1
|
Synergistic Effects of Bacteriophage vB_Eco4-M7 and Selected Antibiotics on the Biofilm Formed by Shiga Toxin-Producing Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11060712. [PMID: 35740119 PMCID: PMC9219966 DOI: 10.3390/antibiotics11060712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Apart from antibiotic resistance of pathogenic bacteria, the formation of biofilms is a feature that makes bacterial infections especially difficulty to treat. Shiga toxin-producing Escherichia coli (STEC) strains are dangerous pathogens, causing severe infections in humans, and capable of biofilm production. We have reported previously the identification and characterization of the vB_Eco4-M7 bacteriophage, infecting various STEC strains. It was suggested that this phage might be potentially used in phage therapy against these bacteria. Here, we tested the effects of vB_Eco4-M7 alone or in a phage cocktail with another STEC-infecting phage, and/or in a combination with different antibiotics (ciprofloxacin and rifampicin) on biofilm formed by a model STEC strain, named E. coli O157:H7 (ST2-8624). The vB_Eco4-M7 phage appeared effective in anti-biofilm action in all these experimental conditions (2–3-fold reduction of the biofilm density, and 2–3 orders of magnitude reduction of the number of bacterial cells). However, the highest efficiency in reducing a biofilm’s density and number of bacterial cells was observed when phage infection preceded antibiotic treatment (6-fold reduction of the biofilm density, and 5–6 orders of magnitude reduction of the number of bacterial cells). Previous reports indicated that the use of antibiotics to treat STEC-caused infections might be dangerous due to the induction of Shiga toxin-converting prophages from bacterial genomes under stress conditions caused by antibacterial agents. We found that ciprofloxacin was almost as efficient in inducing prophages from the E. coli O15:H7 (ST2-8624) genome as a classical inducer, mitomycin C, while no detectable prophage induction could be observed in rifampicin-treated STEC cells. Therefore, we conclude the latter antibiotic or similarly acting compounds might be candidate(s) as effective and safe drug(s) when used in combination with phage therapy to combat STEC-mediated infections.
Collapse
|
2
|
Mohan Raj JR, Vittal R, Huilgol P, Bhat U, Karunasagar I. T4-like Escherichia coli phages from the environment carry bla CTX-M. Lett Appl Microbiol 2018; 67:9-14. [PMID: 29675838 DOI: 10.1111/lam.12994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
The resistance determinant blaCTX-M has many variants and has been the most commonly reported gene in clinical isolates of extended spectrum beta-lactamase producing Escherichia coli. Phages have been speculated as potential reservoirs of resistance genes and efficient vehicles for horizontal gene transfer. The objective of the study was to determine the prevalence and characterize bacteriophages that harbour the resistance determinant blaCTX-M . Escherichia coli specific bacteriophages were isolated from 15 samples including soil and water across Mangaluru, India using bacterial hosts that were sensitive to β-lactams. Phenotypic and genotypic characterization based on plaque morphology, host range, restriction fragment length polymorphism (RFLP), presence of blaCTX-M and electron microscopy was performed. Of 36 phages isolated, seven were positive for Group 1 of blaCTX-M . Based on host range and RFLP pattern, the seven phages were classified into four distinct groups, each harbouring a variant of blaCTX-M . Five phages were T4-like Myoviridae by electron microscopy which was further confirmed by polymerase chain reaction (PCR) for T4 specific gp14. Generalized transduction of the CTX-M gene from these phages was also observed. The high prevalence (20%) of this gene blaCTX-M in the phage pool confirms the significant role of Myoviridae members, specifically T4-like phages in the dissemination of this resistance gene. SIGNIFICANCE AND IMPACT OF THE STUDY The CTX-M gene that confers resistance to Beta-lactam class of drugs is widespread and diverse. Understanding mechanisms of antimicrobial resistance transfer is a key to devise methods for controlling it. Few studies indicate that bacteriophages are involved in the transfer of this gene but the type of phages involved and the degree of involvement remains to be explored. Our work has been able to identify the class of phages and the magnitude of involvement in the dissemination of this gene.
Collapse
Affiliation(s)
- J R Mohan Raj
- Nitte University Centre for Science Education and Research, Mangaluru, India
| | - R Vittal
- Nitte University Centre for Science Education and Research, Mangaluru, India
| | - P Huilgol
- National Institute of Technology Karnataka, Surathkal, Mangaluru, India
| | - U Bhat
- National Institute of Technology Karnataka, Surathkal, Mangaluru, India
| | - I Karunasagar
- Nitte University Centre for Science Education and Research, Mangaluru, India
| |
Collapse
|
3
|
Shinagawa H, Iwasaki H, Kato T, Nakata A. RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc Natl Acad Sci U S A 1988; 85:1806-10. [PMID: 3126496 PMCID: PMC279868 DOI: 10.1073/pnas.85.6.1806] [Citation(s) in RCA: 253] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Induction of the Escherichia coli SOS system increases the ability of the cell to perform DNA repair and mutagenesis. Products of the recA and umuD,C genes are required for mutagenesis induced by radiation and many chemicals. Transcription of the SOS genes including recA and umuD,C is repressed by a repressor, LexA protein, and is derepressed by the proteolytic cleavage of LexA facilitated by RecA protein that had been activated by inducing signals produced in the cell by agents that damage DNA. An activated form of RecA protein, RecA, seems to have roles in SOS mutagenesis other than its known role as an antirepressor. Derepression of the genes involved in SOS mutagenesis such as recA and umuD,C in defective chromosomal lexA(Def) mutants does not increase the ability of the cell to perform mutagenesis. Activation of RecA protein is essential to this ability. RecA facilitates the proteolytic cleavage of several repressors such as lambda, P22, and 434 phage repressors and LexA, and UmuD protein contains a sequence homologous to the regions surrounding the cleavage sites of these repressors; therefore, we examined the possibility that UmuD protein is cleaved by RecA. We found evidence that the intact UmuD protein was cleaved after mutagenic treatment and that the cleavage was dependent on RecA. The results suggested that UmuD protein may be proteolytically processed by RecA, and that processed UmuD may be the active form of the protein participating in mutagenesis.
Collapse
Affiliation(s)
- H Shinagawa
- Department of Experimental Chemotherapy, Osaka University, Japan
| | | | | | | |
Collapse
|
4
|
Moreau PL. Effects of overproduction of single-stranded DNA-binding protein on RecA protein-dependent processes in Escherichia coli. J Mol Biol 1987; 194:621-34. [PMID: 3309327 DOI: 10.1016/0022-2836(87)90239-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overproduction of single-stranded DNA-binding protein (SSB) in Escherichia coli led to a decrease in the basal level of repressor LexA. Expression of the LexA-controlled genes was increased differentially, depending on the affinity of the LexA repressor for each promoter: expression of the recA and sfiA genes was increased 5-fold and 1.5-fold, respectively. Despite only a slight effect on expression of sfiA, which codes for an inhibitor of cell division, bacteria overproducing SSB produced elongated cells. In fact, the effect on cell shape appeared to be essentially independent of the expression of the sfiA and recA genes. Bacteria overproducing SSB were therefore phenotypically similar to bacteria partially starved of thymine, in which filamentation results from both sfiA-dependent and sfiA-recA-independent pathways. These data indicate that excess SSB acts primarily by perturbing DNA replication, thereby favoring gratuitous activation of RecA protein to promote cleavage of LexA protein. When bacteria overproducing SSB were exposed to a DNA-damaging agent such as ultraviolet light or mitomycin C, the recA and sfiA genes were fully induced. Induction of the sfiA gene occurred, however, at higher doses in bacteria overproducing SSB protein than in bacteria with normal levels of SSB. Whereas the efficiency of excision repair was apparently increased by excess SSB, the efficiency of post-replication recombinational repair was reduced as judged by a decrease in the recombination proficiency between a prophage and ultraviolet-irradiated heteroimmune infecting phage. Following induction of ssb+ bacteria with mitomycin C, the cellular content of SSB was slightly increased. These results provide evidence that SSB modulates RecA protein-dependent activities in vivo. It is proposed that SSB favors the formation of short complexes of RecA protein and single-stranded DNA that mediate cleavage of the LexA and lambda repressors, while it delays the formation of long nucleoprotein filaments, thereby slowing down RecA-promoted recombinational events in uninduced as well as in induced bacteria.
Collapse
Affiliation(s)
- P L Moreau
- Laboratory of Enzymology, C.N.R.S., Gif-sur-Yvette, France
| |
Collapse
|
5
|
Viral Probes for DNA Repair. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/b978-0-12-035410-8.50007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Moreau PL, Pelico JV, Devoret R. Cleavage of lambda repressor and synthesis of RecA protein induced by transferred UV-damaged F sex factor. MOLECULAR & GENERAL GENETICS : MGG 1982; 186:170-9. [PMID: 6213837 DOI: 10.1007/bf00331847] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transfer of a UV-damaged F sex factor to a recipient lambda lysogen induces prophage lambda development. Under these conditions RecA protein synthesis was induced and lambda repressor cleaved, as observed upon direct induction, that is, when the recipient lambda lysogen was directly exposed to UV-light. The efficiency of induction of RecA protein synthesis in recipient bacteria which had received an irradiated F-lac factor was about 80% of that measured upon direct induction. We observed the simultaneous disappearance of lambda repressor and a slight production of cleavage fragments; quantitation by densitometric scanning of the autoradiogram after correction for the efficiency of transfer indicated that 55% of lambda repressor was cleaved. Transfer of UV-damaged Hfr DNA failed to induce RecA protein synthesis. A lambda phage vector carrying oriF, the cloned origin of F plasmid replication, after exposure to UV-light and infection of a recipient lysogen, induced RecA protein synthesis and a moderate but significant cleavage of lambda repressor. Indirect induction by UV-damaged F sex factor or phage lambda oriF resulted in biochemical cellular reactions similar to those observed upon direct induction. LexA repressor that negatively controls RecA protein synthesis appeared more susceptible to cleavage than did lambda repressor.
Collapse
|
7
|
Casaregola S, D'Ari R, Huisman O. Quantitative evaluation of recA gene expression in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1982; 185:430-9. [PMID: 6212754 DOI: 10.1007/bf00334135] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A recA::lac operon fusion was constructed using the phage Mu d(Ap, lac) in Escherichia coli to obtain precise measurements of the level of recA gene expression in various genetic backgrounds. The RecA protein normally represents 0.02% of total protein. This value is known to increase dramatically after treatments interrupting DNA synthesis; kinetic experiments showed that the rate of recA expression increases 17-fold within 10 min after UV irradiation or thymine starvation. In mutants affected in SOS regulation or repair the following observations were made: (i) the tif-1 mutation in the recA gene does not alter the basal level of recA expression, suggesting that it improves the protease activity of RecA; (ii) the lexA3 mutation does not create a "super-repressor" of recA; (iii) the tsl-1 mutation in the lexA gene makes the LexA protein a poor repressor of recA at 30 degrees C (2.5-fold derepression) and a poor substrate for RecA protease (3-fold stimulation of recA expression by UV); (iv) the spr-55 amber mutation in the lexA gene causes a 30-fold increase in recA expression, higher than all inducing treatments, and this level cannot be further increased by nalidixic acid; (v) the zab-53 mutation at the recA locus, known to abolish tsl-mediated induction of recA expression, is trans-recessive and thus probably affects a regulatory site on the DNA; (vi) uvrA, B and C, recB and recF mutations do not increase the basal level of recA expression, suggesting that there are not sufficient spontaneous lesions to cause induction even when any one of these three repair pathways is inoperative.
Collapse
|
8
|
Moreau PL, Fanica M, Devoret R. Induction of prophage lambda does not require full induction of RecA protein synthesis. Biochimie 1980; 62:687-94. [PMID: 6449961 DOI: 10.1016/s0300-9084(80)80026-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In mitomycin C-treated lambda lysogens, even though the rate of synthesis of RecA protein was greatly reduced by a low concentration of rifampicin (4 microgram/ml), induction of prophage lambda occurred readily as assessed by (i) cell lysis of the lysogens, (ii) production of progeny phage, and (iii) extensive cleavage of lambda repressor. The extent and the rate of cleavage of lambda repressor were not significantly affected by the low rate of synthesis of RecA protein resulting from rifampicin action. However, the yield of phage progeny was reduced and lysis of the cells was slightly delayed. We conclude that in RecA+ bacteria, induction of prophage lambda does not require full induction of RecA protein synthesis.
Collapse
|
9
|
Tessman ES, Peterson PK. tif-dependent induction of colicin E1, prophage lambda, and filamentation in Escherichia coli K-12. J Bacteriol 1980; 143:1307-17. [PMID: 6157672 PMCID: PMC294502 DOI: 10.1128/jb.143.3.1307-1317.1980] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To help understand how the tif-1 mutation of the recA gene of Escherichia coli confers adenine activability on the recA protein, we used the fact that cytidine plus guanosine inhibits induction of prophage lambda and cell filamentation in a tif-1 mutant, and that adenine reverses this inhibition. We varied the amount of adenine in agar plates containing a fixed amount of cytidine and scored for survivors of three different tif-dependent lethal induction processes. Much more adenine was required for cell killing when cytidine was present than when it was absent. Therefore adenine does not override cytidine inhibition, but instead appears to compete with it for a site of action which may be on the recA protein. The competition is not at the cell transport level. Our results lead to a model in which the tif form of the recA protein is an allosteric enzyme that binds both negative and positive modulators. By varying the adenine-cytidine ratio of the medium it is possible to control the degree of induction in a tif-1 cell. For the three different tif-dependent inductions studied here, least adenine was required for lambda induction and most for lethal filamentation, presumably reflecting requirements for different amounts of activated recA protein in each process. Varying the adenine-cytidine ratio revealed two stable intermediate stages in lambda induction, as well as a stage of colicin E1 induction in which the cells produced colicin without cell death. The rate of filament formation could be similarly controlled. Experiments with tif (ColE1, lambda) gave evidence of a competition between colicin repressor and lambda repressor for activated recA protein.
Collapse
|
10
|
Kogoma T, Torrey TA, Connaughton MJ. Induction of UV-resistant DNA replication in Escherichia coli: induced stable DNA replication as an SOS function. MOLECULAR & GENERAL GENETICS : MGG 1979; 176:1-9. [PMID: 396443 DOI: 10.1007/bf00334288] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA+ lexA+-dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication. The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with malidixic acid was severely suppressed in tif-1 lexA mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-51 mutation, an intragenic suppressor of lexA3. Induced stable DNA replication was found to be considerably more resistant to UV irradiation than normal replication both in a uvrA6 strain and a uvr+ strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed.
Collapse
|
11
|
|
12
|
Armengod ME, Blanco M. Influence of the recF143 mutation of Escherichia coli K12 on prophage lambda induction. Mutat Res 1978; 52:37-47. [PMID: 366398 DOI: 10.1016/0027-5107(78)90093-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prophage lambda induction in a recF143 mutant of E. coli K12 was studied. The recF143 (lambda) lysogen was inducible by UV irradiation or treatment with mitomycin C. However, the time required for the onset of derepression brought about by these treatments was longer in the recF143 mutant than in rec+ strains, suggesting that the induction pathway was altered in the recF143 mutant. The recF143 (lambda) lysogen was induced at very low doses of UV irradiation or mitomycin C treatment. Moreover, the presence of the recF143 mutation increased the sensitivity to thermal induction of a tif strain.
Collapse
|
13
|
Maenhaut-Michel G, Brandenburger A, Boiteux S. Requirement of protein and RNA synthesis for lambda repressor inactivation by tif-1: effects of chloramphenicol, neomycin and rifampicin. MOLECULAR & GENERAL GENETICS : MGG 1978; 163:293-9. [PMID: 355855 DOI: 10.1007/bf00271958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The inactivation of lambda repressor was followed by the specific DNA binding assay during the course of lysogenic induction provoked by incubation at 42 degrees C of an E. coli tif-1 lysogenic strain. The presence of up to 400 microgram/ml chloramphenicol during the inducing treatment did not impair the loss of repressor binding activity, whilst concentrations of 200 microgram/ml neomycin and 100 microgram/ml rifampicin effectively inhibited the inactivation of lambda repressor. Residual protein synthesis in the presence of chloramphenicol, neomycin and rifampicin was 5%, 5% and 27% respectively of that observed in the drug-free control. This residual synthesis did not appear to involve amplification of the X-protein. These results suggest that tif-mediated inactivation of the lambda repressor requires the activation of some specific gene(s), the translation of which appears to be resistant to chloramphenicol.
Collapse
|
14
|
Melechen NE, Go G, Lozeron HA. Effect of cI repressor level on thymineless and spontaneous induction; specificity of lambda RNA transcription. MOLECULAR & GENERAL GENETICS : MGG 1978; 163:213-21. [PMID: 355850 DOI: 10.1007/bf00267412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To determine the role of the cI repressor in induction provoked by thymine deprivation, we have analyzed lambda messenger RNA made during and the effect of cI repressor levels on thymineless induction. During thymineless induction, the l- and r-strand transcription of lambda is restricted to the "early" and "delayed early" RNA. This transcriptional pattern is similar to that reported for lambda mutants defective in DNA synthesis. "Late" r-strand transcription requires the addition of thymine. A decrease (to less than 10% of 0 time) in the amount of exogenous label (3H-uridine) incorporated into total RNA by the time of maximum thymineless induction was observed. Since subsequent burst sizes are not diminished by the thymine deprivation and competition experiments show that the amount of lambda message RNA present is at least as great as that in heat induced lambda cI857 lysogens, this decrease must involve either enlarged uridine pool sizes or decreased entry of label. The introduction into the lambda lysogen of a plasmid (pKB252) carrying the lambda cI gene prevents (1) the thymineless induction of lambda (curing the plasmid restores thymineless induction) and, (2) the appearance of both spontaneously induced cells and free phage. Thus, thymineless induction is dependent on the level of cI repressor and spontaneous induction also appears to be the consequence of lowered repressor levels in lambda lysogens.
Collapse
|
15
|
Sedgwick SG, Levine A, Bailone A. Induction of recA+-protein synthesis in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1978; 160:267-76. [PMID: 353490 DOI: 10.1007/bf00332970] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Emmerson PT, West SC. Identification of protein X of Escherichia coli as the recA+/tif+ gene product. MOLECULAR & GENERAL GENETICS : MGG 1977; 155:77-85. [PMID: 337120 DOI: 10.1007/bf00268563] [Citation(s) in RCA: 128] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|