1
|
Chen G, Stepanenko A, Borisjuk N. Contrasting patterns of 5S rDNA repeats in European and Asian ecotypes of greater duckweed, Spirodela polyrhiza (Lemnaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1378683. [PMID: 38711607 PMCID: PMC11070557 DOI: 10.3389/fpls.2024.1378683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Ribosomal DNA (rDNA) contains highly conserved, specifically organized sequences encoding ribosomal RNAs (rRNAs) separated by variable non-transcribed intergenic spacers (NTSs) and is abundant in eukaryotic genomes. These characteristics make the rDNA an informative molecular target to study genome organization, molecular evolution, and phylogenetics. In this study, we characterized the 5S rDNA repeats in the greater duckweed Spiroldela polyrhiza, a species known for its small size, rapid growth, highly conserved genome organization, and low mutation rate. Sequence analysis of at least 12 individually cloned PCR fragments containing the 5S rDNA units for each of six ecotypes that originated from Europe (Ukraine) and Asia (China) revealed two distinct types of 5S rDNA repeats containing NTSs of different lengths and nucleotide compositions. The shorter 5S rDNA repeat units had a highly homogeneous 400-bp NTS, with few ecotype- or region-specific single-nucleotide polymorphisms (SNPs). The longer 5S rDNA units had NTSs of 1056-1084 bp with characteristic intra- and inter-genomic variants due to specific SNPs and insertions/deletions of 4-15-bp DNA elements. We also detected significant variability in the ratio of short/long 5S rDNA variants between ecotypes of S. polyrhiza. The contrasting dynamics of the two types of 5S rDNA units, combined with the unusually low repeat copy number (for plants) in S. polyrhiza (46-220 copies per genome), shows that this species could serve as an excellent model for examining the mechanisms of concerted evolution and functional significance of rDNA variability.
Collapse
Affiliation(s)
- Guimin Chen
- School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Anton Stepanenko
- School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Molecular Genetics, Institute of Cell Biology and Genetic Engineering, Kyiv, Ukraine
| | - Nikolai Borisjuk
- School of Life Sciences, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
2
|
Stepanenko A, Chen G, Hoang PTN, Fuchs J, Schubert I, Borisjuk N. The Ribosomal DNA Loci of the Ancient Monocot Pistia stratiotes L. (Araceae) Contain Different Variants of the 35S and 5S Ribosomal RNA Gene Units. FRONTIERS IN PLANT SCIENCE 2022; 13:819750. [PMID: 35310643 PMCID: PMC8928438 DOI: 10.3389/fpls.2022.819750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The freshwater plant water lettuce (Pistia stratiotes L.) grows in warm climatic zones and is used for phytoremediation and biomass production. P. stratiotes belongs to the Araceae, an ecologically and structurally diverse early monocot family, but the phylogenetic relationships among Araceae members are poorly understood. Ribosomal DNAs (rDNAs), including the 35S and 5S rDNA, encode the RNA components of ribosomes and are widely used in phylogenetic and evolutionary studies of various plant taxa. Here, we comprehensively characterized the chromosomal locations and molecular organization of 35S and 5S rDNA genes in water lettuce using karyological and molecular methods. Fluorescence in situ hybridization revealed a single location for the 35S and 5S rDNA loci, each on a different pair of the species' 28 chromosomes. Molecular cloning and nucleotide sequencing of 35S rDNA of P. stratiotes, the first representative Araceae sensu stricto in which such a study was performed, displayed typical structural characteristics. The full-length repeat showed high sequence conservation of the regions producing the 18S, 5.8S, and 25S rRNAs and divergence of the internal transcribed spacers ITS1 and ITS2 as well as the large intergenic spacer (IGS). Alignments of the deduced sequence of 18S rDNA with the sequences available for other Araceae and representatives of other clades were used for phylogenetic analysis. Examination of 11 IGS sequences revealed significant intra-genomic length variability due to variation in subrepeat number, with four types of units detected within the 35S rDNA locus of the P. stratiotes genome (estimated size 407 Mb/1C). Similarly, the 5S rDNA locus harbors gene units comprising a conserved 119-bp sequence encoding 5S rRNA and two types of non-transcribed spacer (NTS) sequences. Type I was classified into four subtypes, which apparently originated via progressive loss of subrepeats within the duplicated NTS region containing the 3' part of the 5S rRNA gene. The minor Type II NTS is shorter than Type I and differs in nucleotide composition. Some DNA clones containing two or three consecutive 5S rDNA repeats harbored 5S rDNA genes with different types of NTSs, confirming the mosaic composition of the 5S rDNA locus.
Collapse
Affiliation(s)
- Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Phuong T. N. Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Faculty of Biology, Dalat University, Đà Lạt, Vietnam
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
3
|
Chen G, Stepanenko A, Borisjuk N. Mosaic Arrangement of the 5S rDNA in the Aquatic Plant Landoltia punctata (Lemnaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:678689. [PMID: 34249048 PMCID: PMC8264772 DOI: 10.3389/fpls.2021.678689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Duckweeds are a group of monocotyledonous aquatic plants in the Araceae superfamily, represented by 37 species divided into five genera. Duckweeds are the fastest growing flowering plants and are distributed around the globe; moreover, these plants have multiple applications, including biomass production, wastewater remediation, and making pharmaceutical proteins. Dotted duckweed (Landoltia punctata), the sole species in genus Landoltia, is one of the most resilient duckweed species. The ribosomal DNA (rDNA) encodes the RNA components of ribosomes and represents a significant part of plant genomes but has not been comprehensively studied in duckweeds. Here, we characterized the 5S rDNA genes in L. punctata by cloning and sequencing 25 PCR fragments containing the 5S rDNA repeats. No length variation was detected in the 5S rDNA gene sequence, whereas the nontranscribed spacer (NTS) varied from 151 to 524 bp. The NTS variants were grouped into two major classes, which differed both in nucleotide sequence and the type and arrangement of the spacer subrepeats. The dominant class I NTS, with a characteristic 12-bp TC-rich sequence present in 3-18 copies, was classified into four subclasses, whereas the minor class II NTS, with shorter, 9-bp nucleotide repeats, was represented by two identical sequences. In addition to these diverse subrepeats, class I and class II NTSs differed in their representation of cis-elements and the patterns of predicted G-quadruplex structures, which may influence the transcription of the 5S rDNA. Similar to related duckweed species in the genus Spirodela, L. punctata has a relatively low rDNA copy number, but in contrast to Spirodela and the majority of other plants, the arrangement of the 5S rDNA units demonstrated an unusual, heterogeneous pattern in L. punctata, as revealed by analyzing clones containing double 5S rDNA neighboring units. Our findings may further stimulate the research on the evolution of the plant rDNA and discussion of the molecular forces driving homogenization of rDNA repeats in concerted evolution.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
4
|
Mehra M, Gangwar I, Shankar R. A Deluge of Complex Repeats: The Solanum Genome. PLoS One 2015; 10:e0133962. [PMID: 26241045 PMCID: PMC4524691 DOI: 10.1371/journal.pone.0133962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022] Open
Abstract
Repetitive elements have lately emerged as key components of genome, performing varieties of roles. It has now become necessary to have an account of repeats for every genome to understand its dynamics and state. Recently, genomes of two major Solanaceae species, Solanum tuberosum and Solanum lycopersicum, were sequenced. These species are important crops having high commercial significance as well as value as model species. However, there is a reasonable gap in information about repetitive elements and their possible roles in genome regulation for these species. The present study was aimed at detailed identification and characterization of complex repetitive elements in these genomes, along with study of their possible functional associations as well as to assess possible transcriptionally active repetitive elements. In this study, it was found that ~50-60% of genomes of S. tuberosum and S. lycopersicum were composed of repetitive elements. It was also found that complex repetitive elements were associated with >95% of genes in both species. These two genomes are mostly composed of LTR retrotransposons. Two novel repeat families very similar to LTR/ERV1 and LINE/RTE-BovB have been reported for the first time. Active existence of complex repeats was estimated by measuring their transcriptional abundance using Next Generation Sequencing read data and Microarray platforms. A reasonable amount of regulatory components like transcription factor binding sites and miRNAs appear to be under the influence of these complex repetitive elements in these species, while several genes appeared to possess exonized repeats.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chromosomes, Plant/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Exons/genetics
- Gene Expression Regulation, Plant/genetics
- Genome, Plant
- Humans
- INDEL Mutation
- Solanum lycopersicum/genetics
- MicroRNAs/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Proteins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- Repetitive Sequences, Nucleic Acid
- Retroelements/genetics
- Sequence Alignment
- Solanum tuberosum/genetics
- Species Specificity
- Terminal Repeat Sequences
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Mrigaya Mehra
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Indu Gangwar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| |
Collapse
|
5
|
Chromosomal organizations of major repeat families on potato (Solanum tuberosum) and further exploring in its sequenced genome. Mol Genet Genomics 2014; 289:1307-19. [PMID: 25106953 DOI: 10.1007/s00438-014-0891-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
One of the most powerful technologies in unraveling the organization of a eukaryotic plant genome is high-resolution Fluorescent in situ hybridization of repeats and single copy DNA sequences on pachytene chromosomes. This technology allows the integration of physical mapping information with chromosomal positions, including centromeres, telomeres, nucleolar-organizing region, and euchromatin and heterochromatin. In this report, we established chromosomal positions of different repeat fractions of the potato genomic DNA (Cot100, Cot500 and Cot1000) on the chromosomes. We also analysed various repeat elements that are unique to potato including the moderately repetitive P5 and REP2 elements, where the REP2 is part of a larger Gypsy-type LTR retrotransposon and cover most chromosome regions, with some brighter fluorescing spots in the heterochromatin. The most abundant tandem repeat is the potato genomic repeat 1 that covers subtelomeric regions of most chromosome arms. Extensive multiple alignments of these repetitive sequences in the assembled RH89-039-16 potato BACs and the draft assembly of the DM1-3 516 R44 genome shed light on the conservation of these repeats within the potato genome. The consensus sequences thus obtained revealed the native complete transposable elements from which they were derived.
Collapse
|
6
|
Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. GENOMICS, PROTEOMICS & BIOINFORMATICS 2014; 12:164-71. [PMID: 25132181 PMCID: PMC4411372 DOI: 10.1016/j.gpb.2014.07.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/29/2014] [Accepted: 07/03/2014] [Indexed: 12/27/2022]
Abstract
Repetitive DNA sequences are a major component of eukaryotic genomes and may account for up to 90% of the genome size. They can be divided into minisatellite, microsatellite and satellite sequences. Satellite DNA sequences are considered to be a fast-evolving component of eukaryotic genomes, comprising tandemly-arrayed, highly-repetitive and highly-conserved monomer sequences. The monomer unit of satellite DNA is 150-400 base pairs (bp) in length. Repetitive sequences may be species- or genus-specific, and may be centromeric or subtelomeric in nature. They exhibit cohesive and concerted evolution caused by molecular drive, leading to high sequence homogeneity. Repetitive sequences accumulate variations in sequence and copy number during evolution, hence they are important tools for taxonomic and phylogenetic studies, and are known as "tuning knobs" in the evolution. Therefore, knowledge of repetitive sequences assists our understanding of the organization, evolution and behavior of eukaryotic genomes. Repetitive sequences have cytoplasmic, cellular and developmental effects and play a role in chromosomal recombination. In the post-genomics era, with the introduction of next-generation sequencing technology, it is possible to evaluate complex genomes for analyzing repetitive sequences and deciphering the yet unknown functional potential of repetitive sequences.
Collapse
Affiliation(s)
- Shweta Mehrotra
- Department of Botany, University of Delhi, Delhi 110007, India.
| | - Vinod Goyal
- Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
7
|
Organization and evolution of subtelomeric satellite repeats in the potato genome. G3-GENES GENOMES GENETICS 2011; 1:85-92. [PMID: 22384321 PMCID: PMC3276127 DOI: 10.1534/g3.111.000125] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/03/2011] [Indexed: 12/30/2022]
Abstract
Subtelomeric domains immediately adjacent to telomeres represent one of the most dynamic and rapidly evolving regions in eukaryotic genomes. A common feature associated with subtelomeric regions in different eukaryotes is the presence of long arrays of tandemly repeated satellite sequences. However, studies on molecular organization and evolution of subtelomeric repeats are rare. We isolated two subtelomeric repeats, CL14 and CL34, from potato (Solanum tuberosum). The CL14 and CL34 repeats are organized as independent long arrays, up to 1-3 Mb, of 182 bp and 339 bp monomers, respectively. The CL14 and CL34 repeat arrays are directly connected with the telomeric repeats at some chromosomal ends. The CL14 repeat was detected at the subtelomeric regions among highly diverged Solanum species, including tomato (Solanum lycopersicum). In contrast, CL34 was only found in potato and its closely related species. Interestingly, the CL34 repeat array was always proximal to the telomeres when both CL14 and CL34 were found at the same chromosomal end. In addition, the CL34 repeat family showed more sequence variability among monomers compared with the CL14 repeat family. We conclude that the CL34 repeat family emerged recently from the subtelomeric regions of potato chromosomes and is rapidly evolving. These results provide further evidence that subtelomeric domains are among the most dynamic regions in eukaryotic genomes.
Collapse
|
8
|
Plant highly repeated satellite DNA: Molecular evolution, distribution and use for identification of hybrids. SYST BIODIVERS 2007. [DOI: 10.1017/s147720000700240x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
De Felice B, Wilson RR, Ciarmiello L, Scarano MT, Ferrante S. Characterization of a novel satellite DNA sequence from Flying Dragon (Poncirus trifoliata). Genetica 2006; 127:45-53. [PMID: 16850212 DOI: 10.1007/s10709-005-2479-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Accepted: 08/25/2005] [Indexed: 11/28/2022]
Abstract
Repetitive sequences constitute a significant component of most eukaryotic genomes, and the isolation and characterization of repetitive DNA sequences provide an insight into the organization of the genome of interest. Here, we report the isolation and the molecular analysis and methylation status of a novel tandemly organized repetitive DNA sequence from the genome of Poncirus trifoliata. Digestion of P. trifoliata DNA with Afa I produced a prominent fragment of approximately 400 bp. Southern blotting analysis of genomic DNA digested with the same enzyme revealed a ladder composed of DNA fragments that are multimers of the 400-bp Afa I band, indicating that the repetitive DNA is arrayed in tandem. This suggests that Afa I isolated a novel satellite that we have called Poncirus trifoliata satellite DNA 400 (PN400). This satellite composes 25% of the genome and it is also present in lemon, sour orange and kumquat. Analysis of the methylation status demonstrated that the cytosines in CCGG sequences in this satellite were methylated.
Collapse
Affiliation(s)
- Bruna De Felice
- Department of Life Sciences, University of Naples II, Via Vivaldi 43, Caserta, Italy.
| | | | | | | | | |
Collapse
|
10
|
Volkov RA, Komarova NY, Panchuk II, Hemleben V. Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. Petota (genus Solanum). Mol Phylogenet Evol 2003; 29:187-202. [PMID: 13678676 DOI: 10.1016/s1055-7903(03)00092-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 5(') external transcribed spacer (ETS) region of ribosomal DNA of 30 species of Solanum sect. Petota and the European Solanum dulcamara were compared. Two structural elements can be distinguished in the ETS: (i). a variable region (VR), demonstrating significant structural rearrangements and (ii). a conservative region (CR), evolving mainly by base substitutions. In VR, a conservative element (CE) with similarity to the ETS of distantly related Nicotiana is present. The ancestral organization of ETS (variant A) was found for non-tuber-bearing species of ser. Etuberosa, tuber-bearing wild potatoes of Central American ser. Bulbocastana, Pinnatisecta, and Polyadenia and S. dulcamara. Duplication of CE took place in the ETS of species from ser. Commersoniana and Circaeifolia (variant B). South American diploids and Mexican polyploids from superser. Rotata also possess two CE, and additionally two duplications around CE1 are present in VR (variant C). Three major lineages could be distinguished: non-tuber-bearing species of ser. Etuberosa, tuber-bearing Central American diploids and all South American species radiated from a common ancestor at early stages of evolution, indicating a South American origin of the tuber-bearing species. Later, Central and South American diploids evolved further as independent lineages. South American species form a monophyletic group composed of series with both stellata and rotata flower morphology. Solanum commersonii represents a sister taxon for all rotata species, whereas ser. Circaeifolia diverged earlier. Two main groups, C1 and C2, may be distinguished for species possessing ETS variant C. C1 contains ser. Megistacroloba, Conicibaccata, Maglia, and Acaulia, whereas all diploids of ser. Tuberosa are combined into C2. A closer relationship of Solanum chacoense (ser. Yungasensa) to the C2 group was found. The origin of polyploid species Solanum maglia, Solanum acaule, Solanum tuberosum, Solanum iopetalum, and Solanum demissum is discussed.
Collapse
Affiliation(s)
- Roman A Volkov
- Department of General Genetics, Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | | | | | | |
Collapse
|
11
|
Molecular Cell Biology: Role of Repetitive DNA in Nuclear Architecture and Chromosome Structure. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/978-3-642-57203-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
|
12
|
Rajagopal J, Das S, Khurana DK, Srivastava PS, Lakshmikumaran M. Molecular characterization and distribution of a 145-bp tandem repeat family in the genus Populus. Genome 1999; 42:909-18. [PMID: 10584311 DOI: 10.1139/g99-013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This report aims to describe the identification and molecular characterization of a 145-bp tandem repeat family that accounts for nearly 1.5% of the Populus genome. Three members of this repeat family were cloned and sequenced from Populus deltoides and P. ciliata. The dimers of the repeat were sequenced in order to confirm the head-to-tail organization of the repeat. Hybridization-based analysis using the 145-bp tandem repeat as a probe on genomic DNA gave rise to ladder patterns which were identified to be a result of methylation and (or) sequence heterogeneity. Analysis of the methylation pattern of the repeat family using methylation-sensitive isoschizomers revealed variable methylation of the C residues and lack of methylation of the A residues. Sequence comparisons between the monomers revealed a high degree of sequence divergence that ranged between 6% and 11% in P. deltoides and between 4.2% and 8.3% in P. ciliata. This indicated the presence of sub-families within the 145-bp tandem family of repeats. Divergence was mainly due to the accumulation of point mutations and was concentrated in the central region of the repeat. The 145-bp tandem repeat family did not show significant homology to known tandem repeats from plants. A short stretch of 36 bp was found to show homology of 66.7% to a centromeric repeat from Chironomus plumosus. Dot-blot analysis and Southern hybridization data revealed the presence of the repeat family in 13 of the 14 Populus species examined. The absence of the 145-bp repeat from P. euphratica suggested that this species is relatively distant from other members of the genus, which correlates with taxonomic classifications. The widespread occurrence of the tandem family in the genus indicated that this family may be of ancient origin.
Collapse
Affiliation(s)
- J Rajagopal
- Biotechnology Division, TERI, New Delhi, India
| | | | | | | | | |
Collapse
|
13
|
Rokka VM, Clark MS, Knudson DL, Pehu E, Lapitan NL. Cytological and molecular characterization of repetitive DNA sequences of Solanum brevidens and Solanum tuberosum. Genome 1998; 41:487-94. [PMID: 9796097 DOI: 10.1139/g98-047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chromosomal distribution, copy numbers, and nucleotide sequences were determined for four repetitive DNA clones, pSB1 and pSB7 of Solanum brevidens and pST3 and pST10 of Solanum tuberosum. Using fluorescence in situ hybridization (FISH), pSB1 and pSB7 were localized near the telomeres and in some centromeric and interstitial sites of S. brevidens chromosomes, but not in S. tuberosum chromosomes, after high stringency washes. The clone pST3 showed signals in the telomeric areas of a few chromosomes in S. tuberosum, but signals were not detected in S. brevidens. All three repeated sequences (pSB1, pSB7, and pST3) were detected in chromosomal areas that are typically known to contain tandemly repeated sequences. The S. tuberosum clone pST10 did not show signals in either species even at low stringency conditions. The estimated copy numbers of the four clones were 1500, 6750, 300, and 400 for pSB1, pSB7, pST3, and pST10, respectively, in the corresponding haploid genomes (S. brevidens and S. tuberosum). The inserts of the four clones pSB1, pSB7, pST3, and pST10 were 322, 167, 845 and 121 bp, respectively. After sequencing, no significant sequence homologies were found among the four clones. A homology search in sequence data bases showed that pSB7 has variable homology (78-100%) with another repetitive sequence of S. brevidens Sb4/2 depending on its subrepeat. It also showed some homology with one repeat of tomato (pLEG15) and one repeat of Solanum circaeifolium (pSC15).
Collapse
Affiliation(s)
- V M Rokka
- Agricultural Research Centre of Finland, Institute of Crop and Soil Science, Jokioinen, Finland.
| | | | | | | | | |
Collapse
|