1
|
Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J. Marine-derived fungi as biocatalysts. Front Microbiol 2023; 14:1125639. [PMID: 36922968 PMCID: PMC10008910 DOI: 10.3389/fmicb.2023.1125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 2022.
Collapse
Affiliation(s)
- Jorge R Virués-Segovia
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Salvador Muñoz-Mira
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
2
|
Sivanandhan S, Khusro A, Paulraj MG, Ignacimuthu S, Al-Dhabi NA. Biocontrol Properties of Basidiomycetes: An Overview. J Fungi (Basel) 2017; 3:E2. [PMID: 29371521 PMCID: PMC5715959 DOI: 10.3390/jof3010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
In agriculture, there is an urgent need for alternate ecofriendly products to control plant diseases. These alternate products must possess preferable characteristics such as new modes of action, cost effectiveness, biodegradability, and target specificity. In the current scenario, studies on macrofungi have been an area of importance for scientists. Macrofungi grow prolifically and are found in many parts of the world. Basidiomycetes (mushrooms) flourish ubiquitously under warm and humid climates. Basidiomycetes are rich sources of natural antibiotics. The secondary metabolites produced by them possess antimicrobial, antitumor, and antioxidant properties. The present review discusses the potential role of Basidiomycetes as anti-phytofungal, anti-phytobacterial, anti-phytoviral, mosquito larvicidal, and nematicidal agents.
Collapse
Affiliation(s)
| | - Ameer Khusro
- Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
| | - Michael Gabriel Paulraj
- Entomology Research Institute, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
| | - Savarimuthu Ignacimuthu
- Entomology Research Institute, Loyola College, Nungambakkam, Chennai 600034, Tamil Nadu, India.
- The International Scientific Partnership Program (ISPP), King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2454, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
3
|
Di Paolo C, Kirchner K, Balk FGP, Muschket M, Brack W, Hollert H, Seiler TB. Downscaling procedures reduce chemical use in androgen receptor reporter gene assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:826-33. [PMID: 27436773 DOI: 10.1016/j.scitotenv.2016.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/24/2016] [Accepted: 07/08/2016] [Indexed: 05/15/2023]
Abstract
Bioactivity screening studies often face sample amount limitation with respect to the need for reliable, reproducible and quantitative results. Therefore approaches that minimize sample use are needed. Low-volume exposure and chemical dilution procedures were applied in an androgen receptor reporter gene human cell line assay to evaluate environmental contaminants and androgen receptor modulators, which were the agonist 5α-dihydrotestosterone (DHT); and the antagonists flutamide, bisphenol A, 1-hydroxypyrene and triclosan. Cells were exposed in around 1/3 of the medium volume recommended by the protocol (70μL/well). Further, chemical losses during pipetting steps were minimized by applying a low-volume method for compound dilution in medium (250μL for triplicate wells) inside microvolume glass inserts. Simultaneously, compounds were evaluated following conventional procedures (200μL/well, dilution in 24-well plates) for comparison of results. Low-volume exposure tests produced DHT EC50 (3.4-3.7×10(-10)M) and flutamide IC50 (2.2-3.3×10(-7)M) values very similar to those from regular assays (3.1-4.2×10(-10) and 2.1-3.3×10(-7)M respectively) and previous studies. Also, results were within assay acceptance criteria, supporting the relevance of the downscaling setup for agonistic and antagonistic tests. The low-volume exposure was also successful in determining IC50 values for 1-hydroxypyrene (2.1-2.8×10(-6)M), bisphenol A (2.6-3.3×10(-6)M), and triclosan (1.2-1.9×10(-6)M) in agreement with values obtained through high-volume exposure (2.3-2.8, 2.5-3.4 and 1.0-1.3×10(-6)M respectively). Finally, experiments following both low-volume dosing and exposure produced flutamide and triclosan IC50 values similar to those from regular tests. The low-volume experimental procedures provide a simple and effective solution for studies that need to minimize bioassay sample use while maintaining method reliability. The downscaling methods can be applied for the evaluation of samples, fractions or chemicals which require minimal losses during the steps of pipetting, transference to medium and exposure in bioassays.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.
| | - Kristina Kirchner
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Fabian Gerhard Peter Balk
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Matthias Muschket
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany; UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Werner Brack
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany; UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road, Beibei, Chongqing 400715, China; College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Atta S, Ikbal M, Boda N, Gauri SS, Singh NDP. Photoremovable protecting groups as controlled-release device for sex pheromone. Photochem Photobiol Sci 2013; 12:393-403. [DOI: 10.1039/c2pp25118c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Graj W, Lisiecki P, Szulc A, Chrzanowski Ł, Wojtera-Kwiczor J. Bioaugmentation with Petroleum-Degrading Consortia Has a Selective Growth-Promoting Impact on Crop Plants Germinated in Diesel Oil-Contaminated Soil. WATER, AIR, AND SOIL POLLUTION 2013; 224:1676. [PMID: 24078757 PMCID: PMC3778838 DOI: 10.1007/s11270-013-1676-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/25/2013] [Indexed: 05/14/2023]
Abstract
Rhizoremediation is a complex type of green clean-up technology that involves both plants and the rhizosphere-associated microorganisms to decompose hazardous compounds. The success of the strategy strongly depends on plant tolerance towards the pollutant, as well as plant's interactions with the rhizospheric microbes. The microorganisms may be stimulated by the secreted root exudates, which results in an increased breakdown of contaminants in the rhizosphere. The main goal of this study was to establish a potential rhizoremediation combination for a diesel-polluted site. Inoculation of plant roots or seeds with indigenous rhizospheric populations is a common approach in the rhizoremediation. However, we introduced hydrocarbon-degrading consortia (M10, R3, and K52) that were previously isolated from crude oil-contaminated soil instead of indigenous microbes. Bioaugmentation with these petroleum degraders was applied to screen four high biomass crop species (Indian mustard, alfalfa, high erucic acid rapeseed, HEAR, and low erucic acid rapeseed, LEAR) for their tolerance towards diesel oil. At no pollution, a promoting effect of M10 bacteria could be observed on germination and root elongation of all plant species. Moreover, M10 consortiums increased the germination index at 6,000 mg diesel oil per kilogram dry soil in the case of Indian mustard, alfalfa, and HEAR. The latter species was found to increment its dry weight upon bioaugmentation with M10 bacteria and all diesel oil treatments (6,000 and 24,000 mg diesel oil per kilogram dry soil). The initial results indicate HEAR and the M10 bacterial consortium as a promising plant-microbe tandem for a long-term rhizoremediation process.
Collapse
Affiliation(s)
- Weronika Graj
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Piotr Lisiecki
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Alicja Szulc
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Joanna Wojtera-Kwiczor
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Fullove TP, Johnson B, Yu H. Structure-dependent lipid peroxidation by photoirradiation of pyrene and its mono-substituted derivatives. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:233-41. [PMID: 23245298 PMCID: PMC3939684 DOI: 10.1080/10934529.2013.729998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pyrene, one of the most studied polycyclic aromatic hydrocarbons, can damage biological macromolecules and cause toxicity when irradiated by light. The effect of substituents, 1-amino, 1-hydroxy, 1-nitro, and 1-bromo, on light-induced lipid peroxidation is studied. Degradation kinetics and photoproduct analyses were conducted to test how these substituents affect the photoreaction. All five compounds have widely different photodegradation rates, with degradation half-lives, ranging from 8 min to 495 min. These rates parallel their light absorptivity. Four out of the five compounds induce lipid peroxidation when irradiated with UVA light, whereas 1-aminopyrene causes minimum or no lipid peroxidation. The relative amount of lipid peroxidation caused is: 1-bromopyrene > pyrene > 1-nitropyrene ≈ 1-hydroxypyrene > 1-aminopyrene. This relative lipid peroxidation is dependent on the substituent due to the following factors: light absorptivity, relative rates of the competing processes in the excited states, nature of the photoreaction, and nature of the photoproducts.
Collapse
Affiliation(s)
- Tracie Perkins Fullove
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, USA
| | | | | |
Collapse
|
7
|
Lübcke-von Varel U, Bataineh M, Lohrmann S, Löffler I, Schulze T, Flückiger-Isler S, Neca J, Machala M, Brack W. Identification and quantitative confirmation of dinitropyrenes and 3-nitrobenzanthrone as major mutagens in contaminated sediments. ENVIRONMENT INTERNATIONAL 2012; 44:31-9. [PMID: 22336528 DOI: 10.1016/j.envint.2012.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 05/17/2023]
Abstract
Polar fractions of a sediment extract of the industrial area of Bitterfeld, Germany, have been subjected for effect-directed identification of mutagens using the Ames fluctuation assay with TA98. Mutagenicity could be well recovered in several secondary and tertiary fractions. Dinitropyrenes and 3-nitrobenzanthrone could be confirmed to contribute great shares of the observed mutagenicity. In addition, a multitude of polar polycyclic aromatic compounds has been tentatively identified in mutagenic fractions including nitro-PAHs, azaarenes, ketones, quinones, hydroxy-compounds, lactones and carboxylic acids although their contribution to mutagenicity could not be quantified due to a lack of standards. Diagnostic Salmonella strains YG1024 and YG1041 were applied to confirm the contribution of nitro-aromatic compounds. We suggest the inclusion of dinitropyrenes and 3-nitrobenzanthrone into sediment monitoring in order to minimize the mutagenic risk to aquatic organisms and to human health.
Collapse
|
8
|
HELLOU JOCELYNE, BEACH DANIELG, LEONARD JAMES, BANOUB JOSEPHH. Integrating Field Analyses with Laboratory Exposures to Assess Ecosystems Health. Polycycl Aromat Compd 2012. [DOI: 10.1080/10406638.2011.651681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Ueda H, Ikenaka Y, Nakayama SMM, Tanaka-Ueno T, Ishizuka M. Phase-II conjugation ability for PAH metabolism in amphibians: characteristics and inter-species differences. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:337-343. [PMID: 21819814 DOI: 10.1016/j.aquatox.2011.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/21/2011] [Accepted: 07/02/2011] [Indexed: 05/31/2023]
Abstract
The present study examines amphibian metabolic activity - particularly conjugation - by analysis of pyrene (a four ring, polycyclic aromatic hydrocarbon) metabolites using high-performance liquid chromatography (HPLC) with fluorescence detector (FD), a mass spectrometry detector (MS) system and kinetic analysis of conjugation enzymes. Six amphibian species were exposed to pyrene (dissolved in water): African claw frog (Xenopus laevis); Tago's brown frog (Rana tagoi); Montane brown frog (Rana ornativentris); Wrinkled frog (Rana rugosa); Japanese newt (Cynops pyrrhogaster); and Clouded salamander (Hynobius nebulosus); plus one fish species, medaka (Oryzias latipes); and a fresh water snail (Clithon retropictus), and the resultant metabolites were collected. Identification of pyrene metabolites by HPLC and ion-trap MS system indicated that medaka mainly excreted pyrene-1-glucuronide (PYOG), while pyrene-1-sulfate (PYOS) was the main metabolite in all amphibian species. Pyrene metabolites in amphibians were different from those in invertebrate fresh water snails. Inter-species differences were also observed in pyrene metabolism among amphibians. Metabolite analysis showed that frogs relied more strongly on sulfate conjugation than did Japanese newts and clouded salamanders. Furthermore, urodelan amphibians, newts and salamanders, excreted glucose conjugates of pyrene that were not detected in the anuran amphibians. Kinetic analysis of conjugation by hepatic microsomes and cytosols indicated that differences in excreted metabolites reflected differences in enzymatic activities. Furthermore, pyrenediol (PYDOH) glucoside sulfate was detected in the Japanese newt sample. This novel metabolite has not been reported previously to this report, in which we have identified unique characteristics of amphibians in phase II pyrene metabolism.
Collapse
Affiliation(s)
- Haruki Ueda
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
10
|
Fleming CR, Di Giulio RT. The role of CYP1A inhibition in the embryotoxic interactions between hypoxia and polycyclic aromatic hydrocarbons (PAHs) and PAH mixtures in zebrafish (Danio rerio). ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1300-14. [PMID: 21706407 PMCID: PMC4018733 DOI: 10.1007/s10646-011-0686-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2011] [Indexed: 05/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants with elevated concentrations in waters that may also experience hypoxia. Previous research has shown interactions between hypoxia and some PAHs (fluoranthene, α-naphthoflavone) but no interaction with others (benzo[a]pyrene (BaP), β-naphthoflavone). Here we examine how hypoxia (7.4% oxygen, ~35% of normoxia) affects the embryotoxicity of PAHs that act through different mechanisms and the role that CYP1A inhibition may play in these interactions. About 500 μg/l BaP and 1-200 μg/l benzo[k]fluoranthene (BkF) interacted synergistically with hypoxia to induce pericardial edema in developing zebrafish (Danio rerio). Hypoxia protected from the embryotoxicity of pyrene (PY) and had no effect on the toxicity of polychlorinated biphenyl-126. Despite previous reports of other CYP1A inhibitors interacting with hypoxia, up to 2,000 μg/l dibenzothiophene, 2-aminoanthracene (AA), and carbazole (CB) all failed to induce embryotoxicity under normoxic or hypoxic conditions. The toxicity of PAH mixtures--including binary mixtures of BaP/AA and BaP/CB and two environmentally relevant, complex mixtures--were exacerbated severely by hypoxia to induce or worsen pericardial edema and cause mortality. The interactions between hypoxia and BkF and PY were closely mimicked by morpholino knockdown of CYP1A, indicating a potential role for metabolism of these compounds in their toxicity. Our results indicate that various PAHs may exhibit synergistic, antagonistic or additive toxicity with hypoxia. The enhanced toxicity of environmental mixtures of PAHs under hypoxia suggests that risk assessments that do not take into account potential interactions with hypoxia may underestimate the threat of PAHs to fish in contaminated sites.
Collapse
Affiliation(s)
- Carrie R Fleming
- Integrated Toxicology and Environmental Health Program, Nicholas School for the Environment and Earth Sciences, Duke University, Durham, NC, USA
| | | |
Collapse
|
11
|
Beach DG, Quilliam MA, Rouleau C, Croll RP, Hellou J. Bioaccumulation and biotransformation of pyrene and 1-hydroxypyrene by the marine whelk Buccinum undatum. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:779-788. [PMID: 20821506 DOI: 10.1002/etc.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The fates of a phenolic contaminant and its hydrocarbon precursor have rarely been compared, especially in an invertebrate species. Two groups of Buccinum undatum were exposed to equimolar amounts of pyrene and 1-hydroxypyrene over 15 d through their diets. Tissue extracts from the muscle and visceral mass were analyzed by liquid chromatography with fluorescence and mass spectrometry detection. Nine biotransformation products were detected in animals from both exposures. These included 1-hydroxypyrene, pyrene-1-sulfate, pyrene-1-glucuronide, pyrene glucose sulfate, two isomers each of pyrenediol sulfate and pyrenediol disulfate, and one isomer of pyrenediol glucuronide sulfate. These compounds represent a more complex metabolic pathway for pyrene than is typically reported. Diconjugated metabolites were as important in animals exposed to pyrene as in those exposed to 1-hydroxypyrene. Biotransformation products represented >90% of the material detected in the animals and highlight the importance of analyzing metabolites when assessing exposure. A mean of only 2 to 3% of the body burden was present in muscle compared with the visceral mass of both groups. The analytical methods were sufficiently sensitive to detect biotransformation products both in laboratory control whelks and in those sampled offshore. The tissue distribution of [(14)C]pyrene was also studied by autoradiography. Radioactivity was present primarily in the digestive and excretory system of the whelks and not in the gonads or muscle tissue.
Collapse
Affiliation(s)
- Daniel G Beach
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 Canada
| | | | | | | | | |
Collapse
|
12
|
Lu QS, Huang Y, Li J, Zhang ZW, Lin HH, Yu XQ. The Effect of an Amino-Acid Bridge on Binding Affinity and Cleavage Efficiency of Pyrenyl-Macrocyclic Polyamine Conjugates toward DNA. Chem Biodivers 2009; 6:1273-82. [DOI: 10.1002/cbdv.200800196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Beach DG, Quilliam MA, Hellou J. Analysis of pyrene metabolites in marine snails by liquid chromatography using fluorescence and mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2142-52. [DOI: 10.1016/j.jchromb.2009.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
|
14
|
|
15
|
Capotorti G, Cesti P, Lombardi A, Guglielmetti G. FORMATION OF SULFATE CONJUGATES METABOLITES IN THE DEGRADATION OF PHENANTHRENE, ANTHRACENE, PYRENE AND BENZO[A]PYRENE BY THE ASCOMYCETEASPERGILLUS TERREUS. Polycycl Aromat Compd 2007. [DOI: 10.1080/10406630590950273] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Nieman JKC, Sims RC, Sorensen DL, McLean JE. Humic acid toxicity in biologically treated soil contaminated with polycyclic aromatic hydrocarbons and pentachlorophenol. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2005; 49:283-9. [PMID: 16170453 DOI: 10.1007/s00244-004-0138-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Accepted: 10/27/2004] [Indexed: 05/04/2023]
Abstract
Contaminated soil from a land treatment unit at the Libby Groundwater Superfund Site in Libby, MT, was amended with 14C pyrene and incubated for 396 days to promote biodegradation and the formation of soil-associated bound residues. Humic and fulvic acids were extracted from the treated soil microcosms and analyzed for the presence of pyrene residues. Biologic activity promoted 14C association with the fulvic acid fraction, but humic acid-associated 14C did not increase with biologic activity. The Aboatox flash toxicity assay was used to assess the toxicity of humic and fulvic acid fractions. The fulvic acid gave no toxic response, but the humic acid showed significant toxicity. The observed toxicity was likely associated with pentachlorophenol, a known contaminant of the soil that was removed by solvent extraction of the humic acid and that correlated well with toxicity reduction.
Collapse
Affiliation(s)
- J K C Nieman
- Utah Water Research Laboratory, Utah State University, Logan, Utah, 84322-8200, USA
| | | | | | | |
Collapse
|
17
|
Koivula TT, Salkinoja-Salonen M, Peltola R, Romantschuk M. Pyrene degradation in forest humus microcosms with or without pine and its mycorrhizal fungus. JOURNAL OF ENVIRONMENTAL QUALITY 2004; 33:45-53. [PMID: 14964357 DOI: 10.2134/jeq2004.4500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mineralization potential of forest humus and the self-cleaning potential of a boreal coniferous forest environment for polycyclic aromatic hydrocarbon (PAH) compounds was studied using a model ecosystem of acid forest humus (pH = 3.6) and pyrene as the model compound. The matrix was natural humus or humus mixed with oil-polluted soil in the presence and absence of Scots pine (Pinus sylvestris L.) and its mycorrhizal fungus (Paxillus involutus). The rates of pyrene mineralization in the microcosms with humus implants (without pine) were initially insignificant but increased from Day 64 onward to 47 microg kg(-1) d(-1) and further to 144 microg kg(-1) d(-1) after Day 105. In the pine-planted humus microcosms the rate of mineralization also increased, reaching 28 microg kg(-1) d(-1) after Day 105. The 14CO2 emission was already considerable in nonplanted microcosms containing oily soil at Day 21 and the pyrene mineralization continued throughout the study. The pyrene was converted to CO2 at rates of 0.07 and 0.6 microg kg(-1) d(-1) in the oily-soil implanted microcosms with and without pine, respectively. When the probable assimilation of 14CO2 by the pine and ground vegetation was taken into account the most efficient microcosm mineralized 20% of the 91.2 mg kg(-1) pyrene in 180 d. The presence of pine and its mycorrhizal fungus had no statistically significant effect on mineralization yields. The rates of pyrene mineralization observed in this study for forest humus exceeded the total annual deposition rate of PAHs in southern Finland. This indicates that accumulation in forest soil is not to be expected.
Collapse
Affiliation(s)
- Teija T Koivula
- Department of Biosciences, Division of General Microbiology, P.O. Box 56 (Viikinkaari 9), FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
18
|
Hwang HM, Shi X, Ero I, Jayasinghe A, Dong S, Yu H. Microbial ecotoxicity and mutagenicity of 1-hydroxypyrene and its photoproducts. CHEMOSPHERE 2001; 45:445-451. [PMID: 11680740 DOI: 10.1016/s0045-6535(01)00046-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
1-Hydroxypyrene (1-HP) is a carcinogenic and slightly water-soluble polycyclic aromatic hydrocarbon. Ecotoxicity and mutagenicity of 1-HP and its photoproducts, and the effect of Mn2+ and Cu2+ on their mutagenicity were measured with microbial assay in this study. The assay includes spread plate counting, direct counting, microbial mineralization of 14C-UL-D-glucose and Mutatox Test. At the concentration examined (0.8 microM), the photoproducts (after 1.5 h solar irradiation) of 1-HP inhibited microbial glucose mineralization activity (by 64%) after microbial assemblages of a local reservoir site were exposed for 1 day. However, heterotrophic bacteria were able to utilize 1-HP photoproducts as the growth substrates and increase viability counts by up to 4.75-folds. 1-HP exhibited positive response to Mutatox Test in both direct medium and S-9 medium, with the lowest observable effective concentration of 0.625 microM in the test with direct medium. After photolysis, 1-HP decreased its mutagenicity. Mn2+ (312.5 microM-5 mM) and Cu2+ (6.25-100 microM) themselves are not mutagenic. However, addition of the metal ions before or after photolysis modifies the light readings of 1-HP during the test. Therefore, presence of metal ions could affect the genotoxicity of 1-HP in aquatic environments, depending on timing of the addition.
Collapse
Affiliation(s)
- H M Hwang
- Department of Biology, Jackson State University, MS 39217, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Dong S, Hwang HM, Shi X, Holloway L, Yu H. UVA-Induced DNA single-strand cleavage by 1-hydroxypyrene and formation of covalent adducts between DNA and 1-hydroxypyrene. Chem Res Toxicol 2000; 13:585-93. [PMID: 10898590 DOI: 10.1021/tx990199x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1-Hydroxypyrene (HOP), a metabolite found in the urine of humans and laboratory animals exposed to polycyclic aromatic hydrocarbons (PAHs), is known to be both acutely toxic and genotoxic. It has been widely used as a biomarker for studying PAH exposure. In this research, we have found that, upon UVA irradiation, HOP causes DNA single-strand cleavages and forms HOP-DNA covalent adducts. The UVA-induced cleavage of supercoiled plasmid PhiX174 DNA is dependent upon both HOP concentration and UVA dosage. A longer irradiation time or higher HOP concentration induces more DNA cleavage. Results of the photocleavage experiments carried out in the presence of reactive oxygen species scavengers, histidine, sodium azide, mannitol, SOD, and desferal indicate that both the superoxide free radical and singlet oxygen are likely involved in causing DNA single-strand cleavage. The photocleavage is inhibited by the presence of an excited singlet-state quencher, KI, indicating that it is an excited-state reaction. Along with light-induced DNA cleavage, HOP also forms DNA covalent adducts while being degraded upon light irradiation. Light-induced degradation of 20 microM HOP follows first-order reaction kinetics in a 10% methanolic buffer (10 mM phosphate) solution in the absence or presence of 40 microM calf thymus DNA, with degradation half-lives of 20 or 15 min, respectively. The shorter degradation half-life in the presence of DNA is due to the formation of the HOP-DNA covalent adduct. The formation of the HOP-DNA covalent adduct is evidenced by comparing the UV-vis absorption and fluorescence emission spectra of the pure HOP with those of the HOP-DNA adduct. The covalent HOP-DNA adduct produced due to irradiation was purified by either extensive dialysis (3 x 500 mL buffer solutions), phenol and chloroform extraction followed by ethanol precipitation, or chloroform extraction alone. The isolated HOP-DNA adduct has an absorption peak at 353 nm, which is 8 nm red-shifted compared to that of free HOP. The fluorescence emission for HOP-DNA is at least 70 times weaker than that for free HOP in solution. In summary, the findings with HOP reveal that, in addition to metabolic activation that eventually leads to the formation of alkylated DNA adducts or other forms of DNA damage, HOP may be activated by light to produce DNA single-strand cleavage and covalent DNA adducts. These DNA lesions can be sources of toxicity.
Collapse
Affiliation(s)
- S Dong
- Departments of Chemistry and Biology, Jackson State University, Mississippi 39217, USA
| | | | | | | | | |
Collapse
|
20
|
Lange B, Kremer S, Anke H, Sterner O. Metabolism of pyrene by basidiomycetous fungi of the generaCrinipellis,Marasmius, andMarasmiellus. Can J Microbiol 1996. [DOI: 10.1139/m96-151] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of different species and strains of the genus Crinipellis and the related genera Marasmius and Marasmiellus to metabolize pyrene was investigated. The metabolism of pyrene and the nature of metabolites formed were strain specific and depended on the culture medium. The following metabolites of pyrene were detected in the cultures: 1-hydroxypyrene, 1-pyrenylsulfate, 1,6- and 1,8-dihydroxypyrene and the corresponding quinones, trans-4,5-dihydro-4,5-dihydroxypyrene, and two transformation products which have never before been detected, 6-hydroxypyrene-1-sulfate and pyrene-1,6-disulfate. In addition, several not yet identified pyrene metabolites were produced by some strains.Key words: polycyclic aromatic hydrocarbons, pyrene, basidiomycetes, metabolism, transformation products.
Collapse
|