1
|
Genetics vs chronic corneal mechanical trauma in the etiology of keratoconus. Exp Eye Res 2020; 202:108328. [PMID: 33172608 DOI: 10.1016/j.exer.2020.108328] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Both genetic and environmental factors have been considered to play a role in the etiology keratoconus. Eye rubbing, and more recently eye compression due to sleeping position, have been identified to be highly related to the condition, and are present in a high percentage of patients. Today, the predominant model is that these factors can provide the "second hit" necessary to generate the condition in a genetically susceptible individual. In addition, the extremely high prevalence in Arab populations, where endogamy could play a role, the high concordance rate in monozygotic twins, and the presence of family history of the condition between 5 and 23% of cases, support a genetic influence. Segregation analysis studies suggest that keratoconus is a complex non-Mendelian disease. Results from linkage analysis, next generation sequencing studies and genome-wide association studies also have suggested that genetic factors are involved in the condition. Recently, it has been proposed that mechanical trauma (i.e. eye rubbing or eye compression at night), is a sine quanon condition for the onset of keratoconus, and quite possibly its only cause. There are various arguments for and against this hypothesis. Indeed, it is possible, as initially suggested around 55 years ago, that the term "keratoconus" include diverse phenotypically similar conditions, which are actually of different etiology.
Collapse
|
2
|
Moyes KW, Sip CG, Obenza W, Yang E, Horst C, Welikson RE, Hauschka SD, Folch A, Laflamme MA. Human embryonic stem cell-derived cardiomyocytes migrate in response to gradients of fibronectin and Wnt5a. Stem Cells Dev 2013; 22:2315-25. [PMID: 23517131 DOI: 10.1089/scd.2012.0586] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An improved understanding of the factors that regulate the migration of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) would provide new insights into human heart development and suggest novel strategies to improve their electromechanical integration after intracardiac transplantation. Since nothing has been reported as to the factors controlling hESC-CM migration, we hypothesized that hESC-CMs would migrate in response to the extracellular matrix and soluble signaling molecules previously implicated in heart morphogenesis. To test this, we screened candidate factors by transwell assay for effects on hESC-CM motility, followed by validation via live-cell imaging and/or gap-closure assays. Fibronectin (FN) elicited a haptotactic response from hESC-CMs, with cells seeded on a steep FN gradient showing nearly a fivefold greater migratory activity than cells on uniform FN. Studies with neutralizing antibodies indicated that adhesion and migration on FN are mediated by integrins α-5 and α-V. Next, we screened 10 soluble candidate factors by transwell assay and found that the noncanonical Wnt, Wnt5a, elicited an approximately twofold increase in migration over controls. This effect was confirmed using the gap-closure assay, in which Wnt5a-treated hESC-CMs showed approximately twofold greater closure than untreated cells. Studies with microfluidic-generated Wnt5a gradients showed that this factor was chemoattractive as well as chemokinetic, and Wnt5a-mediated responses were inhibited by the Frizzled-1/2 receptor antagonist, UM206. In summary, hESC-CMs show robust promigratory responses to FN and Wnt5a, findings that have implications on both cardiac development and cell-based therapies.
Collapse
Affiliation(s)
- Kara White Moyes
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ackerman C, Locke A, Feingold E, Reshey B, Espana K, Thusberg J, Mooney S, Bean L, Dooley K, Cua C, Reeves R, Sherman S, Maslen C. An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am J Hum Genet 2012; 91:646-59. [PMID: 23040494 PMCID: PMC3484504 DOI: 10.1016/j.ajhg.2012.08.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/12/2012] [Accepted: 08/17/2012] [Indexed: 12/20/2022] Open
Abstract
About half of people with trisomy 21 have a congenital heart defect (CHD), whereas the remainder have a structurally normal heart, demonstrating that trisomy 21 is a significant risk factor but is not causal for abnormal heart development. Atrioventricular septal defects (AVSD) are the most commonly occurring heart defects in Down syndrome (DS), and ∼65% of all AVSD is associated with DS. We used a candidate-gene approach among individuals with DS and complete AVSD (cases = 141) and DS with no CHD (controls = 141) to determine whether rare genetic variants in genes involved in atrioventricular valvuloseptal morphogenesis contribute to AVSD in this sensitized population. We found a significant excess (p < 0.0001) of variants predicted to be deleterious in cases compared to controls. At the most stringent level of filtering, we found potentially damaging variants in nearly 20% of cases but fewer than 3% of controls. The variants with the highest probability of being damaging in cases only were found in six genes: COL6A1, COL6A2, CRELD1, FBLN2, FRZB, and GATA5. Several of the case-specific variants were recurrent in unrelated individuals, occurring in 10% of cases studied. No variants with an equal probability of being damaging were found in controls, demonstrating a highly specific association with AVSD. Of note, all of these genes are in the VEGF-A pathway, even though the candidate genes analyzed in this study represented numerous biochemical and developmental pathways, suggesting that rare variants in the VEGF-A pathway might contribute to the genetic underpinnings of AVSD in humans.
Collapse
Affiliation(s)
- Christine Ackerman
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Adam E. Locke
- Department of Human Genetics, Emory University, Atlanta, GA 30033, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Benjamin Reshey
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Karina Espana
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Sean Mooney
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Lora J.H. Bean
- Department of Human Genetics, Emory University, Atlanta, GA 30033, USA
| | - Kenneth J. Dooley
- Sibley Heart Center Cardiology and Division of Pediatric Cardiology, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30033, USA
| | - Clifford L. Cua
- Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Roger H. Reeves
- Department of Physiology and the Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Cheryl L. Maslen
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Ghosh P, Bhaumik P, Ghosh S, Ozbek U, Feingold E, Maslen C, Sarkar B, Pramanik V, Biswas P, Bandyopadhyay B, Dey SK. Polymorphic haplotypes of CRELD1 differentially predispose Down syndrome and euploids individuals to atrioventricular septal defect. Am J Med Genet A 2012; 158A:2843-8. [PMID: 22987595 DOI: 10.1002/ajmg.a.35626] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/26/2012] [Indexed: 11/05/2022]
Abstract
To explore the role of CRELD1 variants on congenital heart defects, we sequenced the entire reading frame of CRELD1 in the samples from Kolkata and adjoining areas. Nearly, 400 participants were included in the genetic association study and they were stratified as Down syndrome (DS) with atrioventricular septal defect (AVSD), DS without AVSD, euploid with AVSD, and euploid without AVSD. A significant association was found between AVSD and three polymorphisms, namely rs9878047 (c.1049-129T > C), rs3774207 (c.1119C > T), and rs73118372 (c.1136T > C) among the Down syndrome and euploid individuals. The polymorphism rs73118372, involves a transition (c.1136T > C) that leads to change in amino acid methionine to threonine which alters protein secondary structure as confirmed by the bioinformatics software SOPMA. In addition, two haplotypes, C-T-C and C-T-T, in the order of loci rs9878047-rs3774207-rs73118372 were associated with incidence of AVSD among euploid and Down syndrome, with a slightly higher odds ratio in the later group. We hypothesize that these haplotypes increase the risk of AVSD, and the susceptibility is exacerbated in DS, possibly due to the trisomy 21 genetic background. Moreover, we report for the first time on an interaction between the mutant alleles of rs3774207 and rs73118372 which could disrupt the delicate balance between different CRELD1 isoforms.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Human Genetics Research Unit, School of Biotechnology and Biological Sciences, West Bengal University of Technology, Kolkata, West Bengal, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lana-Elola E, Watson-Scales SD, Fisher EMC, Tybulewicz VLJ. Down syndrome: searching for the genetic culprits. Dis Model Mech 2011; 4:586-95. [PMID: 21878459 PMCID: PMC3180222 DOI: 10.1242/dmm.008078] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21) and results in a large number of phenotypes, including learning difficulties, cardiac defects, distinguishing facial features and leukaemia. These are likely to result from an increased dosage of one or more of the ∼310 genes present on Hsa21. The identification of these dosage-sensitive genes has become a major focus in DS research because it is essential for a full understanding of the molecular mechanisms underlying pathology, and might eventually lead to more effective therapy. The search for these dosage-sensitive genes is being carried out using both human and mouse genetics. Studies of humans with partial trisomy of Hsa21 have identified regions of this chromosome that contribute to different phenotypes. In addition, novel engineered mouse models are being used to map the location of dosage-sensitive genes, which, in a few cases, has led to the identification of individual genes that are causative for certain phenotypes. These studies have revealed a complex genetic interplay, showing that the diverse DS phenotypes are likely to be caused by increased copies of many genes, with individual genes contributing in different proportions to the variance in different aspects of the pathology.
Collapse
Affiliation(s)
- Eva Lana-Elola
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | |
Collapse
|
6
|
Moore CS, Roper RJ. The power of comparative and developmental studies for mouse models of Down syndrome. Mamm Genome 2007; 18:431-43. [PMID: 17653795 PMCID: PMC1998891 DOI: 10.1007/s00335-007-9030-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 04/12/2007] [Indexed: 11/15/2022]
Abstract
Since the genetic basis for Down syndrome (DS) was described, understanding the causative relationship between genes at dosage imbalance and phenotypes associated with DS has been a principal goal of researchers studying trisomy 21 (Ts21). Though inferences to the gene-phenotype relationship in humans have been made, evidence linking a specific gene or region to a particular congenital phenotype has been limited. To further understand the genetic basis for DS phenotypes, mouse models with three copies of human chromosome 21 (Hsa21) orthologs have been developed. Mouse models offer access to every tissue at each stage of development, opportunity to manipulate genetic content, and ability to precisely quantify phenotypes. Numerous approaches to recreate trisomic composition and analyze phenotypes similar to DS have resulted in diverse trisomic mouse models. A murine intraspecies comparative analysis of different genetic models of Ts21 and specific DS phenotypes reveals the complexity of trisomy and important considerations to understand the etiology of and strategies for amelioration or prevention of trisomic phenotypes. By analyzing individual phenotypes in different mouse models throughout development, such as neurologic, craniofacial, and cardiovascular abnormalities, greater insight into the gene-phenotype relationship has been demonstrated. In this review we discuss how phenotype-based comparisons between DS mouse models have been useful in analyzing the relationship of trisomy and DS phenotypes.
Collapse
Affiliation(s)
- Clara S. Moore
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604 USA
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL 306, Indianapolis, Indiana 46202 USA
| |
Collapse
|