1
|
The Azospirillum brasilense Core Chemotaxis Proteins CheA1 and CheA4 Link Chemotaxis Signaling with Nitrogen Metabolism. mSystems 2021; 6:6/1/e01354-20. [PMID: 33594007 PMCID: PMC8561660 DOI: 10.1128/msystems.01354-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial chemotaxis affords motile bacteria the ability to navigate the environment to locate niches for growth and survival. At the molecular level, chemotaxis depends on chemoreceptor signaling arrays that interact with cytoplasmic proteins to control the direction of movement. In Azospirillum brasilense, chemotaxis is mediated by two distinct chemotaxis pathways: Che1 and Che4. Both Che1 and Che4 are critical in the A. brasilense free-living and plant-associated lifestyles. Here, we use whole-cell proteomics and metabolomics to characterize the role of chemotaxis in A. brasilense physiology. We found that mutants lacking CheA1 or CheA4 or both are affected in nonchemotaxis functions, including major changes in transcription, signaling transport, and cell metabolism. We identify specific effects of CheA1 and CheA4 on nitrogen metabolism, including nitrate assimilation and nitrogen fixation, that may depend, at least, on the transcriptional control of rpoN, which encodes RpoN, a global regulator of metabolism, including nitrogen. Consistent with proteomics, the abundance of several nitrogenous compounds (purines, pyrimidines, and amino acids) changed in the metabolomes of the chemotaxis mutants relative to the parental strain. Further, we uncover novel, and yet uncharacterized, layers of transcriptional and posttranscriptional control of nitrogen metabolism regulators. Together, our data reveal roles for CheA1 and CheA4 in linking chemotaxis and nitrogen metabolism, likely through control of global regulatory networks. IMPORTANCE Bacterial chemotaxis is widespread in bacteria, increasing competitiveness in diverse environments and mediating associations with eukaryotic hosts ranging from commensal to beneficial and pathogenic. In most bacteria, chemotaxis signaling is tightly linked to energy metabolism, with this coupling occurring through the sensory input of several energy-sensing chemoreceptors. Here, we show that in A. brasilense the chemotaxis proteins have key roles in modulating nitrogen metabolism, including nitrate assimilation and nitrogen fixation, through novel and yet unknown regulations. These results are significant given that A. brasilense is a model bacterium for plant growth promotion and free-living nitrogen fixation and is used as a bio-inoculant for cereal crops. Chemotaxis signaling in A. brasilense thus links locomotor behaviors to nitrogen metabolism, allowing cells to continuously and reciprocally adjust metabolism and chemotaxis signaling as they navigate gradients.
Collapse
|
2
|
Bakhrat A, Baranes K, Krichevsky O, Rom I, Schlenstedt G, Pietrokovski S, Raveh D. Nuclear import of ho endonuclease utilizes two nuclear localization signals and four importins of the ribosomal import system. J Biol Chem 2006; 281:12218-26. [PMID: 16507575 DOI: 10.1074/jbc.m600238200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activity of Ho, the yeast mating switch endonuclease, is restricted to a narrow time window of the cell cycle. Ho is unstable and despite being a nuclear protein is exported to the cytoplasm for proteasomal degradation. We report here the molecular basis for the highly efficient nuclear import of Ho and the relation between its short half-life and passage through the nucleus. The Ho nuclear import machinery is functionally redundant, being based on two bipartite nuclear localization signals, recognized by four importins of the ribosomal import system. Ho degradation is regulated by the DNA damage response and Ho retained in the cytoplasm is stabilized, implying that Ho acquires its crucial degradation signals in the nucleus. Ho arose by domestication of a fungal VMA1 intein. A comparison of the primary sequences of Ho and fungal VMA1 inteins shows that the Ho nuclear localization signals are highly conserved in all Ho proteins, but are absent from VMA1 inteins. Thus adoption of a highly efficient import strategy occurred very early in the evolution of Ho. This may have been a crucial factor in establishment of homothallism in yeast, and a key event in the rise of the Saccharomyces sensu stricto.
Collapse
Affiliation(s)
- Anya Bakhrat
- Department of Life Sciences, Ben Gurion University of the Negev, P. O. Box 653, 84105 Beersheba, Israel
| | | | | | | | | | | | | |
Collapse
|
3
|
Tamburini BA, Tyler JK. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 2005; 25:4903-13. [PMID: 15923609 PMCID: PMC1140608 DOI: 10.1128/mcb.25.12.4903-4913.2005] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many recent studies have demonstrated recruitment of chromatin-modifying enzymes to double-strand breaks. Instead, we wanted to examine chromatin modifications during the repair of these double-strand breaks. We show that homologous recombination triggers the acetylation of N-terminal lysines on histones H3 and H4 flanking a double-strand break, followed by deacetylation of H3 and H4. Consistent with a requirement for acetylation and deacetylation during homologous recombination, Saccharomyces cerevisiae with substitutions of the acetylatable lysines of histone H4, deleted for the N-terminal tail of histone H3 or H4, deleted for the histone acetyltransferase GCN5 gene or the histone deacetylase RPD3 gene, shows inviability following induction of an HO lesion that is repaired primarily by homologous recombination. Furthermore, the histone acetyltransferases Gcn5 and Esa1 and the histone deacetylases Rpd3, Sir2, and Hst1 are recruited to the HO lesion during homologous recombinational repair. We have also observed a distinct pattern of histone deacetylation at the donor locus during homologous recombination. Our results demonstrate that dynamic changes in histone acetylation accompany homologous recombination and that the ability to modulate histone acetylation is essential for viability following homologous recombination.
Collapse
Affiliation(s)
- Beth A Tamburini
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center at Fitzsimons, P.O. Box 6511, Aurora, CO 80045, USA
| | | |
Collapse
|
4
|
Kaplun L, Tzirkin R, Bakhrat A, Shabek N, Ivantsiv Y, Raveh D. The DNA damage-inducible UbL-UbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol Cell Biol 2005; 25:5355-62. [PMID: 15964793 PMCID: PMC1156969 DOI: 10.1128/mcb.25.13.5355-5362.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Revised: 02/10/2005] [Accepted: 03/23/2005] [Indexed: 11/20/2022] Open
Abstract
Ho endonuclease initiates a mating type switch by making a double-strand break at the mating type locus, MAT. Ho is marked by phosphorylation for rapid destruction by functions of the DNA damage response, MEC1, RAD9, and CHK1. Phosphorylated Ho is recruited for ubiquitylation via the SCF ubiquitin ligase complex by the F-box protein, Ufo1. Here we identify a further DNA damage-inducible protein, the UbL-UbA protein Ddi1, specifically required for Ho degradation. Ho interacts only with Ddi1; it does not interact with the other UbL-UbA proteins, Rad23 or Dsk2. Ho must be ubiquitylated to interact with Ddi1, and there is no interaction when Ho is produced in mec1 or Deltaufo1 mutants that do not support its degradation. Ddi1 binds the proteasome via its N-terminal ubiquitin-like domain (UbL) and interacts with ubiquitylated Ho via its ubiquitin-associated domain (UbA); both domains of Ddi1 are required for association of ubiquitylated Ho with the proteasome. Despite being a nuclear protein, Ho is exported to the cytoplasm for degradation. In the absence of Ddi1, ubiquitylated Ho is stabilized and accumulates in the cytoplasm. These results establish a role for Ddi1 in the degradation of a natural ubiquitylated substrate. The specific interaction between Ho and Ddi1 identifies an additional function associated with DNA damage involved in its degradation.
Collapse
Affiliation(s)
- Ludmila Kaplun
- Department of Life Sciences, Ben Gurion University of Negev, P.O. Box 653, Beersheba 84105, Israel
| | | | | | | | | | | |
Collapse
|
5
|
Kaplun L, Ivantsiv Y, Bakhrat A, Raveh D. DNA damage response-mediated degradation of Ho endonuclease via the ubiquitin system involves its nuclear export. J Biol Chem 2003; 278:48727-34. [PMID: 14506225 DOI: 10.1074/jbc.m308671200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast mating switch Ho endonuclease is rapidly degraded by the ubiquitin system and this depends on the DNA damage response functions, MEC1, RAD9, and CHK1. A PEST sequence marks Ho for degradation. Here we show that the novel F-box receptor, Ufo1, recruits phosphorylated Ho for degradation. Mutation of PEST residue threonine 225 stabilizes Ho, yet HoT225A still binds Ufo1 in vitro. Stable HoT225A accumulates within the nucleus, whereas HoT225E is degraded. Deletion of the nuclear exportin Msn5 traps native Ho in the nucleus and extends its half-life. These experiments suggest that Ho is degraded in the cytoplasm. In mec1 mutants stable Ho accumulates within the nucleus; Ho produced in mec1 cells does not bind Ufo1. Thus the MEC1 pathway has functions both in phosphorylation of Thr-225 for nuclear export and in additional phosphorylations for binding Ufo1. Cells with HO under its genomic promoter, but stabilized by deletion of the Msn5 exportin, proliferate, but are multibudded. These experiments elucidate some of the links between the DNA damage response and degradation of Ho by the ubiquitin system.
Collapse
Affiliation(s)
- Ludmila Kaplun
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel 84105
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- James E Haber
- Rosenstiel Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
7
|
Nahon E, Raveh D. A tool for enhancing site-specific gene integration in mammalian cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 451:411-4. [PMID: 10026904 DOI: 10.1007/978-1-4615-5357-1_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- E Nahon
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| | | |
Collapse
|
8
|
Abstract
Saccharomyces cerevisiae can change its mating type as often as every generation by a highly choreographed, site-specific recombination event that replaces one MAT allele with different DNA sequences encoding the opposite allele. The study of this process has yielded important insights into the control of cell lineage, the silencing of gene expression, and the formation of heterochromatin, as well as the molecular events of double-strand break-induced recombination. In addition, MAT switching provides a remarkable example of a small locus control region--the Recombination Enhancer--that controls recombination along an entire chromosome arm.
Collapse
Affiliation(s)
- J E Haber
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
9
|
Nahon E, Raveh D. Targeting a truncated Ho-endonuclease of yeast to novel DNA sites with foreign zinc fingers. Nucleic Acids Res 1998; 26:1233-9. [PMID: 9469831 PMCID: PMC147390 DOI: 10.1093/nar/26.5.1233] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ho-endonuclease of the yeast, Saccharomyces cerevisiae, initiates a mating type switch by making a site-specific double strand break in the mating type gene, MAT. Ho is a dodecamer endonuclease and shares six of the seven intein motifs with PI- Sce I endonuclease, an intein encoded by the VMAI gene. We show that a 113 residue truncated Ho-endonuclease starting at intein motif C initiates a mating type switch in yeast. Ho is the only dodecamer endonuclease with zinc fingers. To see whether they have a role in determining site specificity we exchanged them for zinc fingers of the yeast transcription factor, Swi5. A chimeric endonuclease comprising the dodecamer motifs of Ho (C-E) and the zinc finger domain of Swi5 cleaves a Swi5 substrate plasmid in vivo. A similar chimera with the zinc fingers of SpI cleaves a GC box rich substrate plasmid. These experiments delineate a catalytic fragment of Ho-endonuclease that can be fused to various DNA binding moieties in the design of chimeric endonucleases with new site specificities.
Collapse
Affiliation(s)
- E Nahon
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba 84105, Israel
| | | |
Collapse
|
10
|
Meiron H, Nahon E, Raveh D. Identification of the heterothallic mutation in HO-endonuclease of S. cerevisiae using HO/ho chimeric genes. Curr Genet 1995; 28:367-73. [PMID: 8590483 DOI: 10.1007/bf00326435] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HO-endonuclease initiates a mating-type switch in the yeast S. cerevisiae by making a double-strand cleavage in the DNA of the mating-type gene, MAT. Heterothallic strains of yeast have a stable mating type and contain a recessive ho allele. Here we report the sequence of the ho allele; ho has four point mutations all of which encode for substitute amino acids. The fourth mutation is a leucine to histidine substitution within a presumptive zinc finger. Chimeric HO/ho genes were constructed in vivo by converting different parts of the sequence of the genomic ho allele to the HO sequence by gene conversion. HO activity was assessed by three bioassays: a mating-type switch, extinction of expression of an a-specific reporter gene, and the appearance of Canr Ade- papillae resulting from excision of an engineered Ty element containing the HO-endonuclease target site and a SUP4 degrees gene. We found that the replacement of the fourth point mutation in ho to the HO sequence restored HO activity to the chimeric endonuclease.
Collapse
Affiliation(s)
- H Meiron
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| | | | | |
Collapse
|
11
|
Sugawara N, Ivanov EL, Fishman-Lobell J, Ray BL, Wu X, Haber JE. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 1995; 373:84-6. [PMID: 7800045 DOI: 10.1038/373084a0] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Saccharomyces cerevisiae, HO endonuclease-induced mating-type (MAT) switching is a specialized mitotic recombination event in which MAT sequences are replaced by those copied from a distant, unexpressed donor (HML or HMR). The donors have a chromatin structure inaccessible for both transcription and HO cleavage. Here we use physical monitoring of DNA to show that MAT switching is completely blocked at an early step in recombination in strains deleted for the DNA repair genes RAD51, RAD52, RAD54, RAD55 or RAD57. We find, however, that only RAD52 is required when the donor sequence is simultaneously not silenced and located on a plasmid. RAD51, RAD54, RAD55 and RAD57 are still required when the same transcribed donor is on the chromosome. We conclude that recombination in vivo occurs between DNA molecules in chromatin, whose structure significantly influences the outcome. RAD51, RAD54, RAD55 and RAD57 are all required to facilitate strand invasion into otherwise inaccessible donor sequences.
Collapse
Affiliation(s)
- N Sugawara
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The HO endonuclease was used to introduce a site-specific double-strand break (DSB) in an interval designed to monitor mitotic recombination. The interval included the trp1 and his3 genes inserted into chromosome III of S. cerevisiae between the CRY1 and MAT loci. Mitotic recombination was monitored in a diploid carrying heteroalleles of trp1 and his3. The normal recognition sites for the HO endonuclease were mutated at the MAT alleles and a synthetic recognition site for HO endonuclease was placed between trp1 and his3 on one of the chromosomes. HO-induced cleavage resulted in efficient recombination in this interval. Most of the data can be explained by double-strand gap repair in which the cut chromosome acts as the recipient. However, analysis of some of the recombinants indicates that regions of heteroduplex were generated flanking the site of the cut, and that some recombinants were the result of the cut chromosome acting as the genetic donor.
Collapse
Affiliation(s)
- C B McGill
- Laboratory of Eukaryotic Gene Expression, NCI-Frederick Cancer Research, MD
| | | | | | | |
Collapse
|
13
|
Heitman J. On the origins, structures and functions of restriction-modification enzymes. GENETIC ENGINEERING 1993; 15:57-108. [PMID: 7764063 DOI: 10.1007/978-1-4899-1666-2_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Heitman
- Section of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
14
|
Abstract
The study of yeast mating-type (MAT) gene switching has provided insights into several aspects of the regulation of gene expression. MAT switching is accomplished by a highly programmed site-specific homologous recombination event in which mating-type-specific sequences at MAT are replaced by alternative DNA sequences copied from one of two unexpressed donors. The mating-type system has also provided an opportunity to study both the genetic regulation of gene silencing by alterations in chromatin structure, and the basis of preferential recombination between a recipient of genetic information and one of several possible donors.
Collapse
Affiliation(s)
- J E Haber
- Rosenstiel Center, Brandeis University, Waltham, MA 02254
| |
Collapse
|
15
|
Roth DB, Nakajima PB, Menetski JP, Bosma MJ, Gellert M. Double-strand breaks associated with V(D)J recombination at the TCR delta locus in murine thymocytes. Curr Top Microbiol Immunol 1992; 182:115-24. [PMID: 1490345 DOI: 10.1007/978-3-642-77633-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- D B Roth
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|