1
|
Jean-Marie E, Bereau D, Robinson JC. Benefits of Polyphenols and Methylxanthines from Cocoa Beans on Dietary Metabolic Disorders. Foods 2021; 10:2049. [PMID: 34574159 PMCID: PMC8470844 DOI: 10.3390/foods10092049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Theobroma cacao L. is an ancestral cultivated plant which has been consumed by various populations throughout history. Cocoa beans are the basic material occurring in the most consumed product in the world, namely chocolate. Their composition includes polyphenols, methylxanthines, lipids and other compounds that may vary qualitatively and quantitatively according to criteria such as variety or culture area. Polyphenols and methylxanthines are known as being responsible for many health benefits, particularly by preventing cardiovascular and neurodegenerative diseases. Recent studies emphasized their positive role in dietary metabolic disorders, such as diabetes and weight gain. After a brief presentation of cocoa bean, this review provides an overview of recent research activities highlighting promising strategies which modulated and prevented gastro-intestinal metabolism dysfunctions.
Collapse
Affiliation(s)
| | | | - Jean-Charles Robinson
- Laboratoire COVAPAM, UMR Qualisud, Université de Guyane, 97300 Cayenne, France; (E.J.-M.); (D.B.)
| |
Collapse
|
2
|
Wickramasuriya AM, Dunwell JM. Cacao biotechnology: current status and future prospects. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:4-17. [PMID: 28985014 PMCID: PMC5785363 DOI: 10.1111/pbi.12848] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 05/03/2023]
Abstract
Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology.
Collapse
Affiliation(s)
| | - Jim M. Dunwell
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| |
Collapse
|
3
|
Lanaud C, Fouet O, Legavre T, Lopes U, Sounigo O, Eyango MC, Mermaz B, Da Silva MR, Loor Solorzano RG, Argout X, Gyapay G, Ebaiarrey HE, Colonges K, Sanier C, Rivallan R, Mastin G, Cryer N, Boccara M, Verdeil JL, Efombagn Mousseni IB, Peres Gramacho K, Clément D. Deciphering the Theobroma cacao self-incompatibility system: from genomics to diagnostic markers for self-compatibility. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4775-4790. [PMID: 29048566 PMCID: PMC5853246 DOI: 10.1093/jxb/erx293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/31/2017] [Indexed: 05/26/2023]
Abstract
Cocoa self-compatibility is an important yield factor and has been described as being controlled by a late gameto-sporophytic system expressed only at the level of the embryo sac. It results in gametic non-fusion and involves several loci. In this work, we identified two loci, located on chromosomes 1 and 4 (CH1 and CH4), involved in cocoa self-incompatibility by two different processes. Both loci are responsible for gametic selection, but only one (the CH4 locus) is involved in the main fruit drop. The CH1 locus acts prior to the gamete fusion step and independently of the CH4 locus. Using fine-mapping and genome-wide association studies, we focused analyses on restricted regions and identified candidate genes. Some of them showed a differential expression between incompatible and compatible reactions. Immunolocalization experiments provided evidence of CH1 candidate genes expressed in ovule and style tissues. Highly polymorphic simple sequence repeat (SSR) diagnostic markers were designed in the CH4 region that had been identified by fine-mapping. They are characterized by a strong linkage disequilibrium with incompatibility alleles, thus allowing the development of efficient diagnostic markers predicting self-compatibility and fruit setting according to the presence of specific alleles or genotypes. SSR alleles specific to self-compatible Amelonado and Criollo varieties were also identified, thus allowing screening for self-compatible plants in cocoa populations.
Collapse
Affiliation(s)
- Claire Lanaud
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Olivier Fouet
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Thierry Legavre
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Uilson Lopes
- Centro de Pesquisas do Cacau (CEPEC), CEPLAC, Rod. Ilhéus-Itabuna, Ilhéus, BA, Brazil
| | - Olivier Sounigo
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UR Bioagresseurs, Elig-Essono, Yaoundé, Cameroun
- Institut de Recherche Agricole pour le Developpement (IRAD), Yaoundé, Cameroun
| | - Marie Claire Eyango
- Institut de Recherche Agricole pour le Developpement (IRAD), Yaoundé, Cameroun
| | - Benoit Mermaz
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Marcos Ramos Da Silva
- Centro de Pesquisas do Cacau (CEPEC), CEPLAC, Rod. Ilhéus-Itabuna, Ilhéus, BA, Brazil
| | - Rey Gaston Loor Solorzano
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), EET-Pichilingue. CP 24 Km 5 vía Quevedo El Empalme, Quevedo, Los Ríos, Ecuador
| | - Xavier Argout
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Gabor Gyapay
- Commissariat à l’Energie Antomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | | | - Kelly Colonges
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Christine Sanier
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Ronan Rivallan
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Géraldine Mastin
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Nicholas Cryer
- Mondelez UK R&D Limited, Bournville Place, Bournville Lane, Birmingham, UK
| | - Michel Boccara
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | - Jean-Luc Verdeil
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
| | | | - Karina Peres Gramacho
- Centro de Pesquisas do Cacau (CEPEC), CEPLAC, Rod. Ilhéus-Itabuna, Ilhéus, BA, Brazil
| | - Didier Clément
- Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), UMR AGAP, Avenue Agropolis TA, Montpellier Cedex, France
- Centro de Pesquisas do Cacau (CEPEC), CEPLAC, Rod. Ilhéus-Itabuna, Ilhéus, BA, Brazil
| |
Collapse
|
4
|
Badrie N, Bekele F, Sikora E, Sikora M. Cocoa agronomy, quality, nutritional, and health aspects. Crit Rev Food Sci Nutr 2016; 55:620-59. [PMID: 24915358 DOI: 10.1080/10408398.2012.669428] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The history of cocoa and chocolate including the birth and the expansion of the chocolate industry was described. Recent developments in the industry and cocoa economy were briefly depicted. An overview of the classification of cacao as well as studies on phenotypic and genetic diversity was presented. Cocoa agronomic practices including traditional and modern propagation techniques were reviewed. Nutrition-related health benefits derived from cocoa consumption were listed and widely reviewed. The specific action of cocoa antioxidants was compared to those of teas and wines. Effects of adding milk to chocolate and chocolate drinks versus bioavailability of cocoa polyphenols were discussed. Finally, flavor, sensory, microbiological, and toxicological aspects of cocoa consumption were presented.
Collapse
Affiliation(s)
- Neela Badrie
- a Faculty of Food and Agriculture, Department of Food Production , The University of the West Indies , St. Augustine , Republic of Trinidad and Tobago
| | | | | | | |
Collapse
|
5
|
Kondakova V, Todorovska E, Boicheva R, Hristova E, Badjakov I, Todorova M, Domosetova D, Atanassov A. Genetic Resources of small Fruits, Present and Future Development. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
6
|
Utro F, Cornejo OE, Livingstone D, Motamayor JC, Parida L. ARG-based genome-wide analysis of cacao cultivars. BMC Bioinformatics 2012; 13 Suppl 19:S17. [PMID: 23281769 PMCID: PMC3526434 DOI: 10.1186/1471-2105-13-s19-s17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Ancestral recombinations graph (ARG) is a topological structure that captures the relationship between the extant genomic sequences in terms of genetic events including recombinations. IRiS is a system that estimates the ARG on sequences of individuals, at genomic scales, capturing the relationship between these individuals of the species. Recently, this system was used to estimate the ARG of the recombining X Chromosome of a collection of human populations using relatively dense, bi-allelic SNP data. Results While the ARG is a natural model for capturing the inter-relationship between a single chromosome of the individuals of a species, it is not immediately apparent how the model can utilize whole-genome (across chromosomes) diploid data. Also, the sheer complexity of an ARG structure presents a challenge to graph visualization techniques. In this paper we examine the ARG reconstruction for (1) genome-wide or multiple chromosomes, (2) multi-allelic and (3) extremely sparse data. To aid in the visualization of the results of the reconstructed ARG, we additionally construct a much simplified topology, a classification tree, suggested by the ARG. As the test case, we study the problem of extracting the relationship between populations of Theobroma cacao. The chocolate tree is an outcrossing species in the wild, due to self-incompatibility mechanisms at play. Thus a principled approach to understanding the inter-relationships between the different populations must take the shuffling of the genomic segments into account. The polymorphisms in the test data are short tandem repeats (STR) and are multi-allelic (sometimes as high as 30 distinct possible values at a locus). Each is at a genomic location that is bilaterally transmitted, hence the ARG is a natural model for this data. Another characteristic of this plant data set is that while it is genome-wide, across 10 linkage groups or chromosomes, it is very sparse, i.e., only 96 loci from a genome of approximately 400 megabases. The results are visualized both as MDS plots and as classification trees. To evaluate the accuracy of the ARG approach, we compare the results with those available in literature. Conclusions We have extended the ARG model to incorporate genome-wide (ensemble of multiple chromosomes) data in a natural way. We present a simple scheme to implement this in practice. Finally, this is the first time that a plant population data set is being studied by estimating its underlying ARG. We demonstrate an overall precision of 0.92 and an overall recall of 0.93 of the ARG-based classification, with respect to the gold standard. While we have corroborated the classification of the samples with that in literature, this opens the door to other potential studies that can be made on the ARG.
Collapse
Affiliation(s)
- Filippo Utro
- Computational Biology Center, IBM TJ Watson Research, Yorktown Heights, NY 10598, USA
| | | | | | | | | |
Collapse
|
7
|
Loor Solorzano RG, Fouet O, Lemainque A, Pavek S, Boccara M, Argout X, Amores F, Courtois B, Risterucci AM, Lanaud C. Insight into the wild origin, migration and domestication history of the fine flavour Nacional Theobroma cacao L. variety from Ecuador. PLoS One 2012; 7:e48438. [PMID: 23144883 PMCID: PMC3492346 DOI: 10.1371/journal.pone.0048438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
Ecuador's economic history has been closely linked to Theobroma cacao L cultivation, and specifically to the native fine flavour Nacional cocoa variety. The original Nacional cocoa trees are presently in danger of extinction due to foreign germplasm introductions. In a previous work, a few non-introgressed Nacional types were identified as potential founders of the modern Ecuadorian cocoa population, but so far their origin could not be formally identified. In order to determine the putative centre of origin of Nacional and trace its domestication history, we used 80 simple sequence repeat (SSR) markers to analyse the relationships between these potential Nacional founders and 169 wild and cultivated cocoa accessions from South and Central America. The highest genetic similarity was observed between the Nacional pool and some wild genotypes from the southern Amazonian region of Ecuador, sampled along the Yacuambi, Nangaritza and Zamora rivers in Zamora Chinchipe province. This result was confirmed by a parentage analysis. Based on our results and on data about pre-Columbian civilization and Spanish colonization history of Ecuador, we determined, for the first time, the possible centre of origin and migration events of the Nacional variety from the Amazonian area until its arrival in the coastal provinces. As large unexplored forest areas still exist in the southern part of the Ecuadorian Amazonian region, our findings could provide clues as to where precious new genetic resources could be collected, and subsequently used to improve the flavour and disease resistance of modern Ecuadorian cocoa varieties.
Collapse
Affiliation(s)
| | | | - Arnaud Lemainque
- Centre National de Génotypage, CEA Institut de Génomique, Evry, France
| | - Sylvana Pavek
- Centre National de Génotypage, CEA Institut de Génomique, Evry, France
| | - Michel Boccara
- UMR AGAP, CIRAD, Montpellier, France
- Cocoa Research Unit (CRU), University of the West Indies, St Augustine, Trinidad and Tobago
| | | | | | | | | | | |
Collapse
|
8
|
Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal. PLoS One 2012; 7:e47676. [PMID: 23112832 PMCID: PMC3480400 DOI: 10.1371/journal.pone.0047676] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/14/2012] [Indexed: 12/02/2022] Open
Abstract
Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao’s distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000–13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species’ Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao.
Collapse
|
9
|
Motamayor JC, Lachenaud P, da Silva E Mota JW, Loor R, Kuhn DN, Brown JS, Schnell RJ. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One 2008; 3:e3311. [PMID: 18827930 PMCID: PMC2551746 DOI: 10.1371/journal.pone.0003311] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 08/29/2008] [Indexed: 11/19/2022] Open
Abstract
Numerous collecting expeditions of Theobroma cacao L. germplasm have been undertaken in Latin-America. However, most of this germplasm has not contributed to cacao improvement because its relationship to cultivated selections was poorly understood. Germplasm labeling errors have impeded breeding and confounded the interpretation of diversity analyses. To improve the understanding of the origin, classification, and population differentiation within the species, 1241 accessions covering a large geographic sampling were genotyped with 106 microsatellite markers. After discarding mislabeled samples, 10 genetic clusters, as opposed to the two genetic groups traditionally recognized within T. cacao, were found by applying Bayesian statistics. This leads us to propose a new classification of the cacao germplasm that will enhance its management. The results also provide new insights into the diversification of Amazon species in general, with the pattern of differentiation of the populations studied supporting the palaeoarches hypothesis of species diversification. The origin of the traditional cacao cultivars is also enlightened in this study.
Collapse
Affiliation(s)
- Juan C Motamayor
- National Germplasm Repository, US Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, Florida, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Engelbrecht CJ, Harrington TC, Alfenas A. Ceratocystis wilt of cacao-a disease of increasing importance. PHYTOPATHOLOGY 2007; 97:1648-9. [PMID: 18943727 DOI: 10.1094/phyto-97-12-1648] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Ceratocystis cacaofunesta (formerly C. fimbriata) causes a lethal wilt disease of cacao (Theobroma cacao) in the Caribbean and Central and South America. Recent studies employing phylogenetics, intersterility, and host range separate the cacao pathogen from other strains of the C. fimbriata complex. Ceratocystis wilt has been managed through genetic resistance, but the disease is an emerging problem in Bahia, Brazil, where it was recently introduced. Genetic studies indicate that populations of the fungus in Costa Rica, Colombia, and Bahia may have been introduced on cacao cuttings; whereas populations in Rondônia, Brazil, and western Ecuador appear to be native. The fungal genotype present in Bahia is similar to those found in Rondônia and may have been introduced on propagative material with witches' broom resistance.
Collapse
|
11
|
Zhang D, Boccara M, Motilal L, Butler DR, Umaharan P, Mischke S, Meinhardt L. Microsatellite variation and population structure in the “Refractario” cacao of Ecuador. CONSERV GENET 2007. [DOI: 10.1007/s10592-007-9345-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Sukha DA, Butler DR, Umaharan P, Boult E. The use of an optimised organoleptic assessment protocol to describe and quantify different flavour attributes of cocoa liquors made from Ghana and Trinitario beans. Eur Food Res Technol 2007. [DOI: 10.1007/s00217-006-0551-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Lachenaud P, Oliver G, Bastide P, Paulin D. Le remplissage des cabosses des cacaoyers spontanés de Guyane (Theobroma cacaoL.). ACTA ACUST UNITED AC 2006. [DOI: 10.1080/12538078.2006.10515525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Genetic Diversity and Natural Population Structure of Cacao (Theobroma cacao L.) from the Brazilian Amazon Evaluated by Microsatellite Markers. CONSERV GENET 2006. [DOI: 10.1007/s10592-005-7568-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Motamayor JC, Risterucci AM, Heath M, Lanaud C. Cacao domestication II: progenitor germplasm of the Trinitario cacao cultivar. Heredity (Edinb) 2003; 91:322-30. [PMID: 12939635 DOI: 10.1038/sj.hdy.6800298] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cacao (Theobroma cacao L.) has been cultivated in Central America since pre-Columbian times. The type of cacao cultivated in this region was called Criollo; cacao populations from the Amazon basin were called Forastero. The type of Forastero most commonly cultivated until 1950 was named Amelonado. Historical data show Trinitario cacao to have originated in Trinidad, resulting from natural hybridisation between Criollo and Amelonado Forastero. Doubts persist on the source of the Amelonado Forastero involved in the origin of Trinitario; the Amelonado parent may have come from the Lower Amazon, the Orinoco or the Guyanas. Most of the cacao cultivated worldwide until 1950 consisted of Criollo, Trinitario and Amelonado. From the early 1950s, Forastero material collected in the Upper Amazon region during the 1930s and 1940s began to be employed in breeding programmes. To gain a better understanding of the origin and the genetic basis of the cacao cultivars exploited before the utilisation of germplasm collected in the Upper Amazon, a study was carried out using restriction fragment length polymorphism and microsatellite markers. Trinitario samples from 17 countries were analysed. With molecular markers, it was possible to clearly identify three main genotypes (represented by clones SP1, MAT1-6 and SIAL70) implicated in the origin of most Trinitario clones.
Collapse
Affiliation(s)
- J C Motamayor
- CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, TA 40/03, Av. Agropolis, 34398 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
16
|
Clement D, Risterucci AM, Motamayor JC, N'Goran J, Lanaud C. Mapping quantitative trait loci for bean traits and ovule number in Theobroma cacao L. Genome 2003; 46:103-11. [PMID: 12669802 DOI: 10.1139/g02-118] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quantitative trait loci (QTL) mapping for bean traits and the number of ovules per ovary was carried out in cocoa (Theobroma cacao L.) using three test-cross progenies derived from crosses between a lower Amazon Forastero male parent (Catongo) and three female parents: one upper Amazon Forastero (IMC78) and two Trinitario (DR1 and S52). RFLP (restriction fragment length polymorphism), microsatellite, and AFLP (amplified fragment lengthpolymorphism) markers were used for mapping. Between one and six QTL for bean traits (length, weight, and shape index) and one and four QTL for the number of ovules per ovary were detected using composite interval mapping (CIM). Individual QTL explained between 5 and 24% of the phenotypic variation. QTL clusters were identified on several chromosomes, but particularly on chromosome 4. QTL related to bean traits were detected in the same region in both Trinitario parents and in a close region in the upper Amazon Forastero parent. In reference to a previous diversity study where alleles specific to Criollo and Forastero genotypes were identified, it was possible to speculate on the putative origin (Criollo or Forastero) of favorable QTL alleles segregating in both Trinitario studied.
Collapse
Affiliation(s)
- D Clement
- Centre de coopération internationale en recherche pour le développement (CIRAD), TA 80/02, Avenue d'Agropolis, 34398 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
17
|
Motamayor JC, Risterucci AM, Lopez PA, Ortiz CF, Moreno A, Lanaud C. Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity (Edinb) 2002; 89:380-6. [PMID: 12399997 DOI: 10.1038/sj.hdy.6800156] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Accepted: 05/14/2002] [Indexed: 11/09/2022] Open
Abstract
Criollo cacao (Theobroma cacao ssp. cacao) was cultivated by the Mayas over 1500 years ago. It has been suggested that Criollo cacao originated in Central America and that it evolved independently from the cacao populations in the Amazon basin. Cacao populations from the Amazon basin are included in the second morphogeographic group: Forastero, and assigned to T. cacao ssp. sphaerocarpum. To gain further insight into the origin and genetic basis of Criollo cacao from Central America, RFLP and microsatellite analyses were performed on a sample that avoided mixing pure Criollo individuals with individuals classified as Criollo but which might have been introgressed with Forastero genes. We distinguished these two types of individuals as Ancient and Modern Criollo. In contrast to previous studies, Ancient Criollo individuals formerly classified as 'wild', were found to form a closely related group together with Ancient Criollo individuals from South America. The Ancient Criollo trees were also closer to Colombian-Ecuadorian Forastero individuals than these Colombian-Ecuadorian trees were to other South American Forastero individuals. RFLP and microsatellite analyses revealed a high level of homozygosity and significantly low genetic diversity within the Ancient Criollo group. The results suggest that the Ancient Criollo individuals represent the original Criollo group. The results also implies that this group does not represent a separate subspecies and that it probably originated from a few individuals in South America that may have been spread by man within Central America.
Collapse
Affiliation(s)
- J C Motamayor
- CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, TA 40/03, Av Agropolis, 34398 Montpellier cedex 5, France.
| | | | | | | | | | | |
Collapse
|
18
|
Lanaud C, Risterucci AM, Pieretti I, Falque M, Bouet A, Lagoda PJ. Isolation and characterization of microsatellites in Theobroma cacao L. Mol Ecol 1999; 8:2141-3. [PMID: 10632866 DOI: 10.1046/j.1365-294x.1999.00802.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Lanaud
- CIRAD-BIOTROP, Avenue Agropolis, BP 5035, 34032 Montpellier Cédex, France.
| | | | | | | | | | | |
Collapse
|
19
|
Galgaro L, Lopes CR, Gimenes M, Valls JFM, Kochert G. Genetic variation between several species of sections Extranervosae, Caulorrhizae, Heteranthae, and Triseminatae (genus Arachis) estimated by DNA polymorphism. Genome 1998. [DOI: 10.1139/g98-004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic variation within and among accessions of the genusArachis representing sections Extranervosae, Caulorrhizae, Heteranthae, and Triseminatae was evaluated using RFLP and RAPD markers. RAPD markers revealed a higher level of genetic diversity than did RFLP markers, both within and among the species evaluated. Phenograms based on various band-matching algorithms revealed three major clusters of similarity among the sections evaluated. The first group included the species from section Extranervosae, the second group consisted of sections Triseminatae, Caulorrhizae, and Heteranthae, and the third group consisted of one accession of Arachis hypogaea, which had been included as a representative of section Arachis. The phenogramsobtained from the RAPD and RFLP data were similar but not identical. Arachis pietrarellii, assayed only by RAPD, showed a high degree of genetic similarity with Arachis villosulicarpa. This observation supported the hypothesis that these two species are closely related. It was also shown that accession V 7786, previously considered to be Arachis sp. aff.pietrarellii, and assayed using both RFLPs and RAPDs, was possibly a new species from section Extranervosae, but very distinct from A. pietrarellii.Keywords: Arachis, RFLP, RAPD, genetic similarity, genetic distance.
Collapse
|
20
|
Comparative genetic diversity studies of Theobroma cacao L. using RFLP and RAPD markers. Heredity (Edinb) 1994. [DOI: 10.1038/hdy.1994.166] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|