1
|
Hoshino Y, Mizuno S, Kato K, Mizuno-Iijima S, Tanimoto Y, Ishida M, Kajiwara N, Sakasai T, Miwa Y, Takahashi S, Yagami KI, Sugiyama F. Simple generation of hairless mice for in vivo imaging. Exp Anim 2017; 66:437-445. [PMID: 28717054 PMCID: PMC5682356 DOI: 10.1538/expanim.17-0049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The in vivo imaging of mice makes it possible to analyze disease
progress non-invasively through reporter gene expression. As the removal of hair improves
the accuracy of in vivo imaging, gene-modified mice with a reporter gene
are often crossed with Hos:HR-1 mutant mice homozygous for the spontaneous
Hrhr mutation that exhibit a hair loss phenotype. However,
it is time consuming to produce mice carrying both the reporter gene and mutant
Hrhr gene by mating. In addition, there is a risk that
genetic background of the gene-modified mice would be altered by mating. To resolve these
issues, we established a simple method to generate hairless mice maintaining the original
genetic background by CRISPR technology. First, we constructed the pX330
vector, which targets exon 3 of Hr. This DNA vector (5
ng/µl) was microinjected into the pronuclei of C57BL/6J mice. Induced
Hr gene mutations were found in many founders (76.1%) and these
mutations were heritable. Next, we performed in vivo imaging using these
gene-modified hairless mice. As expected, luminescent objects in their body were detected
by in vivo imaging. This study clearly showed that hairless mice could be
simply generated by the CRISPR/Cas9 system, and this method may be useful for in
vivo imaging studies with various gene-modified mice.
Collapse
Affiliation(s)
- Yoshikazu Hoshino
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Hoshino Laboratory Animals, Inc., 1405 Kouda, Bando, Ibaraki 306-0606, Japan.,Doctoral program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Saori Mizuno-Iijima
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miyuki Ishida
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Noriko Kajiwara
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tomoki Sakasai
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Doctoral program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshihiro Miwa
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
2
|
Zhang Z, Burnley P, Coder B, Su DM. Insights on FoxN1 biological significance and usages of the "nude" mouse in studies of T-lymphopoiesis. Int J Biol Sci 2012; 8:1156-67. [PMID: 23091413 PMCID: PMC3477685 DOI: 10.7150/ijbs.5033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/13/2012] [Indexed: 11/24/2022] Open
Abstract
Mutation in the “nude” gene, i.e. the FoxN1 gene, induces a hairless phenotype and a rudimentary thymus gland in mice (nude mouse) and humans (T-cell related primary immunodeficiency). Conventional FoxN1 gene knockout and transgenic mouse models have been generated for studies of FoxN1 gene function related to skin and immune diseases, and for cancer models. It appeared that FoxN1's role was fully understood and the nude mouse model was fully utilized. However, in recent years, with the development of inducible gene knockout/knockin mouse models with the loxP-Cre(ERT) and diphtheria toxin receptor-induced cell abolished systems, it appears that the complete repertoire of FoxN1's roles and deep-going usage of nude mouse model in immune function studies have just begun. Here we summarize the research progress made by several recent works studying the role of FoxN1 in the thymus and utilizing nude and “second (conditional) nude” mouse models for studies of T-cell development and function. We also raise questions and propose further consideration of FoxN1 functions and utilizing this mouse model for immune function studies.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
4
|
Abstract
In mice, rats, and humans, loss of function of Foxn1, a member of the winged helix/forkhead family of transcription factors, leads to macroscopic nudity and an inborn dysgenesis of the thymus. Nude (Foxn1(nu)/Foxn1(nu)) mice develop largely normal hair follicles and produce hair shafts. However, presumably because of a lack of certain hair keratins, the hair shafts that are generated twist and coil in the hair follicle infundibulum, which becomes dilated. Since hair shafts fail to penetrate the epidermis, macroscopic nudity results and generates the - grossly misleading - impression that nude mice are hairless. Here, we provide an overview of what is known on the role of Foxn1 in mammalian skin biology, its expression patterns in the hair follicle, its influence on hair follicle function, and onychocyte differentiation. We focus on the mechanisms and signaling pathways by which Foxn1 modulates keratinocyte differentiation in the hair follicle and nail apparatus and summarize the current knowledge on the molecular and functional consequences of a loss of function of the Foxn1 protein in skin. Foxn1 target genes, gene regulation of Foxn, and pharmacological manipulation of the nude phenotype (e.g. by cyclosporine A, KGF, and vitamin D3) are discussed, and important open questions as well as promising research strategies in Foxn1 biology are defined. Taken together, this review aims at delineating why enhanced research efforts in this comparatively neglected field of investigative dermatology promise important new insights into the controls of epithelial differentiation in mammalian skin.
Collapse
Affiliation(s)
- Lars Mecklenburg
- Department of Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, USA
| | | | | |
Collapse
|
6
|
Blackburn CC, Griffith J, Morahan G. A high-resolution map of the chromosomal region surrounding the nude gene. Genomics 1995; 26:308-17. [PMID: 7601457 DOI: 10.1016/0888-7543(95)80215-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nude mutation produces the apparently disparate phenotypes of hairlessness and congenital thymic aplasia. These pleiotropic defects are the result of a single, autosomal recessive mutation that was previously mapped to a 9-cM region of murine chromosome 11 bounded by loci encoding the acetylcholine receptor beta subunit and myeloperoxidase. In this study, exclusion mapping of a panel of congenic nude strains was used to place the nude locus between the microsatellite loci D11Nds1 and D11Mit8. The relative distance from nude to each of these loci was determined by analyzing a large segregating cross. Thus, nude lies 1.4 cM distal to D11Nds1 and is 0.5 cM proximal to D11Mit8. Mice that carried recombinational breakpoints between D11Nds1 and D11Mit8 were further analyzed at the loci Evi-2 and D11Mit34, which placed nu 0.2 cM proximal to these markers. D11Nds1 and Evi-2/D11Mit34 thus define the new proximal and distal boundaries, respectively, for the nu interval. We also report the typing of the above microsatellite markers in the AKXD, AKXL, BXD, CXB, and BXH recombinant inbred strains, which confirmed the relative order and separation of loci in this region.
Collapse
Affiliation(s)
- C C Blackburn
- Walter and Eliza Hall Institute for Medical Research, P.O. Royal Melbourne Hospital, Victoria, Australia
| | | | | |
Collapse
|
7
|
Mock BA, Krall MM, Byrd LG, Chin H, Barton CH, Charles I, Liew FY, Blackwell J. The inducible form of nitric oxide synthase (NOS2) isolated from murine macrophages maps near the nude mutation on mouse chromosome 11. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 1994; 21:231-8. [PMID: 9098436 DOI: 10.1111/j.1744-313x.1994.tb00196.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitric oxide synthase has been shown to mediate streptozocin-induced diabetes and to act as an antimicrobial agent in murine macrophages. Using a cDNA probe for the inducible form of nitric oxide synthase (Nos2) isolated from murine macrophages we have determined that the gene maps within 1 cM of the nude mutation on mouse Chromosome 11. The position of Nos2 was also mapped relative to the markers 115, Evi2, Cchlbl (previously unmapped), and Gfap. This map location is discussed relative to map locations for disease susceptibility loci involved in mediating cutaneous leishmaniasis (ScII) and autoimmune type-I diabetes (Idd4).
Collapse
Affiliation(s)
- B A Mock
- Laboratory of Genetics, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nehls M, Lüno K, Schorpp M, Krause S, Matysiak-Scholze U, Prokop CM, Hedrich HJ, Boehm T. A yeast artificial chromosome contig on mouse chromosome 11 encompassing the nu locus. Eur J Immunol 1994; 24:1721-3. [PMID: 8026534 DOI: 10.1002/eji.1830240742] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mutations at the nude locus disrupt the homing process of T cell progenitor cells to the thymic rudiment, a key aspect of T cell differentiation. Here, we map the nude locus to a set of overlapping yeast artificial chromosomes (YAC) clones covering a genetic interval of about 0.5 centi Morgan on mouse chromosome 11. These results provide a suitable starting point to molecularly clone the nude gene.
Collapse
Affiliation(s)
- M Nehls
- Department of Medicine I, University of Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|