization of large groups of cells is a natural phenomenon of the cortical activity. To prove this result we use a statistical approach (based on combinatorics), and knowledge derived from a previous research work [A. Benucci et al., Phys. Rev. E 68, 041905 (2003)]. We quantify the degree of synchronous activity by computing a lower bound for the fraction of cells participating in fast (few milliseconds) synchronous events. Finally we discuss the implications of the results found in terms of cortical coding mechanisms.
Collapse
Affiliation(s)
- Andrea Benucci
- Smith-Kettlewell Eye Research Institute, 2318 Fillmore Street, San Francisco, CA 95115, USA.
| | | | | |
Collapse
|
37
|
Lee AK, Wilson MA. A Combinatorial Method for Analyzing Sequential Firing Patterns Involving an Arbitrary Number of Neurons Based on Relative Time Order. J Neurophysiol 2004; 92:2555-73. [PMID: 15212425 DOI: 10.1152/jn.01030.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Information processing in the brain is believed to require coordinated activity across many neurons. With the recent development of techniques for simultaneously recording the spiking activity of large numbers of individual neurons, the search for complex multicell firing patterns that could help reveal this neural code has become possible. Here we develop a new approach for analyzing sequential firing patterns involving an arbitrary number of neurons based on relative firing order. Specifically, we develop a combinatorial method for quantifying the degree of matching between a “reference sequence” of N distinct “letters” (representing a particular target order of firing by N cells) and an arbitrarily long “word” composed of any subset of those letters including repeats (representing the relative time order of spikes in an arbitrary firing pattern). The method involves computing the probability that a random permutation of the word's letters would by chance alone match the reference sequence as well as or better than the actual word does, assuming all permutations were equally likely. Lower probabilities thus indicate better matching. The overall degree and statistical significance of sequence matching across a heterogeneous set of words (such as those produced during the course of an experiment) can be computed from the corresponding set of probabilities. This approach can reduce the sample size problem associated with analyzing complex firing patterns. The approach is general and thus applicable to other types of neural data beyond multiple spike trains, such as EEG events or imaging signals from multiple locations. We have recently applied this method to quantify memory traces of sequential experience in the rodent hippocampus during slow wave sleep.
Collapse
Affiliation(s)
- Albert K Lee
- Picower Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
38
|
Abstract
Spatial interdependences of multiple stochastic units can be suitably quantified by the Kullback-Leibler divergence of the joint probability distribution from the corresponding factorized distribution. In the present paper, a generalized measure for stochastic interaction, which also captures temporal interdependences, is analysed within the setting of Markov chains. The dynamical properties of systems with strongly interacting stochastic units are analytically studied and illustrated by computer simulations. In particular, the emergence of determinism in such systems is demonstrated.
Collapse
Affiliation(s)
- Nihat Ay
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22-26, 04103 Leipzig, Germany.
| | | |
Collapse
|
39
|
Benucci A, Verschure PFMJ, König P. Existence of high-order correlations in cortical activity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2003; 68:041905. [PMID: 14682971 DOI: 10.1103/physreve.68.041905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 05/19/2003] [Indexed: 05/24/2023]
Abstract
Neurons collect signals originating from a large number of other cells. The variability of this integrated population activity at the millisecond time scale is a critical constraint on the degree of signal integration and processing performed by single neurons. Optical imaging, EEG, and fMRI studies have indicated that cortical activity shows a high degree of variability at a time scale of hundreds of ms. However, currently no experimental methods are available to directly assess the variability in the activity of populations of neurons at a time scale closer to that of the characteristic time constants of neurons, i.e., around 10 ms. Here we integrate pertinent experimental data in one rigorous mathematical framework to demonstrate that (1) the high temporal variability in the spiking activity of individual neurons, (2) the second-order correlation properties of the spiking activity of cortical neurons, and (3) the correlations of the subthreshold dynamics, all impose high amplitude, fast variability in the population activity of cortical neurons. This implies that higher order correlations, a necessary condition for temporal coding models, must be a central feature of cortical dynamics.
Collapse
Affiliation(s)
- Andrea Benucci
- Institute of Neuroinformatics University & ETH Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
40
|
|
41
|
|
42
|
Jackson A, Gee VJ, Baker SN, Lemon RN. Synchrony between neurons with similar muscle fields in monkey motor cortex. Neuron 2003; 38:115-25. [PMID: 12691669 DOI: 10.1016/s0896-6273(03)00162-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synchronous firing of motor cortex cells exhibiting postspike facilitation (PSF) or suppression (PSS) of hand muscle EMG was examined to investigate the relationship between synchrony and output connectivity. Recordings were made in macaque monkeys performing a precision grip task. Synchronization was assessed with cross-correlation histograms of the activity from 144 pairs of simultaneously recorded neurons, while spike-triggered averages of EMG defined the muscle field for each cell. Cell pairs with similar muscle fields showed greater synchronization than pairs with nonoverlapping fields. Furthermore, cells with opposing effects in the same muscles exhibited negative synchronization. We conclude that synchrony in motor cortex engages networks of neurons directly controlling the same muscle set, while inhibitory connections exist between neuronal populations with opposing output effects.
Collapse
Affiliation(s)
- Andrew Jackson
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | | | | | | |
Collapse
|
43
|
Amari SI, Nakahara H, Wu S, Sakai Y. Synchronous firing and higher-order interactions in neuron pool. Neural Comput 2003; 15:127-42. [PMID: 12590822 DOI: 10.1162/089976603321043720] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The stochastic mechanism of synchronous firing in a population of neurons is studied from the point of view of information geometry. Higher-order interactions of neurons, which cannot be reduced to pairwise correlations, are proved to exist in synchronous firing. In a neuron pool where each neuron fires stochastically, the probability distribution q(r) of the activity r, which is the fraction of firing neurons in the pool, is studied. When q(r) has a widespread distribution, in particular, when q(r) has two peaks, the neurons fire synchronously at one time and are quiescent at other times. The mechanism of generating such a probability distribution is interesting because the activity r is concentrated on its mean value when each neuron fires independently, because of the law of large numbers. Even when pairwise interactions, or third-order interactions, exist, the concentration is not resolved. This shows that higher-order interactions are necessary to generate widespread activity distributions. We analyze a simple model in which neurons receive common overlapping inputs and prove that such a model can have a widespread distribution of activity, generating higher-order stochastic interactions.
Collapse
Affiliation(s)
- Shun-Ichi Amari
- Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan.
| | | | | | | |
Collapse
|
44
|
Kuhn A, Aertsen A, Rotter S. Higher-order statistics of input ensembles and the response of simple model neurons. Neural Comput 2003; 15:67-101. [PMID: 12590820 DOI: 10.1162/089976603321043702] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pairwise correlations among spike trains recorded in vivo have been frequently reported. It has been argued that correlated activity could play an important role in the brain, because it efficiently modulates the response of a postsynaptic neuron. We show here that a neuron's output firing rate critically depends on the higher-order statistics of the input ensemble. We constructed two statistical models of populations of spiking neurons that fired with the same rates and had identical pairwise correlations, but differed with regard to the higher-order interactions within the population. The first ensemble was characterized by clusters of spikes synchronized over the whole population. In the second ensemble, the size of spike clusters was, on average, proportional to the pairwise correlation. For both input models, we assessed the role of the size of the population, the firing rate, and the pairwise correlation on the output rate of two simple model neurons: a continuous firing-rate model and a conductance-based leaky integrate-and-fire neuron. An approximation to the mean output rate of the firing-rate neuron could be derived analytically with the help of shot noise theory. Interestingly, the essential features of the mean response of the two neuron models were similar. For both neuron models, the three input parameters played radically different roles with respect to the postsynaptic firing rate, depending on the interaction structure of the input. For instance, in the case of an ensemble with small and distributed spike clusters, the output firing rate was efficiently controlled by the size of the input population. In addition to the interaction structure, the ratio of inhibition to excitation was found to strongly modulate the effect of correlation on the postsynaptic firing rate.
Collapse
Affiliation(s)
- Alexandre Kuhn
- Neurobiology and Biophysics, Biology III, Albert-Ludwigs-University, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
45
|
Abstract
This study introduces information-geometric measures to analyze neural firing patterns by taking not only the second-order but also higher-order interactions among neurons into account. Information geometry provides useful tools and concepts for this purpose, including the orthogonality of coordinate parameters and the Pythagoras relation in the Kullback-Leibler divergence. Based on this orthogonality, we show a novel method for analyzing spike firing patterns by decomposing the interactions of neurons of various orders. As a result, purely pairwise, triple-wise, and higher-order interactions are singled out. We also demonstrate the benefits of our proposal by using several examples.
Collapse
Affiliation(s)
- Hiroyuki Nakahara
- Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
| | | |
Collapse
|
46
|
|
47
|
Grün S, Diesmann M, Aertsen A. Unitary events in multiple single-neuron spiking activity: I. Detection and significance. Neural Comput 2002; 14:43-80. [PMID: 11747534 DOI: 10.1162/089976602753284455] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It has been proposed that cortical neurons organize dynamically into functional groups (cell assemblies) by the temporal structure of their joint spiking activity. Here, we describe a novel method to detect conspicuous patterns of coincident joint spike activity among simultaneously recorded single neurons. The statistical significance of these unitary events of coincident joint spike activity is evaluated by the joint-surprise. The method is tested and calibrated on the basis of simulated, stationary spike trains of independently firing neurons, into which coincident joint spike events were inserted under controlled conditions. The sensitivity and specificity of the method are investigated for their dependence on physiological parameters (firing rate, coincidence precision, coincidence pattern complexity) and temporal resolution of the analysis. In the companion article in this issue, we describe an extension of the method, designed to deal with nonstationary firing rates.
Collapse
Affiliation(s)
- Sonja Grün
- Department of Neurophysiology, Max-Planck Institute for Brain Research, D-60528 Frankfurt/Main, Germany.
| | | | | |
Collapse
|
48
|
Abstract
Neurons often work together to compute and process information, and neural assemblies arise from synaptic interactions and neural circuits. One way to study neural assemblies is to simultaneously record from several or many neurons and study the statistical relations among their spike trains. From this analysis researchers can try to understand the nature of the assemblies, which can also lead to attempts at modeling the underlying mechanisms. In this review we discuss three important parts of this process: (1) technical issues related to simultaneously recording more than one single unit, (2) ways of analyzing the data and (3) recent models offering hypothetical mechanisms of neural assemblies, especially models which incorporate feedback.
Collapse
Affiliation(s)
- G L Gerstein
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104, USA.
| | | |
Collapse
|
49
|
Martignon L, Deco G, Laskey K, Diamond M, Freiwald W, Vaadia E. Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Comput 2000; 12:2621-53. [PMID: 11110130 DOI: 10.1162/089976600300014872] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent advances in the technology of multiunit recordings make it possible to test Hebb's hypothesis that neurons do not function in isolation but are organized in assemblies. This has created the need for statistical approaches to detecting the presence of spatiotemporal patterns of more than two neurons in neuron spike train data. We mention three possible measures for the presence of higher-order patterns of neural activation--coefficients of log-linear models, connected cumulants, and redundancies--and present arguments in favor of the coefficients of log-linear models. We present test statistics for detecting the presence of higher-order interactions in spike train data by parameterizing these interactions in terms of coefficients of log-linear models. We also present a Bayesian approach for inferring the existence or absence of interactions and estimating their strength. The two methods, the frequentist and the Bayesian one, are shown to be consistent in the sense that interactions that are detected by either method also tend to be detected by the other. A heuristic for the analysis of temporal patterns is also proposed. Finally, a Bayesian test is presented that establishes stochastic differences between recorded segments of data. The methods are applied to experimental data and synthetic data drawn from our statistical models. Our experimental data are drawn from multiunit recordings in the prefrontal cortex of behaving monkeys, the somatosensory cortex of anesthetized rats, and multiunit recordings in the visual cortex of behaving monkeys.
Collapse
Affiliation(s)
- L Martignon
- Max Planck Institute for Human Development, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
50
|
François O, Abdallahi LM, Horikawa J, Taniguchi I, Hervé T. Statistical procedures for spatiotemporal neuronal data with applications to optical recording of the auditory cortex. Neural Comput 2000; 12:1821-38. [PMID: 10953240 DOI: 10.1162/089976600300015150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This article presents new procedures for multisite spatiotemporal neuronal data analysis. A new statistical model - the diffusion model - is considered, whose parameters can be estimated from experimental data thanks to mean-field approximations. This work has been applied to optical recording of the guinea pig's auditory cortex (layers II-III). The rates of innovation and internal diffusion inside the stimulated area have been estimated. The results suggest that the activity of the layer balances between the alternate predominance of its innovation process and its internal process.
Collapse
Affiliation(s)
- O François
- Department of Statistics, LMC-IMAG, BP 53, 38041 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|