1
|
Skliros D, Kalatzis PG, Katharios P, Flemetakis E. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell. Front Microbiol 2016; 7:1807. [PMID: 27895630 PMCID: PMC5107563 DOI: 10.3389/fmicb.2016.01807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023] Open
Abstract
Sequencing and annotation was performed for two large double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage–host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other large Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the “schizoT4like” clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral open reading frames (ORFs) participating in metabolism, including a Sir2/cobB (sirtuin) protein and a number of genes involved in auxiliary NAD+ and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens Athens, Greece
| | - Panos G Kalatzis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HeraklionCrete, Greece; Marine Biological Section, University of CopenhagenHelsingør, Denmark
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion Crete, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens Athens, Greece
| |
Collapse
|
2
|
Schofield DA, Wray DJ, Molineux IJ. Isolation and development of bioluminescent reporter phages for bacterial dysentery. Eur J Clin Microbiol Infect Dis 2014; 34:395-403. [DOI: 10.1007/s10096-014-2246-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/04/2014] [Indexed: 01/19/2023]
|
3
|
Mapping free-standing homing endonuclease promoters using 5'RLM-RACE. Methods Mol Biol 2014. [PMID: 24510260 DOI: 10.1007/978-1-62703-968-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
5'RLM-RACE is a PCR-based technique used to map the 5' termini of transcripts in both eukaryotic and prokaryotic organisms. Free-standing homing endonuclease promoters often lack recognizable promoters making predicting the transcriptional start site challenging. Furthermore, homing endonucleases are often expressed at very low levels making transcript mapping a challenge. Here, I present a 5'RLM-RACE protocol with special considerations for the expected abundance of homing endonucleases and for their potential to be subjected to RNA processing events.
Collapse
|
4
|
Uzan M, Miller ES. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virol J 2010; 7:360. [PMID: 21129205 PMCID: PMC3014915 DOI: 10.1186/1743-422x-7-360] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/03/2010] [Indexed: 01/02/2023] Open
Abstract
Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC) and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit); and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes) of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context.
Collapse
Affiliation(s)
- Marc Uzan
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | |
Collapse
|
5
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
6
|
Edgell DR, Gibb EA, Belfort M. Mobile DNA elements in T4 and related phages. Virol J 2010; 7:290. [PMID: 21029434 PMCID: PMC2988022 DOI: 10.1186/1743-422x-7-290] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/28/2010] [Indexed: 12/30/2022] Open
Abstract
Mobile genetic elements are common inhabitants of virtually every genome where they can exert profound influences on genome structure and function in addition to promoting their own spread within and between genomes. Phage T4 and related phage have long served as a model system for understanding the molecular mechanisms by which a certain class of mobile DNA, homing endonucleases, promote their spread. Homing endonucleases are site-specific DNA endonucleases that initiate mobility by introducing double-strand breaks at defined positions in genomes lacking the endonuclease gene, stimulating repair and recombination pathways that mobilize the endonuclease coding region. In phage T4, homing endonucleases were first discovered as encoded within the self-splicing td, nrdB and nrdD introns of T4. Genomic data has revealed that homing endonucleases are extremely widespread in T-even-like phage, as evidenced by the astounding fact that ~11% of the T4 genome encodes homing endonuclease genes, with most of them located outside of self-splicing introns. Detailed studies of the mobile td intron and its encoded endonuclease, I-TevI, have laid the foundation for genetic, biochemical and structural aspects that regulate the mobility process, and more recently have provided insights into regulation of homing endonuclease function. Here, we summarize the current state of knowledge regarding T4-encoded homing endonucleases, with particular emphasis on the td/I-TevI model system. We also discuss recent progress in the biology of free-standing endonucleases, and present areas of future research for this fascinating class of mobile genetic elements.
Collapse
Affiliation(s)
- David R Edgell
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada.
| | | | | |
Collapse
|
7
|
Uzan M. RNA processing and decay in bacteriophage T4. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:43-89. [PMID: 19215770 DOI: 10.1016/s0079-6603(08)00802-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteriophage T4 is the archetype of virulent phage. It has evolved very efficient strategies to subvert host functions to its benefit and to impose the expression of its genome. T4 utilizes a combination of host and phage-encoded RNases and factors to degrade its mRNAs in a stage-dependent manner. The host endonuclease RNase E is used throughout the phage development. The sequence-specific, T4-encoded RegB endoribonuclease functions in association with the ribosomal protein S1 to functionally inactivate early transcripts and expedite their degradation. T4 polynucleotide kinase plays a role in this process. Later, the viral factor Dmd protects middle and late mRNAs from degradation by the host RNase LS. T4 codes for a set of eight tRNAs and two small, stable RNA of unknown function that may contribute to phage virulence. Their maturation is assured by host enzymes, but one phage factor, Cef, is required for the biogenesis of some of them. The tRNA gene cluster also codes for a homing DNA endonuclease, SegB, responsible for spreading the tRNA genes to other T4-related phage.
Collapse
Affiliation(s)
- Marc Uzan
- Institut Jacques Monod, CNRS-Universites Paris, Paris, France
| |
Collapse
|
8
|
Krisch HM, Comeau AM. The immense journey of bacteriophage T4--from d'Hérelle to Delbrück and then to Darwin and beyond. Res Microbiol 2008; 159:314-24. [PMID: 18621124 DOI: 10.1016/j.resmic.2008.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 11/15/2022]
Abstract
In spite of their importance, the genomics, diversity and evolution of phages and their impact on the biosphere have remained largely unexplored research domains in microbiology. Here, we report on some recent studies with the T4 phage superfamily that shed some new light on these topics.
Collapse
Affiliation(s)
- H M Krisch
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, Université Paul Sabatier-Toulouse III UMR5100, 31062 Toulouse, France.
| | | |
Collapse
|
9
|
Zhou F, Karcher D, Bock R. Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:961-72. [PMID: 17825052 PMCID: PMC2230500 DOI: 10.1111/j.1365-313x.2007.03261.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 07/12/2007] [Indexed: 05/17/2023]
Abstract
Most plastid genes are part of operons and expressed as polycistronic mRNAs. Many primary polycistronic transcripts undergo post-transcriptional processing in monocistronic or oligocistronic units. At least some polycistronic transcripts are not translatable, and endonucleolytic processing may therefore be a prerequisite for translation to occur. As the requirements for intercistronic mRNA processing into stable monocistronic transcript are not well understood, we have sought to define minimum sequence elements that trigger processing and thus are capable of generating stable translatable monocistronic mRNAs. We describe here the in vivo identification of a small intercistronic expression element that mediates intercistronic cleavage into stable monocistronic transcripts. Separation of foreign genes by this element facilitates transgene stacking in operons, and thus will help to expand the range of applications of transplastomic technology.
Collapse
Affiliation(s)
- Fei Zhou
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP)Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP)Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP)Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
10
|
Truncaite L, Zajanckauskaite A, Arlauskas A, Nivinskas R. Transcription and RNA processing during expression of genes preceding DNA ligase gene 30 in T4-related bacteriophages. Virology 2006; 344:378-90. [PMID: 16225899 DOI: 10.1016/j.virol.2005.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/01/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Early gene expression in bacteriophage T4 is controlled primarily by the unique early promoters, while T4-encoded RegB endoribonuclease promotes degradation of many early messages contributing to the rapid shift of gene expression from the early to middle stages. The regulatory region for the genes clustered upstream of DNA ligase gene 30 of T4 was known to carry two strong early promoters and two putative RegB sites. Here, we present the comparative analysis of the regulatory events in this region of 16 T4-type bacteriophages. The regulatory elements for control of this gene cluster, such as rho-independent terminator, at least one early promoter, the sequence for stem-loop structure, and the RegB cleavage sites have been found to be conserved in the phages studied. Also, we present experimental evidence that the initial cleavage by RegB of phages TuIa and RB69 enables degradation of early phage mRNAs by the major Escherichia coli endoribonuclease, RNase E.
Collapse
Affiliation(s)
- Lidija Truncaite
- Department of Gene Engineering, Institute of Biochemistry, Mokslininku 12, 08662 Vilnius, Lithuania
| | | | | | | |
Collapse
|
11
|
Piesiniene L, Truncaite L, Zajanckauskaite A, Nivinskas R. The sequences and activities of RegB endoribonucleases of T4-related bacteriophages. Nucleic Acids Res 2004; 32:5582-95. [PMID: 15486207 PMCID: PMC524301 DOI: 10.1093/nar/gkh892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The RegB endoribonuclease encoded by bacteriophage T4 is a unique sequence-specific nuclease that cleaves in the middle of GGAG or, in a few cases, GGAU tetranucleotides, preferentially those found in the Shine-Dalgarno regions of early phage mRNAs. In this study, we examined the primary structures and functional properties of RegB ribonucleases encoded by T4-related bacteriophages. We show that all but one of 36 phages tested harbor the regB gene homologues and the similar signals for transcriptional and post-transcriptional autogenous regulation of regB expression. Phage RB49 in addition to gpRegB utilizes Escherichia coli endoribonuclease E for the degradation of its transcripts for gene regB. The deduced primary structure of RegB proteins of 32 phages studied is almost identical to that of T4, while the sequences of RegB encoded by phages RB69, TuIa and RB49 show substantial divergence from their T4 counterpart. Functional studies using plasmid-phage systems indicate that RegB nucleases of phages T4, RB69, TuIa and RB49 exhibit different activity towards GGAG and GGAU motifs in the specific locations. We expect that the availability of the different phylogenetic variants of RegB may help to localize the amino acid determinants that contribute to the specificity and cleavage efficiency of this processing enzyme.
Collapse
Affiliation(s)
- Lina Piesiniene
- Department of Gene Engineering, Institute of Biochemistry, Mokslininku 12, 08662 Vilnius, Lithuania
| | | | | | | |
Collapse
|
12
|
Abstract
Recent studies suggest that viruses are the most numerous entities in the biosphere; bacteriophages, the viruses that infect Eubacteria and Archaea, constitute a substantial fraction of this population. In spite of their ubiquity, the vast majority of phages in the environment have never been studied and nothing is known about them. For the last 10 years our research has focused on an extremely widespread group of phages, the T4-type. It has now become evident that phage T4 has a myriad of relatives in nature that differ significantly in their host range. The genomes of all these phages have homology to the T4 genes that determine virion morphology. Although phylogenetically related, these T4-type phages can be subdivided into four groups that are increasingly distant from T4: the T-evens, the pseudo T-evens, the schizo T-evens and the exo T-evens. Genomic comparisons between the various T4-type phages and T4 indicate that these genomes share homology not only for virion structural components but also for most of the essential genes involved in the T4 life cycle. This suggests that horizontal transmission of the genetic information may have played a less general role in the evolution of these phages than has been supposed. Nevertheless, we have identified several regions of the T4-type genome, such as the segment containing the tail fiber genes that exhibit evidence of extensive modular shuffling during evolution. The T4-type genomes appear to be a mosaic containing a large and fixed group of essential genes as well as highly variable set of non-essential genes. These non-essential genes are probably important for the adaptation of these phages to their particular life-style. Furthermore, swapping autonomous domains within the essential proteins may slightly modify their function(s) and contribute to the adaptive ability of the T4-type phage family. Regulatory sequences also display considerable evolutionary plasticity and this too may facilitate the adaptation of phage gene expression to new environments and stresses.
Collapse
Affiliation(s)
- Carine Desplats
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, UMR 5100, 118 Route de Narbonne, 31062 Cedex, Toulouse, France
| | | |
Collapse
|
13
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- David Kennell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Desplats C, Dez C, Tétart F, Eleaume H, Krisch HM. Snapshot of the genome of the pseudo-T-even bacteriophage RB49. J Bacteriol 2002; 184:2789-804. [PMID: 11976309 PMCID: PMC135041 DOI: 10.1128/jb.184.10.2789-2804.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RB49 is a virulent bacteriophage that infects Escherichia coli. Its virion morphology is indistinguishable from the well-known T-even phage T4, but DNA hybridization indicated that it was phylogenetically distant from T4 and thus it was classified as a pseudo-T-even phage. To further characterize RB49, we randomly sequenced small fragments corresponding to about 20% of the approximately 170-kb genome. Most of these nucleotide sequences lacked sufficient homology to T4 to be detected in an NCBI BlastN analysis. However, when translated, about 70% of them encoded proteins with homology to T4 proteins. Among these sequences were the numerous components of the virion and the phage DNA replication apparatus. Mapping the RB49 genes revealed that many of them had the same relative order found in the T4 genome. The complete nucleotide sequence was determined for the two regions of RB49 genome that contain most of the genes involved in DNA replication. This sequencing revealed that RB49 has homologues of all the essential T4 replication genes, but, as expected, their sequences diverged considerably from their T4 homologues. Many of the nonessential T4 genes are absent from RB49 and have been replaced by unknown sequences. The intergenic sequences of RB49 are less conserved than the coding sequences, and in at least some cases, RB49 has evolved alternative regulatory strategies. For example, an analysis of transcription in RB49 revealed a simpler pattern of regulation than in T4, with only two, rather than three, classes of temporally controlled promoters. These results indicate that RB49 and T4 have diverged substantially from their last common ancestor. The different T4-type phages appear to contain a set of common genes that can be exploited differently, by means of plasticity in the regulatory sequences and the precise choice of a large group of facultative genes.
Collapse
Affiliation(s)
- Carine Desplats
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, UMR 5100, 118 Route de Norbonne, 31062 Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Belanger KG, Kreuzer KN. Bacteriophage T4 initiates bidirectional DNA replication through a two-step process. Mol Cell 1998; 2:693-701. [PMID: 9844641 DOI: 10.1016/s1097-2765(00)80167-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two-dimensional gel analysis of the bacteriophage T4 ori(uvsY) region revealed a novel "comet" on the Y arc. This comet contains simple Y molecules in which the branch points map to the ori(uvsY) transcript region. The comet depends on the the origin and DNA synthesis and is abolished by a mutation that reduces replication without affecting transcription. These results argue that the branched molecules are intermediates in replication initiation. A transcriptional terminator, cloned just downstream of the origin promoter, shortened the tail of the comet. Therefore, the location of the transcript determines the DNA branch points. We conclude that the comet DNA consists of intermediates in which unidirectional replication has been triggered by priming from the RNA of the origin R loop.
Collapse
MESH Headings
- Bacteriophage T4/genetics
- Bacteriophage T4/physiology
- Blotting, Northern
- Blotting, Southern
- DNA Helicases/metabolism
- DNA Replication/genetics
- DNA Replication/physiology
- DNA, Viral/biosynthesis
- DNA, Viral/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- DNA-Directed DNA Polymerase
- Electrophoresis, Gel, Two-Dimensional
- Escherichia coli/virology
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mutation
- Physical Chromosome Mapping
- RNA, Viral/metabolism
- Recombination, Genetic/physiology
- Replication Origin/genetics
- Replication Origin/physiology
- Ribonuclease H/genetics
- Ribonuclease H/physiology
- Terminator Regions, Genetic/genetics
- Transcription, Genetic/physiology
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Viral Proteins/physiology
- Virus Replication/genetics
- Virus Replication/physiology
Collapse
Affiliation(s)
- K G Belanger
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
17
|
Franzetti B, Sohlberg B, Zaccai G, von Gabain A. Biochemical and serological evidence for an RNase E-like activity in halophilic Archaea. J Bacteriol 1997; 179:1180-5. [PMID: 9023200 PMCID: PMC178814 DOI: 10.1128/jb.179.4.1180-1185.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Endoribonuclease RNase E appears to control the rate-limiting step that mediates the degradation of many mRNA species in bacteria. In this work, an RNase E-like activity in Archaea is described. An endoribonucleolytic activity from the extreme halophile Haloarcula marismortui showed the same RNA substrate specificity as the Escherichia coli RNase E and cross-reacted with a monoclonal antibody raised against E. coli RNase E. The archaeal RNase E activity was partially purified from the extreme halophilic cells and shown, contrary to the E. coli enzyme, to require a high salt concentration for cleavage specificity and stability. These data indicate that a halophilic RNA processing enzyme can specifically recognize and cleave mRNA from E. coli in an extremely salty environment (3 M KCI). Having recently been shown in mammalian cells (A. Wennborg, B. Sohlberg, D. Angerer, G. Klein, and A. von Gabain, Proc. Natl. Acad. Sci. USA 92:7322-7326, 1995), RNase E-like activity has now been identified in all three evolutionary domains: Archaea, Bacteria, and Eukarya. This strongly suggests that mRNA decay mechanisms are highly conserved despite quite different environmental conditions.
Collapse
Affiliation(s)
- B Franzetti
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale, CEA-DSV-CNRS UPR 9015, Grenoble, France
| | | | | | | |
Collapse
|
18
|
Parreira R, Valyasevi R, Lerayer AL, Ehrlich SD, Chopin MC. Gene organization and transcription of a late-expressed region of a Lactococcus lactis phage. J Bacteriol 1996; 178:6158-65. [PMID: 8892814 PMCID: PMC178485 DOI: 10.1128/jb.178.21.6158-6165.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The lactococcal phage bIL41 belongs to the small isometric-headed phages of the 936 quasi-species and is resistant to the abortive infection determined by abiB. A 10.2-kb segment from this phage, in which late transcription is initiated, has been sequenced. Thirteen open reading frames (ORFs) organized in one transcriptional unit have been identified. The location of two of them and the structural features of the proteins they code for are evocative of terminase subunits. Five other ORFs specify proteins which are highly homologous to structural proteins from the closely related phage F4-1. By comparing the phage bIL41 sequence with partial sequences available for four related phages, we were able to deduce a chimerical phage map covering the middle- and a large part of the late-expressed regions. Phages from this quasi-species differ by the insertion or deletion of either 1 to about 400 bp in noncoding regions or an entire ORF. Transcription was initiated 9 min after infection at a promoter with a -10 but no -35 consensus sequence. Synthesis of a phage activator protein was needed for initiation of transcription. A large 16-kb transcript covering all of the late-expressed region of the genome was synthesized. This transcript gave rise to smaller units. One of these units most probably resulted from a RNase E processing.
Collapse
Affiliation(s)
- R Parreira
- Institut National de la Recherche Agronomique, Laboratoire de Génétique Microbienne, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
19
|
Kaberdin VR, Chao YH, Lin-Chao S. RNase E cleaves at multiple sites in bubble regions of RNA I stem loops yielding products that dissociate differentially from the enzyme. J Biol Chem 1996; 271:13103-9. [PMID: 8662734 DOI: 10.1074/jbc.271.22.13103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Earlier work has shown that RNase E cleaves RNAI, the antisense repressor of replication of ColE1-type plasmids, producing pRNAI-5, whose further decay is mediated by the poly(A)-dependent activity of polynucleotide phosphorylase and other 3' to 5' exonucleases. Using a poly(A) polymerase-deficient strain to impede exonucleolytic decay, we show that RNAI is additionally cleaved by RNase E at multiple sites, generating a series of decay intermediates that are differentially retained by the RNA binding domain (RBD) of RNase E. Primer extension analysis of RNAI decay intermediates and RNase T1 mapping of the cleavage products of RNAI generated in vitro by affinity-purified RNase E showed that RNase E can cleave internucleotide bonds in the bubble regions of duplex RNA segments and in single-stranded regions. Chemical in situ probing of a complex formed between RNAI and the RBD indicates that binding to the RBD destabilizes RNAI secondary structure. Our results suggest a model in which a series of sequential RNase E-mediated cleavages occurring at multiple sites of RNAI, some of which may be made more accessible to RNase E by the destabilizing effects of its RBD, generate RNA fragments that are further degraded by poly(A)-dependent 3' to 5' exonucleases.
Collapse
Affiliation(s)
- V R Kaberdin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China
| | | | | |
Collapse
|
20
|
Raynal LC, Krisch HM, Carpousis AJ. Bacterial poly(A) polymerase: an enzyme that modulates RNA stability. Biochimie 1996; 78:390-8. [PMID: 8915528 DOI: 10.1016/0300-9084(96)84745-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have constructed a strain that overexpresses E coli poly(A) polymerase (PAP I). The recombinant protein was soluble, and a partially purified extract had high levels of poly(A) polymerising activity. An antiserum raised against the overexpressed PAP I has permitted two types of analysis: the identification of other E coli proteins that may interact with PAP I, and the search for PAP I-like proteins in other bacteria. Immunoprecipitation experiments suggest that PAP I is associated with a 48-kDa protein. This protein remains to be identified. Western blotting using the antiserum against E coli PAP I revealed related proteins in a variety of Gram-negative bacteria and in B subtilis. A comparison of the E coli protein with putative poly(A) polymerases recently identified in H influenza and B subtilis showed highly conserved sequences in the amino terminal and central portions of the proteins that may be important for enzyme activity.
Collapse
Affiliation(s)
- L C Raynal
- Laboratoire de Microbiologie et Génétique Moléculaire, UPR 9007, CNRS, Toulouse, France
| | | | | |
Collapse
|
21
|
Barry J, Alberts B. Purification and characterization of bacteriophage T4 gene 59 protein. A DNA helicase assembly protein involved in DNA replication. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30096-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Ouhammouch M, Orsini G, Brody EN. The asiA gene product of bacteriophage T4 is required for middle mode RNA synthesis. J Bacteriol 1994; 176:3956-65. [PMID: 8021178 PMCID: PMC205593 DOI: 10.1128/jb.176.13.3956-3965.1994] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The asiA gene of bacteriophage T4 encodes a 10-kDa peptide which binds strongly in vitro to the sigma 70 subunit of Escherichia coli RNA polymerase, thereby weakening sigma 70-core interactions and inhibiting sigma 70-dependent transcription. To assess the physiological role of this protein, we have introduced an amber mutation into the proximal portion of the asiA gene. On suppressor-deficient hosts, this mutant phage (amS22) produces minute plaques and exhibits a pronounced delay in phage production. During these mutant infections, T4 DNA synthesis is strongly delayed, suggesting that the AsiA protein plays an important role during the prereplicative period of phage T4 development. The kinetics of protein synthesis show clearly that while T4 early proteins are synthesized normally, those expressed primarily via the middle mode exhibit a marked inhibition. In fact, the pattern of protein synthesis after amS22 infection resembles greatly that seen after infection by amG1, an amber mutant in motA, a T4 gene whose product is known to control middle mode RNA synthesis. The amber mutations in the motA and asiA genes complement, both for phage growth and for normal kinetics of middle mode protein synthesis. Furthermore, primer extension analyses show that three different MotA-dependent T4 middle promoters are not recognized after infection by the asiA mutant phage. Thus, in conjunction with the MotA protein, the AsiA protein is required for transcription activation at T4 middle mode promoters.
Collapse
Affiliation(s)
- M Ouhammouch
- Department of Biological Sciences, State University of New York at Buffalo 14260
| | | | | |
Collapse
|
23
|
Abstract
Post-transcriptional mechanisms operate in regulation of gene expression in bacteria, the amount of a given gene product being also dependent on the inactivation rate of its own message. Moreover, segmental differences in mRNA stability of polycistronic transcripts may be responsible for differential expression of genes clustered in operons. Given the absence of 5' to 3' exoribonucleolytic activities in prokaryotes, both endoribonucleases and 3' to 5' exoribonucleases are involved in chemical decay of mRNA. As the 3' to 5' exoribonucleolytic activities are readily blocked by stem-loop structures which are usual at the 3' ends of bacterial messages, the rate of decay is primarily determined by the rate of the first endonucleolytic cleavage within the transcripts, after which the resulting mRNA intermediates are degraded by the 3' to 5' exoribonucleases. Consequently, the stability of a given transcript is determined by the accessibility of suitable target sites to endonucleolytic activities. A considerable number of bacterial messages decay with a net 5' to 3' directionality. Two different alternative models have been proposed to explain such a finding, the first invoking the presence of functional coupling between degradation and the movement of the ribosomes along the transcripts, the second one implying the existence of a 5' to 3' processive '5' binding nuclease'. The different systems by which these two current models of mRNA decay have been tested will be presented with particular emphasis on polycistronic transcripts.
Collapse
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università di Napoli Federico II, Italy
| | | | | |
Collapse
|
24
|
Lin-Chao S, Wong T, McDowall K, Cohen S. Effects of nucleotide sequence on the specificity of rne-dependent and RNase E-mediated cleavages of RNA I encoded by the pBR322 plasmid. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34130-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Carpousis AJ, Van Houwe G, Ehretsmann C, Krisch HM. Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 1994; 76:889-900. [PMID: 7510217 DOI: 10.1016/0092-8674(94)90363-8] [Citation(s) in RCA: 354] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ribonuclease E (RNAase E) was isolated in a complex that also contained polynucleotide phosphorylase (PNPase). Besides copurification, evidence for an association of these enzymes comes from sedimentation and immunoprecipitation experiments. Highly purified RNAase E correctly processed E. coli 5S ribosomal RNA, bacteriophage T4 gene 32 mRNA and E. coli ompA mRNA at sites known to depend on the rne gene for cleavage in vivo. The difference between previous smaller estimates of the size of RNAase E and that reported here apparently is due to the sensitivity of the enzyme to proteolysis during purification. The discovery of a specific association between RNAase E and PNPase raises the intriguing possibility that these enzymes act cooperatively in the processing and degradation of RNA.
Collapse
Affiliation(s)
- A J Carpousis
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | | | |
Collapse
|
26
|
Mudd EA, Higgins CF. Escherichia coli endoribonuclease RNase E: autoregulation of expression and site-specific cleavage of mRNA. Mol Microbiol 1993; 9:557-68. [PMID: 8412702 DOI: 10.1111/j.1365-2958.1993.tb01716.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the Escherichia coli rne (ams) gene have a general effect on the rate of mRNA decay in vivo. Using antibodies we have shown that the product of the rne gene is a polypeptide of relative mobility 180 kDa. However, proteolytic fragments as small as 70 kDa, which can arise during purification, also exhibit RNase E activity. In vitro studies demonstrate that the rne gene product, RNase E, is an endoribonuclease that cleaves mRNA at specific sites. RNase E cleaves rne mRNA and autoregulates the expression of the rne gene. In addition we demonstrate RNase E-dependent endonucleolytic cleavage of ompA mRNA, at a site known to be rate-determining for degradation and reported to be cleaved by RNase K. Our data are consistent with RNase K being a proteolytic fragment of RNase E.
Collapse
Affiliation(s)
- E A Mudd
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, UK
| | | |
Collapse
|
27
|
Cannistraro VJ, Kennell D. The 5' ends of RNA oligonucleotides in Escherichia coli and mRNA degradation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:285-93. [PMID: 7682943 DOI: 10.1111/j.1432-1033.1993.tb17761.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 5' ends of RNA oligonucleotides in Escherichia coli were identified to assess the contributions of specific endoribonucleases to the cleaving of bulk mRNA. About 60% of the total 5' ends have a 5' OH, and 40% a phosphate. Of those oligonucleotides with a 5'-OH end, 55% of the larger-sized molecules started with 5'-OH-A. With decreasing size there was a progressive decrease in its relative abundance, reaching 33% for the mononucleotide pool, close to its content in E. coli mRNA. In a mutant lacking RNase I* (a form of RNase I), the fraction starting with 5'-OH-A was even higher; 65-70% for oligonucleotides of any size, as well as the mononucleotides, whereas only 3-5% started with 5'-OH-U. Oligonucleotides with a 5'-P end were analyzed after pulse-labeling growing cells with 32Pi. Virtually all of them had a 5'-ppp-purine end which would result from transcription initiations, and there were four-times more G than A starts. The fraction of 5' ends with a monophosphate (5'-pN) was too low to measure. The known degradative enzymes of E. coli (RNases I, I*, M and R) release a 5'-OH oligonucleotide upon cleavage, whereas known processing endoribonucleases, e.g. RNases E, H, P and III, generate 5'-P oligonucleotides. Among these enzymes, RNase M is the only one known to enrich for 5'-OH-A ends, since its preference is for pyrimidine-A bonds [Cannistraro, V. J. & Kennell, D. (1989) Eur. J. Biochem. 181, 363-370]. It also gives a very low level of 5'-OH-U ends. These results are consistent with generalizations derived from our previous studies [Cannistraro, V. J., Subbaro, M. N. & Kennell, D. (1986) J. Mol. Biol. 192, 257-274] and suggest that RNase M is a primary endoribonuclease for mRNA degradation in E. coli. The results also indicate that RNase I* contributes a smaller fraction of cleavages to larger RNA oligonucleotides and accounts for most of the degradation of the very small oligonucleotides and almost all degradation of dinucleotide to mononucleotide.
Collapse
Affiliation(s)
- V J Cannistraro
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110
| | | |
Collapse
|
28
|
Ehretsmann CP, Carpousis AJ, Krisch HM. Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev 1992; 6:149-59. [PMID: 1730408 DOI: 10.1101/gad.6.1.149] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endoribonuclease RNase E has an important role in the processing and degradation of bacteriophage T4 and Escherichia coli mRNAs. We have undertaken a mutational analysis of the -71 RNase E processing site of T4 gene 32. A series of mutations were introduced into a synthetic T4 sequence cloned on a plasmid, and their effects on processing were analyzed in vivo. The same mutations were transferred into T4 by homologous recombination. In both the plasmid and the phage contexts the processing of the transcripts was similarly affected by the mutations. Partially purified RNase E has also been used to ascertain the effect of these mutations on RNase E processing in vitro. The hierarchy of the efficiency of processing of the various mutant transcripts was the same in vivo and in vitro. These results and an analysis of all of the known putative RNase E sites suggest a consensus sequence RAUUW (R = A or G; W = A or U) at the cleavage site. Modifications of the stem-loop structure downstream of the -71 site indicate that a secondary structure is required for RNase E processing. Processing by RNase E was apparently inhibited by sequences that sequester the site in secondary structure.
Collapse
Affiliation(s)
- C P Ehretsmann
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
29
|
Chen H, Stern D. Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54413-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
McCormick JR, Zengel JM, Lindahl L. Intermediates in the degradation of mRNA from the lactose operon of Escherichia coli. Nucleic Acids Res 1991; 19:2767-76. [PMID: 1710346 PMCID: PMC328199 DOI: 10.1093/nar/19.10.2767] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have analyzed the processing of mRNA from the lac operon in an Escherichia coli strain carrying the lac on a multicopy plasmid. Messenger RNA was analyzed by hybridization and nuclease protection of pulse-labeled RNA and precursor-product relationships were determined by quantitating radioactivity in primary and processed transcripts at various times after induction of the lac promoter or inhibition of transcription with rifampicin. Our results support the existence of two types of processed transcripts with endpoints in the lacZ-lacY intercistronic region. One of these carries lacZ sequences and has a 3' endpoint about 30 bases downstream of this gene. The other carries lacY sequences and has a 5' end in the translation termination region of the lacZ gene. Finally, we have found evidence that transcription is continued at least 268 bases beyond the last gene (lacA) and that this 3' non-translated region is shortened by post-transcriptional processing.
Collapse
Affiliation(s)
- J R McCormick
- Department of Biology, University of Rochester, NY 14627
| | | | | |
Collapse
|
31
|
Loayza D, Carpousis AJ, Krisch HM. Gene 32 transcription and mRNA processing in T4-related bacteriophages. Mol Microbiol 1991; 5:715-25. [PMID: 2046553 DOI: 10.1111/j.1365-2958.1991.tb00742.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have analysed transcription and mRNA processing for the gene 32 region of five phages related to T4. Two different organizations of gene 32 proximal promoters were found. In T4 and M1, middle- and late-mode promoters are separated by 50 nucleotides and located within an upstream open reading frame. In T2, K3, Ac3, and Ox2, the 626bp T4 sequence that includes these promoters is replaced by a 59bp sequence containing overlapping middle and late promoters. The RNase E-dependent processing of the g32 mRNAs is conserved in all of the phages. The processing site immediately upstream of g32 in T4 and M1 has been replaced in the other phages by a different sequence that is also cleaved by RNase E. The remarkable conservation of these regulatory features, despite the sequence divergences, suggests that they play an important role in the control of gene expression.
Collapse
Affiliation(s)
- D Loayza
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
32
|
Régnier P, Hajnsdorf E. Decay of mRNA encoding ribosomal protein S15 of Escherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3' stabilizing stem and loop structure. J Mol Biol 1991; 217:283-92. [PMID: 1704067 DOI: 10.1016/0022-2836(91)90542-e] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The transcripts of the rpsO-pnp operon of Escherichia coli, coding for ribosomal protein S15 and polynucleotide phosphorylase, are processed at four sites in the 249 nucleotides of the intercistronic region. The initial processing step in the decay of the pnp mRNA is made by RNase III, which cuts at two sites upstream from the pnp gene. The other two cleavages are dependent on the wild-type allele of the rne gene, which encodes the endonucleolytic enzyme RNase E. The cuts are made 37 nucleotides apart at the base of the stem-loop structure of the rho-independent attenuator located downstream from rpsO. The cleavage downstream from the attenuator generates an rpsO mRNA.nearly identical with the monocistronic attenuated transcript, while the cleavage upstream from the transcription attenuator gives rise to an rpsO mesage lacking the terminal 3' hairpin structure. The rapid degradation of the processed mRNA in an rne+ strain, compared to the slow degradation of the transcript that accumulates in an rne- strain, suggests that RNase E initiates the decay of the rpsO message by removing the stabilizing stem-loop at the 3' end of the RNA.
Collapse
Affiliation(s)
- P Régnier
- Institut de Biologie Physico Chimique, Paris, France
| | | |
Collapse
|
33
|
Mudd EA, Krisch HM, Higgins CF. RNase E, an endoribonuclease, has a general role in the chemical decay of Escherichia coli mRNA: evidence that rne and ams are the same genetic locus. Mol Microbiol 1990; 4:2127-35. [PMID: 1708438 DOI: 10.1111/j.1365-2958.1990.tb00574.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Escherichia coli RNase E is known to process RNA precursors at specific sites. We show that this endoribonuclease has a general role in E. coli mRNA turnover and affects the stability of specific transcripts. The effect of the rne mutation on functional stability of mRNA was much less pronounced than that on chemical stability, although the expression of some genes was affected. The E. coli ams (altered mRNA stability) mutation was found to have phenotypes indistinguishable from those of the rne mutation, affecting both 9S RNA and T4 gene 32 mRNA processing. The rne and ams mutations were both complemented by the same 3.7 kb fragment of E. coli DNA and are probably allelic. RNase E is the first endoribonuclease identified as having a general role in the chemical decay of E. coli mRNA.
Collapse
Affiliation(s)
- E A Mudd
- Imperial Cancer Research Fund Laboratories, John Radcliffe Hospital, University of Oxford, UK
| | | | | |
Collapse
|
34
|
Régnier P, Grunberg-Manago M. RNase III cleavages in non-coding leaders of Escherichia coli transcripts control mRNA stability and genetic expression. Biochimie 1990; 72:825-34. [PMID: 2085545 DOI: 10.1016/0300-9084(90)90192-j] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The primary transcripts of the rpsO-pnp, rnc-era-recO and metY-nusA-infB operons of E coli are each processed by RNase III, upstream of the first translated gene, in hair-pin structures formed by the 5' non-coding leader. The mRNAs of the 3 operons, of which the 5' terminal motifs have been removed by RNase III, decay significantly more rapidly than the uncut transcripts which accumulate in the RNase III deficient strain. The rapid decay of a primary transcript of the metY-nusA-infB operon, initiated at a secondary promoter in the vicinity of the RNase III sites, suggests that the 5' features upstream of the RNase III cutting sites are responsible for the stability of the uncut RNAs. RNase III autocontrols its own expression by removing the 5' motif which stabilizes its mRNA. Similarly, the synthesis of polynucleotide phosphorylase and of protein Era are also controlled by RNase III cleavages which trigger the degradation of their messengers. The role of RNase III in the regulation of gene expression and the possible mechanisms of mRNA stabilization and of 5' to 3' decay initiated by RNase III processing are discussed.
Collapse
|
35
|
Mudd EA, Carpousis AJ, Krisch HM. Escherichia coli RNase E has a role in the decay of bacteriophage T4 mRNA. Genes Dev 1990; 4:873-81. [PMID: 2199322 DOI: 10.1101/gad.4.5.873] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacteriophage T4 mRNAs are markedly stabilized, both chemically and functionally, in an Escherichia coli strain deficient in the RNA-processing endonuclease RNase E. The functional stability of total T4 messages increased 6-fold; we were unable to detect a T4 message whose functional stability was not increased. There was a 4-fold increase in the chemical stability of total T4 RNA. The degree of chemical stabilization of six specific T4 mRNAs examined varied from a maximum of 28-fold to a minimum of 1.5-fold. In the RNase E-deficient strain, several minutes delay and a slower rate of progeny production led to a reduction in final phage yield of approximately 50%. Although the effect of the rne temperature-sensitive mutation could be indirect, the simplest interpretation of our results is that RNase E acts directly in the degradation of many T4 mRNAs.
Collapse
Affiliation(s)
- E A Mudd
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|