1
|
Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:269-295. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants and microbes interact with each other via different chemical signaling pathways. At the risophere level, the microbes can secrete molecules, called elicitors, which act on their receptors located in plant cells. The so-called elicitor molecules as well as their actions differ according to the mcirobes and induce different bilogical responses in plants such as the synthesis of secondary metabolites. Microbial compounds induced phenotype changes in plants are known as elicitors and signaling pathways which integrate elicitor's signals in plants are called elicitation. In this review, the impact of microbial elicitors on the synthesis and the secretion of secondary metabolites in plants was highlighted. Moreover, biological properties of these bioactive compounds were also highlighted and discussed. Indeed, several bacteria, fungi, and viruses release elicitors which bind to plant cell receptors and mediate signaling pathways involved in secondary metabolites synthesis. Different phytochemical classes such as terpenoids, phenolic acids and flavonoids were synthesized and/or increased in medicinal plants via the action of microbial elicitors. Moreover, these compounds compounds exhibit numerous biological activities and can therefore be explored in drugs discovery.
Collapse
Affiliation(s)
- Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de, Institut Scientifique Rabat, Maroc; University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203 Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
2
|
Fliegmann J, Furtwängler K, Malterer G, Cantarello C, Schüler G, Ebel J, Mithöfer A. Flavone synthase II (CYP93B16) from soybean (Glycine max L.). PHYTOCHEMISTRY 2010; 71:508-14. [PMID: 20132953 DOI: 10.1016/j.phytochem.2010.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/22/2009] [Accepted: 01/13/2010] [Indexed: 05/23/2023]
Abstract
Flavonoids are a very diverse group of plant secondary metabolites with a wide array of activities in plants, as well as in nutrition and health. All flavonoids are derived from a limited number of flavanone intermediates, which serve as substrates for a variety of enzyme activities, enabling the generation of diversity in flavonoid structures. Flavonoids can be characteristic metabolites, like isoflavonoids for legumes. Others, like flavones, occur in nearly all plants. Interestingly, there exist two fundamentally different enzymatic systems able to directly generate flavones from flavanones, flavone synthase (FNS) I and II. We describe an inducible flavone synthase activity from soybean (Glycine max) cell cultures, generating 7,4'-dihydroxyflavone (DHF), which we classified as FNS II. The corresponding full-length cDNA (CYP93B16) was isolated using known FNS II sequences from other plants. Functional expression in yeast allowed the detailed biochemical characterization of the catalytic activity of FNS II. A direct conversion of flavanones such as liquiritigenin, naringenin, and eriodictyol into the corresponding flavones DHF, apigenin and luteolin, respectively, was demonstrated. The enzymatic reaction of FNSII was stereoselective, favouring the (S)- over the (R)-enantiomer. Phylogenetic analyses of the subfamily of plant CYP93B enzymes indicate the evolution of a gene encoding a flavone synthase which originally catalyzed the direct conversion of flavanones into flavones, via early gene duplication into a less efficient enzyme with an altered catalytic mechanism. Ultimately, this allowed the evolution of the legume-specific isoflavonoid synthase activity.
Collapse
Affiliation(s)
- Judith Fliegmann
- Department Biology I, Ludwig-Maximilians University, Botany, München, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Daxberger A, Nemak A, Mithöfer A, Fliegmann J, Ligterink W, Hirt H, Ebel J. Activation of members of a MAPK module in beta-glucan elicitor-mediated non-host resistance of soybean. PLANTA 2007; 225:1559-71. [PMID: 17123101 DOI: 10.1007/s00425-006-0442-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/25/2006] [Indexed: 05/12/2023]
Abstract
Plants recognize microbial pathogens by discriminating pathogen-associated molecular patterns from self-structures. We study the non-host disease resistance of soybean (Glycine max L.) to the oomycete, Phytophthora sojae. Soybean senses a specific molecular pattern consisting of a branched heptaglucoside that is present in the oomycetal cell walls. Recognition of this elicitor may be achieved through a beta-glucan-binding protein, which forms part of a proposed receptor complex. Subsequently, soybean mounts a complex defense response, which includes the increase of the cytosolic calcium concentration, the production of reactive oxygen species, and the activation of genes responsible for the synthesis of phytoalexins. We now report the identification of two mitogen-activated protein kinases (MAPKs) and one MAPK kinase (MAPKK) that may function as signaling elements in triggering the resistance response. The use of specific antisera enabled the identification of GmMPKs 3 and 6 whose activity is enhanced within the signaling pathway leading to defense reactions. Elicitor specificity of MAPK activation as well as the sensitivity against inhibitors suggested these kinases as part of the beta-glucan signal transduction pathway. An upstream GmMKK1 was identified based on sequence similarity to other plant MAPKKs and its interaction with the MAPKs was analyzed. Recombinant GmMKK1 interacted predominantly with GmMPK6, with concomitant phosphorylation of the MAPK protein. Moreover, a preferential physical interaction between GmMKK1 and GmMPK6 was demonstrated in yeast. These results suggest a role of a MAPK cascade in mediating beta-glucan signal transduction in soybean, similar to other triggers that activate MAPKs during innate immune responses in plants.
Collapse
Affiliation(s)
- Andrea Daxberger
- Department Biologie I/Botanik, Ludwig-Maximilians-Universität, Menzinger Str. 67, 80638, München, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Fliegmann J, Schüler G, Boland W, Ebel J, Mithöfer A. The role of octadecanoids and functional mimics in soybean defense responses. Biol Chem 2003; 384:437-46. [PMID: 12715894 DOI: 10.1515/bc.2003.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oxylipins of the jasmonate pathway and synthetic functional analogs have been analyzed for their elicitor-like activities in an assay based on the induced accumulation of glyceollins, the phytoalexins of soybean (Glycine max L.), in cell suspension cultures of this plant. Jasmonic acid (JA) and its methyl ester showed weak phytoalexin-inducing activity when compared to an early jasmonate biosynthetic precursor, 12-oxo-phytodienoic acid (OPDA), as well as to the bacterial phytotoxin coronatine and certain 6-substituted indanoyl-L-isoleucine methyl esters, which all were highly active. Interestingly, different octadecanoids and indanoyl conjugates induced the accumulation of transcripts of various defense-related genes to different degrees, indicating distinct induction competencies. Therefore, these signaling compounds and mimics were further analyzed for their effects on signal transduction elements, such as the transient enhancement of the cytosolic Ca2+ concentration and MAP kinase activation, which are known to be initiated by a soybean pathogen-derived beta-glucan elicitor. In contrast to the beta-glucan elicitor, none of the other compounds tested triggered these early signaling elements. Moreover, endogenous levels of OPDA and JA in soybean cells were shown to be unaffected after treatment with beta-glucans. Thus, OPDA and JA, which are functionally mimicked by coronatine and a variety of 6-substituted derivatives of indanoyl-L-isoleucine methyl ester, represent highly efficient signaling compounds of a lipid-based pathway not deployed in the beta-glucan elicitor-initiated signal transduction.
Collapse
Affiliation(s)
- Judith Fliegmann
- Department Biologie I der Ludwig-Maximilians-Universität, Botanik, Menzinger Str. 67, D-80638 München, Germany
| | | | | | | | | |
Collapse
|
6
|
Lindermayr C, Möllers B, Fliegmann J, Uhlmann A, Lottspeich F, Meimberg H, Ebel J. Divergent members of a soybean (Glycine max L.) 4-coumarate:coenzyme A ligase gene family. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1304-15. [PMID: 11856365 DOI: 10.1046/j.1432-1033.2002.02775.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
4-Coumarate:CoA ligase (4CL) is involved in the formation of coenzyme A thioesters of hydroxycinnamic acids that are central substrates for subsequent condensation, reduction, and transfer reactions in the biosynthesis of plant phenylpropanoids. Previous studies of 4CL appear to suggest that many isoenzymes are functionally equivalent in supplying substrates to various subsequent branches of phenylpropanoid biosyntheses. In contrast, divergent members of a 4CL gene family were identified in soybean (Glycine max L.). We isolated three structurally and functionally distinct 4CL cDNAs encoding 4CL1, 4CL2, and 4CL3 and the gene Gm4CL3. A fourth cDNA encoding 4CL4 had high similarity with 4CL3. The recombinant proteins expressed in Escherichia coli possessed highly divergent catalytic efficiency with various hydroxycinnamic acids. Remarkably, one isoenzyme (4CL1) was able to convert sinapate; thus the first cDNA encoding a 4CL that accepts highly substituted cinnamic acids is available for further studies on branches of phenylpropanoid metabolism that probably lead to the precursors of lignin. Surprisingly, the activity levels of the four isoenzymes and steady-state levels of their transcripts were differently affected after elicitor treatment of soybean cell cultures with a beta-glucan elicitor of Phytophthora sojae, revealing the down-regulation of 4CL1 vs. up-regulation of 4CL3/4. A similar regulation of the transcript levels of the different 4CL isoforms was observed in soybean seedlings after infection with Phytophthora sojae zoospores. Thus, partitioning of cinnamic acid building units between phenylpropanoid branch pathways in soybean could be regulated at the level of catalytic specificity and the level of expression of the 4CL isoenzymes.
Collapse
|
7
|
Mithöfer A, Fliegmann J, Daxberger A, Ebel C, Neuhaus-Url G, Bhagwat AA, Keister DL, Ebel J. Induction of H(2)O(2) synthesis by beta-glucan elicitors in soybean is independent of cytosolic calcium transients. FEBS Lett 2001; 508:191-5. [PMID: 11718714 DOI: 10.1016/s0014-5793(01)03054-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Soybean cell suspension cultures have been used to investigate the role of the elevation of the cytosolic Ca(2+) concentration in beta-glucan elicitors-induced defence responses, such as H(2)O(2) and phytoalexin production. The intracellular Ca(2+) concentration was monitored in transgenic cells expressing the Ca(2+)-sensing aequorin. Two lines of evidence showed that a transient increase of the cytosolic Ca(2+) concentration is not necessarily involved in the induction of H(2)O(2) generation: (i) a Bradyrhizobium japonicum cyclic beta-glucan induced the H(2)O(2) burst without increasing the cytosolic Ca(2+) concentration; (ii) two ion channel blockers (anthracene-9-carboxylate, A9C; 5-nitro-2-(3-phenylpropylamino)-benzoate, NPPB) could not prevent a Phytophthora soja beta-glucan elicitor-induced H(2)O(2) synthesis but did prevent a cytosolic Ca(2+) concentration increase. Moreover, A9C and NPPB inhibited P. sojae beta-glucan-elicited defence-related gene inductions as well as the inducible accumulation of phytoalexins, suggesting that the P. sojae beta-glucan-induced transient cytosolic Ca(2+) increase is not necessary for the elicitation of H(2)O(2) production but is very likely required for phytoalexin synthesis.
Collapse
|
8
|
Schmelzer E, Börner H, Grisebach H, Ebel J, Hahlbrock K. Phytoalexin synthesis in soybean (Glycine max
). FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)80873-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Kurosaki F, Nishi A. A methyltransferase for synthesis of the phytoalexin 6-methoxymellein in carrot cells. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80894-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Corchete MP, Diez JJ, Valle T. Phenylalanine ammonia-lyase activity in suspension cultures of Ulmus pumila and U. campestris treated with spores of Ceratocystis ulmi. PLANT CELL REPORTS 1993; 13:111-4. [PMID: 24196299 DOI: 10.1007/bf00235302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/1993] [Revised: 07/19/1993] [Indexed: 05/15/2023]
Abstract
Cell suspension cultures of a Ceratocystis ulmi-resistant (Ulmus pumila) and a -susceptible elm (U.campestris) were established from leaf callus tissue. Treatment of cultures with spores of C.ulmi induced a large increase in the activity of phenylalanine ammonialyase, only in the cells of the resistant species U.pumila with a maximum after 24 h. Inoculated U.pumila cells also excreted a red unidentified chemical into the culture medium. Neither responses were induced in inoculated U.campestris cultures. The results are discussed in relation to the development of the elm cell culture system as a model for studying the differential biochemical mechanisms of disease resistance in elms.
Collapse
Affiliation(s)
- M P Corchete
- Departamento de Biología Vegetal, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | | | |
Collapse
|
11
|
Biswas BB. Prospects, perspectives, and problems of plant genetic engineering. Subcell Biochem 1991; 17:1-30. [PMID: 1796480 DOI: 10.1007/978-1-4613-9365-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Daniel S, Barz W. Elicitor-induced metabolic changes in cell cultures of chickpea (Cicer arietinum L.) cultivars resistant and susceptible to Ascochyta rabiei : II. Differential induction of chalcone-synthase-mRNA activity and analysis of in-vitro-translated protein patterns. PLANTA 1990; 182:279-86. [PMID: 24197107 DOI: 10.1007/bf00197122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/1990] [Indexed: 05/27/2023]
Abstract
Cell-suspension cultures of two chickpea (Cicer arietinum L.) cultivars, resistant (ILC 3279) and susceptible (ILC 1929) to the fungus Ascochyta rabiei (Pass.) Lab., showed differential accumulation of the phytoalexins medicarpin and maackiain, and transient induction of related enzyme activities after application of an A. rabiei-derived elicitor. The chalcone-synthase (CHS) activity (EC 2.3.1.74) which is involved in the first part of phytoalexin biosynthesis exhibited a maximum 8-12 h after elicitation in the cells of both cultivars. Concomitant with the fivefold-higher phytoalexin accumulation, CHS activity increased twofold in the cells of the resistant cultivar. The maximum of the elicitor-induced CHS-mRNA activity was determined 4 h after onset of induction in the cultures of both cultivars, although in cells of cultivar ILC 3279 this mRNA activity was induced at a level twofold higher than that in cells of the susceptible race ILC 1929. Investigations of CHS isoenzymes by two-dimensional gel electrophoresis of immunoprecipitated in-vitro-translated protein indicated the presence of five proteins. In the cells of both cultivars only two of the isoenzymes were induced after elicitor treatment. Analysis of the total in-vitro-translated proteins by two-dimensional gel electrophoresis showed that the constitutively expressed patterns of mRNA activities in the cell cultures of the two cultivars were identical. After elicitation, considerably more translatable mRNAs were induced in the cells of cultivar ILC 3279. The few induced proteins, and their respective mRNA activities, which could be detected in the cells of the susceptible cultivar, all existed in the cells of the resistant cultivar, too. One highly induced protein (Mr 18 kDa) found in the cells of cultivar ILC 3279 reached its maximum mRNA activity 6 h after elicitor application. The amount of this protein was hardly increased in the cells of the susceptible cultivar. This protein appears to be excreted from the cells into the growth medium.
Collapse
Affiliation(s)
- S Daniel
- Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400, Münster, Germany
| | | |
Collapse
|
13
|
Grab D, Feger M, Ebel J. An endogenous factor from soybean (Glycine max L.) cell cultures activates phosphorylation of a protein which is dephosphorylated in vivo in elicitor-challenged cells. PLANTA 1989; 179:340-348. [PMID: 24201663 DOI: 10.1007/bf00391079] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/1989] [Accepted: 05/09/1989] [Indexed: 06/02/2023]
Abstract
The existence of specific binding sites for a β-glucan elicitor of phytoalexin synthesis derived from the fungus Phytophthora megasperma f.sp. glycinea at the plasma membrane of soybean (Glycine max L.) tissues (W.E. Schmidt, J. Ebel (1987) Proc. Natl. Acad. Sci. USA 84, 4117-4121) might imply that stimulation of phytoalexin formation by the elicitor is a membrane-mediated process. Addition of the β-glucan elicitor to soybean cellsuspension cultures, which has previously been shown to induce phytoalexin accumulation, also results in rapid changes in the phosphate turnover of several phosphoproteins. The effect of the elicitor on protein phosphorylation was tested after labeling of the cells with [(32)P]orthophosphate. As shown by analysis using one-and two-dimensional gel electrophoresis, decreases as well as increases in the labeling of several phosphoroteins occurred rapidly, being detectable within 5 min after elicitor application, and persisted for at least 15 min. As judged by their relative molecular masses (Mr) and isoelectric points (pI), a number of proteins which were radioactively labeled in vivo were also phosphorylated in vitro by endogenous protein-kinase activity in the presence of Ca(2+). The most pronounced effect was observed with a protein substrate with Mr=69000 and pI=5.7 (pp69) whose phosphate labeling markedly decreased in response to elicitor treatment in vivo. Phosphorylation of pp69 in vitro in the presence of γ-[(32)P]ATP was strongly enhanced by a phosphorylation-stimulating factor (effector) derived from soybean cell cultures and occurred predominantly at serine residues. The effector possessed a low apparent Mr (≤1000), was negatively charged at pH 7.3, and was relatively heat stable. The effector was inactivated by treatment with alkaline phosphatase from calf intestine. Phosphorylation of pp69 was only slightly stimulated by Ca(2+), and was insensitive to cAMP, cGMP, calmodulin, a lipid mixture, a ganglioside mixture, or spermine under the assay conditions used. A 10 mM concentration of 3-phosphoglycerate increased pp69 phosphorylation to the extent of about 50% of that induced by the soybean effector. There was no evidence, however, that such concentrations of 3-phosphoglycerate occurred in effector preparations. The results are discussed in relation to hypothetical signal transduction during elicitor action on soybean cells.
Collapse
Affiliation(s)
- D Grab
- Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II der Universität, Schänzlestrasse 1, D-7800, Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
14
|
Apostol I, Low PS, Heinstein P. Effect of age of cell suspension cultures on susceptibility to a fungal elicitor. PLANT CELL REPORTS 1989; 7:692-695. [PMID: 24240464 DOI: 10.1007/bf00272063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/1988] [Revised: 12/20/1988] [Indexed: 06/02/2023]
Abstract
Fungal elicitor induced phytoalexin formation and the corresponding fluorescence transitions of the molecular probes pyranine and oxonol VI, in soybean (Glycine max Merr var Kent) and cotton (Gossypium arboreum L. Nanking) cell suspensions were both significantly affected by the age of the cells. During the lag phase and the beginning of the exponential growth phase both cultures exhibited stress responses (i.e. phytoalexin formation and molecular probe fluorescence transitions) in the absence of added elicitors. This behavior was termed autoelicitation because elicitation occurred without added external stimuli. In contrast, cells in the late exponential-early stationary phase were relatively unresponsive to elicitor. During intermediate growth periods the cell suspensions behaved optimally, producing no phytoalexins until stimulated with an elicitor. It would appear, therefore, that the culture period can be divided into 3 phases, with respect to susceptibility to fungal elicitors: a distinct autoelicitation period (immediately after transfer of the cells into fresh medium), followed by a period in which negligible amounts of phytoalexins are synthesized without elicitor, and culminating in a late period in which the cells respond poorly to elicitor. The onset and duration of these periods are somewhat different for soybean and cotton cells.
Collapse
Affiliation(s)
- I Apostol
- Department of Chemistry and Department of Medicinal Chemistry and Pharmacognosy, Purdue University, 47907, West Lafayette, IN, USA
| | | | | |
Collapse
|
15
|
Habereder H, Schröder G, Ebel J. Rapid induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs during fungus infection of soybean (Glycine max L.) roots or elicitor treatment of soybean cell cultures at the onset of phytoalexin synthesis. PLANTA 1989; 177:58-65. [PMID: 24212272 DOI: 10.1007/bf00392154] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/1988] [Accepted: 08/19/1988] [Indexed: 06/02/2023]
Abstract
The differential regulation of the activities and amounts of mRNAs for two enzymes involved in isoflavonoid phytoalexin biosynthesis in soybean was studied during the early stages after inoculation of primary roots with zoospores from either race 1 (incompatible, host resistant) or race 3 (compatible, host susceptible) of Phytophthora megasperma f.sp. glycinea, the causal fungus of root rot disease. In the incompatible interaction, cloned cDNAs were used to demonstrate that the amounts of phenylalanine ammonia-lyase and chalcone synthase mRNAs increased rapidly at the time of penetration of fungal germ tubes into epidermal cell layers (1-2 h after inoculation) concomitant with the onset of phytoalxxin accumulation; highest levels were reached after about 7 h. In the compatible interaction, only a slight early enhancement of mRNA levels was found and no further increase occurred until about 9 h after inoculation. The time course for changes in the activity of chalcone synthase mRNA also showed major differences between the incompatible and compatible interaction. The observed kinetics for the stimulation of mRNA expression related to phytoalexin synthesis in soybean roots lends further support to the hypothesis that phytoalexin production is an early defense response in the incompatible plant-fungus interaction. The kinetics for the enhancement of mRNA expression after treatment of soybean cell suspension cultures with a glucan elicitor derived from P. megasperma cell walls was similar to that measured during the early stages of the resistant response of soybean roots.
Collapse
Affiliation(s)
- H Habereder
- Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II der Universität, Schänzlestrasse 1, D-7800, Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
The Formation of Phenolic Compounds in Plant Cell and Tissue Cultures and the Possibility of its Regulation. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/b978-0-12-007907-0.50014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Growth kinetics and phenolics production inGlycine Max cell suspension cultures. Appl Biochem Biotechnol 1989. [DOI: 10.1007/bf02936529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Parker JE, Hahlbrock K, Scheel D. Different cell-wall components from Phytophthora megasperma f. sp. glycinea elicit phytoalexin production in soybean and parsley. PLANTA 1988; 176:75-82. [PMID: 24220737 DOI: 10.1007/bf00392482] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/1988] [Accepted: 04/11/1988] [Indexed: 06/02/2023]
Abstract
Different components of a crude cell-wall preparation from the phytopathogenic fungus, Phytophthora megasperma f. sp. glycinea, act as elicitors of phytoalexin accumulation in parsley (Petroselinum crispum) and soybean (Glycine max). Treatments of cultured parsley cells and protoplasts or soybean cells and cotyledons with proteinase-digested or deglycosylated elicitor preparations identify proteinaceous constituents as active eliciting compounds in parsley, which are inactive in soybean. The proteinase-treated elicitor as well as a defined heptaglucan are active in soybean but do not stimulate phytoalexin synthesis in parsley. Soybean and parsley cells therefore not only perceive different signals from cell walls of Phytophthora megasperma f. sp. glycinea, but are unable to respond to the fungal compounds primarily recognized by the other plant.
Collapse
Affiliation(s)
- J E Parker
- Abteilung Biochemie, Max-Planck-Institut für Züchtungsforschung, D-5000, Köln 30, Federal Republic of Germany
| | | | | |
Collapse
|
19
|
Dumas B, Legrand M, Geoffroy P, Fritig B. Purification of tobacco O-methyltransferases by affinity chromatography and estimation of the rate of synthesis of the enzymes during hypersensitive reaction to virus infection. PLANTA 1988; 176:36-41. [PMID: 24220732 DOI: 10.1007/bf00392477] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/1987] [Accepted: 03/18/1988] [Indexed: 06/02/2023]
Abstract
The three tobacco (Nicotiana tabacum L.) S-adenosyl-L-methionine: o-diphenol-O-methyltransferases (OMTs; EC 2.1.1.6) were purified to homogeneity by affinity chromatography on adenosine-agarose. Amounts and catalytic actities of the enzymes were measured in tobacco leaves during the hypersensitive reaction to tobacco mosaic virus. The drastic increase in activity of each enzyme upon infection was shown to arise from the accumulation of enzymatic protein with constant specific enzymatic activity. Rates of OMT synthesis were determined from pulse-labeling experiments with L-[(14)C]leucine injected into the leaves. The specific radioactivities of the homogenous enzymes were compared in healthy and tobacco mosaic virus-infected tobacco. The results demonstrated that increase in OMT amounts is a consequence of de novo synthesis of the enzymes.
Collapse
Affiliation(s)
- B Dumas
- Institut de Biologie Moléculaire des Plantes, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| | | | | | | |
Collapse
|
20
|
Cosio EG, Pöpperl H, Schmidt WE, Ebel J. High-affinity binding of fungal beta-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:309-15. [PMID: 3402458 DOI: 10.1111/j.1432-1033.1988.tb14198.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have recently reported the existence of binding sites in soybean membranes for a beta-glucan fraction derived from the fungal pathogen Phytophthora megasperma f. sp. glycinea, which may play a role in the elicitor-mediated phytoalexin response of this plant [Schmidt, W. E. & Ebel, J. (1987) Proc. Natl Acad. Sci. USA 84, 4117-4121]. The specificity of beta-glucan binding to soybean membranes has now been investigated using a variety of competing polyglucans and oligoglucans of fungal origin. P. megasperma beta-glucan binding showed high apparent affinity for branched glucans with degrees of polymerization greater than 12. Binding affinity showed good correlation with elicitor activity as measured in a soybean cotyledon bioassay. Modification of the glucans at the reducing end with phenylalkylamine reagents had no effect on binding affinity. This characteristic was used to synthesize an oligoglucosyl tyramine derivative suitable for radioiodination. The 125I-glucan (15-30 Ci/mmol) provided higher sensitivity and lower detection limits for the binding assays while behaving in a manner identical to the [3H]glucan used previously. More accurate determinations of the Kd value for glucan binding indicated a higher affinity than previously shown (37 nM versus 200 nM). The 125I-glucan was used to provide the first reported evidence of specific binding of a fungal beta-glucan fraction in vivo to soybean protoplasts. The binding affinity to protoplasts proved identical to that found in microsomal fractions.
Collapse
Affiliation(s)
- E G Cosio
- Institut für Biologie II der Universität, Lehrstuhl für Biochemie der Pflanzen, Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
21
|
Ayabe S, Udagawa A, Furuya T. NAD(P)H-dependent 6'-deoxychalcone synthase activity in Glycyrrhiza echinata cells induced by yeast extract. Arch Biochem Biophys 1988; 261:458-62. [PMID: 3355160 DOI: 10.1016/0003-9861(88)90362-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The crude extract prepared from Glycyrrhiza echinata cells treated with yeast extract catalyzed the formation of liquiritigenin (5-deoxyflavanone) and isoliquiritigenin (6'-deoxychalcone) in addition to naringenin (5-hydroxyflavanone) when incubated with 4-coumaroyl-CoA and malonyl-CoA in the presence of high concentrations (0.1 mM or higher) of NADPH. Incubation without NADPH, or with low concentrations (0.01 mM or lower), gave only naringenin as a reaction product. With NADH (1 mM), the major product was naringenin accompanied by a small quantity of liquiritigenin. The initial product of the assay with 1 mM NADPH was isoliquiritigenin, indicating a reaction catalyzed by 6'-deoxychalcone synthase (DOCS). Subsequent formation of liquiritigenin was attributed to the presence of chalcone isomerase in the crude extract. The results constitute the first demonstration in vitro of DOCS activity which, in G. echinata cells and other leguminous plants, is involved in the biosynthesis of retrochalcone and 5-deoxyisoflavonoid-derived phytoalexins.
Collapse
Affiliation(s)
- S Ayabe
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | |
Collapse
|
22
|
Ebel J, Grisebach H. Defense strategies of soybean against the fungus Phytophthora megasperma f.sp. glycinea: a molecular analysis. Trends Biochem Sci 1988; 13:23-7. [PMID: 3072693 DOI: 10.1016/0968-0004(88)90014-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Stäb MR, Ebel J. Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys 1987; 257:416-23. [PMID: 3116938 DOI: 10.1016/0003-9861(87)90585-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A glucan elicitor from the cell walls of the fungus Phytophthora megasperma f.sp. glycinea caused increases in the activities of the phytoalexin biosynthetic enzymes, phenylalanine ammonia-lyase and chalcone synthase, and induced the production of the phytoalexin, glyceollin, in soybean (Glycine max) cell suspension cultures when tested in culture medium containing 1.2 mmol/liter Ca2+. Removal of extracellular Ca2+ by treatment with ethylene glycol bis(beta-aminoethyl ether)-N, N'-tetraacetic acid followed by washing the cells with Ca2+-free culture medium abolished the elicitor-mediated phytoalexin response. This suppression was largely reversed on readdition of Ca2+. Elicitor-mediated enhancement of biosynthetic enzyme activities and accumulation of glyceollin was strongly inhibited by La3+; effective concentrations for 50% inhibition were (mumol/liter) 40 for phenylalanine ammonia-lyase, 100 for chalcone synthase, and 30 for glyceollin. Verapamil caused similar effects only at concentrations higher than 0.1 mmol/liter, whereas trifluoperazine and 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate did not affect enzyme induction by the elicitor in the concentration range tested. Uptake of alpha-amino isobutyric acid into soybean cells, which was rapidly inhibited in the presence of the glucan elicitor, was not affected by La3+ nor was uptake inhibition by the elicitor relieved by La3+. The Ca2+ ionophore, A23187, enhanced phytoalexin biosynthetic enzyme activities and glyceollin accumulation in a dose-dependent manner, with 50% stimulation (relative to the elicitor) occurring at about 5 mumol/liter. The results suggest that the glucan elicitor causes changes in metabolite fluxes across the plasma membrane of soybean cells, among which changes in Ca2+ fluxes appear to be important for the stimulation of the phytoalexin response.
Collapse
Affiliation(s)
- M R Stäb
- Biologisches Institut II der Universität Freiburg, West Germany
| | | |
Collapse
|
24
|
Kochs G, Welle R, Grisebach H. Differential induction of enzyme in soybean cell cultures by elicitor or osmotic stress. PLANTA 1987; 171:519-524. [PMID: 24225715 DOI: 10.1007/bf00392301] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/1986] [Accepted: 04/02/1987] [Indexed: 06/02/2023]
Abstract
Soybean cell cultures were challenged either by glucan elicitor from Phytophthora megasperma f.sp. glycinea or by osmotic stress (0.4 M glucose). Osmotic stress induced production of a microsomal NADPH-dependent flavone synthase (flavone synthase II) which catalyses conversion of (2S)-naringenin to apigenin. In one of our cell-lines this enzyme activity was not detected either in unchallenged cells or in cells treated with glucan elicitor. Inducibility of flavone synthase II by 0.4 M glucose was highest at the end of the linear growth phase. Changes in the activities of a number of other enzymes were determined after treatment of the cells with elicitor or 0.4 M glucose. The activities of phenylalanine ammonialyase, cinnamate 4-hydroxylase, chalcone synthase and dihydroxypterocarpan 6a-hydroxylase all increased with elicitor and with osmoticum, albeit to a different degree. The rise in enzyme activity occurred later with osmoticum than with elicitor. The prenyltransferase involved in glyceollin synthesis was induced strongly by elicitor but only very weakly by osmoticum, whereas isoflavone synthase and NADPH: cytochrome-c reductase were only induced by elicitor. The activity of glucose-6-phosphate dehydrogenase did not change with elicitor or with osmoticum. Different product patterns were also obtained: whereas with elicitor, glyceollin I was the major product, intermediates of the glyceollin pathway (7,4'-dihydroxyflavanone, trihydroxypterocarpan) accumulated with osmoticum.
Collapse
Affiliation(s)
- G Kochs
- Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Schänzlestrasse 1, D-7800, Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
25
|
Collinge DB, Slusarenko AJ. Plant gene expression in response to pathogens. PLANT MOLECULAR BIOLOGY 1987; 9:389-410. [PMID: 24277091 DOI: 10.1007/bf00014913] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/1987] [Indexed: 05/08/2023]
Affiliation(s)
- D B Collinge
- John Innes Institute, Colney Lane, NR4 7UH, Norwich, UK
| | | |
Collapse
|
26
|
DIXON RICHARDA. THE PHYTOALEXIN RESPONSE: ELICITATION, SIGNALLING AND CONTROL OF HOST GENE EXPRESSION. Biol Rev Camb Philos Soc 1986. [DOI: 10.1111/j.1469-185x.1986.tb00719.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Grab D, Loyal R, Ebel J. Elicitor-induced phytoalexin synthesis in soybean cells: changes in the activity of chalcone synthase mRNA and the total population of translatable mRNA. Arch Biochem Biophys 1985; 243:523-9. [PMID: 3855251 DOI: 10.1016/0003-9861(85)90529-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rapid changes in the mRNA activity encoding chalcone synthase, a central enzyme involved in isoflavonoid phytoalexin synthesis, were induced in cultured cells of soybean (Glycine max) after treatment with a glucan elicitor from the cell walls of the fungus, Phytophthora megasperma f. sp. glycinea, a soybean pathogen. Two-dimensional gel electrophoresis of the in vitro- and in vivo-synthesized chalcone synthase showed that it consisted of a group of proteins of similar molecular weights of about 41,000, but with differing isoelectric points between pH 6.1 and pH 7.1. Total activity of chalcone synthase mRNA increased as early as 40 to 60 min after the onset of elicitor induction, and reached a peak at about 4 h. Treatment with the fungal elicitor caused major changes in the population of total translatable RNA as indicated by two-dimensional electrophoresis of the translation products. The mRNA activities for at least 16 proteins were increased and for at least 4 proteins were decreased. The elicitor-induced changes in the population of translatable mRNA occurred at a rate similar to that observed for chalcone synthase mRNA activity. Our results suggest that soybean cells respond to the glucan elicitor by major metabolic changes at the RNA level including the enhanced capacity for phytoalexin synthesis.
Collapse
|
28
|
Moesta P, West CA. Casbene synthetase: regulation of phytoalexin biosynthesis in Ricinus communis L. seedlings. Purification of casbene synthetase and regulation of its biosynthesis during elicitation. Arch Biochem Biophys 1985; 238:325-33. [PMID: 3985625 DOI: 10.1016/0003-9861(85)90171-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Castor bean (Ricinus communis L.) seedlings responded to stress by producing the antifungal diterpene, casbene. Casbene synthetase, the enzyme catalyzing the production of casbene from geranylgeranyl pyrophosphate, was purified 4700-fold to a final specific activity of 4.2 nkat/mg protein by a combination of ion-exchange and dye-ligand chromatographic procedures. Approximately 500 micrograms of purified enzyme was recovered from 1600 seedlings that had been infected with the fungus, Rhizopus stolonifer. The purified enzyme showed a single protein band, by Ag staining, of Mr 59,000 +/- 1000 after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Electrophoretic analysis of the immunoprecipitate obtained from a crude enzyme extract and polyclonal rabbit antibodies raised against the purified enzyme revealed no contaminants or cross-reacting components. In vitro translation of polysomal RNA pools obtained from healthy castor bean seedlings and seedlings at various times after exposure to pectic fragment elicitors coupled with immunoprecipitation showed that healthy seedlings have nondetectable levels of casbene synthetase mRNA and that seedlings exposed to elicitor show a rapid increase in casbene synthetase mRNA which reaches a maximum after 6 h. Casbene synthetase activity increases to a maximum 10 h after elicitation under comparable conditions. These results show that increases in the activity of mRNA for casbene synthetase after elicitation by pectic fragments precede the appearance of casbene synthetase activity as would be expected if the enzyme were being synthesized de novo.
Collapse
|
29
|
|
30
|
Purification and partial characterization of a beta-glucan fragment that elicits phytoalexin accumulation in soybean. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90864-1] [Citation(s) in RCA: 224] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Sharp JK, Albersheim P, Ossowski P, Pilotti A, Garegg P, Lindberg B. Comparison of the structures and elicitor activities of a synthetic and a mycelial-wall-derived hexa(beta-D-glucopyranosyl)-D-glucitol. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90867-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Hagmann ML, Heller W, Grisebach H. Induction of phytoalexin synthesis in soybean. Stereospecific 3,9-dihydroxypterocarpan 6a-hydroxylase from elicitor-induced soybean cell cultures. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 142:127-31. [PMID: 6540173 DOI: 10.1111/j.1432-1033.1984.tb08259.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A microsomal preparation from elicitor-challenged soybean cell suspension cultures catalyzes an NADPH-dependent and dioxygen-dependent 6a-hydroxylation of 3,9-dihydroxypterocarpan to 3,6a,9-trihydroxypterocarpan. The latter is a precursor for the soybean phytoalexin glyceollin. No reaction is observed with NADH. The 6a-hydroxylase is inhibited by cytochrome c. Optical rotatory dispersion spectra of the enzymatic product formed from racemic dihydroxypterocarpan and of the remaining unreacted substrate proved that the product has the natural (6aS, 11aS)-configuration and that hydroxylation proceeds with retention of configuration. The 6a-hydroxylase was also found in elicitor-challenged soybean seedlings. The results indicate that the 6a-hydroxylase is specifically involved in the biosynthesis of glyceollin.
Collapse
|
33
|
Ebel J, Schmidt WE, Loyal R. Phytoalexin synthesis in soybean cells: elicitor induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation. Arch Biochem Biophys 1984; 232:240-8. [PMID: 6540068 DOI: 10.1016/0003-9861(84)90540-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A glucan elicitor from cell walls of the fungus Phytophthora megasperma f. sp. glycinea, a pathogen of soybean (Glycine max), induced large and rapid increases in the activities of enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase, and of the flavonoid pathway, acetyl-CoA carboxylase and chalcone synthase, in suspension-cultured soybean cells. The changes in phenylalanine ammonia-lyase and chalcone synthase activities were correlated with corresponding changes in the mRNA activities encoding these enzymes, as determined by enzyme synthesis in vitro in a mRNA-dependent reticulocyte lysate. The time courses of the elicitor-induced changes in mRNA activities for both enzymes were very similar with respect to each other. Following the onset of induction, the two mRNA activities increased significantly at 3 h, reached highest levels at 5 to 7 h, and subsequently returned to low values at 10 h. Similar degrees of induction of mRNA activities and of the catalytic activities of phenylalanine ammonia-lyase and chalcone synthase were observed in response to three diverse microbial compounds, the glucan elicitor from P. megasperma, xanthan, an extracellular polysaccharide from Xanthomonas campestris, and endopolygalacturonase from Aspergillus niger. However, whereas the glucan elicitor induced the accumulation of large amounts of the phytoalexin, glyceollin, in soybean cells, endopolygalacturonase induced only low, albeit significant, amounts; xanthan did not enhance glyceollin accumulation under the conditions of this study. This result might imply that enzymes other than phenylalanine ammonia-lyase or chalcone synthase exert an important regulatory function in phytoalexin synthesis in soybean cells.
Collapse
|
34
|
Rall S, Hemleben V. Characterization and expression of chalcone synthase in different genotypes of Matthiola incana R.Br. during flower development. PLANT MOLECULAR BIOLOGY 1984; 3:137-145. [PMID: 24310347 DOI: 10.1007/bf00016061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The expression of the key enzyme of flavonoid biosynthesis, chalcone synthase (CHS), has been followed in different genotypes of Matthiola incana R.Br. (Brassicaceae) which are genetically defined with respect to anthocyanin production. Enzyme activity was determined by a radioactive assay in crude flower extracts. The amount of enzyme protein in the developing flower was determined by use of SDS-PAGE, protein blotting, reaction with an antiserum against CHS of parsley (Petroselinum hortense), and PAP staining. The molecular weight of about 41 500 of the CHS subunits corresponds with that obtained from other higher plants. Steps of flower development were subdivided into stages-1,0, I-IV. During flower development of a Matthiola line with coloured petals (line 07) a defined pattern of CHS enzyme production can be observed: At the stage of bud opening (stage 0-I) a dramatic increase of the amount of CHS enzyme prodein in the petals occurs. This is quite different from results obtained with petals of the white flowering mutant line 18 bearing a genetic defect in the gene f coding for CHS. Here a reduced and nearly constant level of CHS enzyme protein can be observed during flower development. This line is most attractive for our studies of the regulation of enzyme synthesis because under stress conditions a slight colouring of the flower petals occurs, which is uniformly distributed and line-specific. This suggests that we are dealing with a CHS mutant producing a rather inactive enzyme protein at a low level. This protein may regain enzyme activity under certain environmental conditions. Preliminary investigations suggest a rather high level of CHS mRNA transcription at the bud opening stage of the flowers. Other white flowering mutant lines, line 17 (genotype ee) and line 19 (gg) with a late block in the flavonoid biosynthesis pathway, exhibit a concomitant reduction of CHS enzyme activity and protein content in comparison to anthocyanin-producing lines with the f(+)f(+)e(+)e(+)g(+)g(+)-genotype.
Collapse
Affiliation(s)
- S Rall
- Lehrstuhl für Genetik, Institut für Biologie II der Universität Tübingen, Auf der Morgenstelle 28, 7400, Tübingen, F.R.G
| | | |
Collapse
|
35
|
Physiological changes in suspension-cultured soybean cells elicited by treatment with chitosan. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0304-4211(84)90012-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Grisebach H, Ebel J. Phytoalexine und Resistenz von Pflanzen gegenüber Schadorganismen. ACTA ACUST UNITED AC 1983. [DOI: 10.1002/biuz.19830130504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Tietjen KG, Matern U. Differential response of cultured parsley cells to elicitors from two non-pathogenic strains of fungi. 2. Effects on enzyme activities. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 131:409-13. [PMID: 6682039 DOI: 10.1111/j.1432-1033.1983.tb07278.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Parsley cell cultures produce linear furanocoumarins and the linear benzodipyrandione, graveolone, in response to treatment with an elicitor from either Phytophthora megasperma or Alternaria carthami. Activities of enzymes involved in general phenylpropanoid metabolism, phenylalanine ammonia-lyase and 4-coumarate: CoA ligase, as well as of an enzyme involved specifically in furanocoumarin biosynthesis, dimethylallyl diphosphate: umbelliferone dimethylallyltransferase, were monitored over several days after treatment with A. carthami elicitor. In addition, the activities of chalcone synthase, an enzyme involved in flavonoid formation, and of glucose-6-phosphate: NADP 1-oxidoreductase were also monitored. The lyase and the ligase activities increased steadily for 48 h and the dimethylallyltransferase activity for 54 h, while the synthase activity was not altered and the oxidoreductase activity decreased gradually. In some experiments, phenylalanine ammonia-lyase activity reached a maximum value of 250 mukat/kg, twice the maximal activity observed previously in parsley cells after treatment with either ultraviolet light or an elicitor preparation from P. megasperma. In crude extracts, phenylalanine ammonia-lyase activity was shown to be inhibited by unidentified small-molecular-weight compounds which were formed in proportion to the elicitor treatment. While phenylalanine ammonia-lyase and dimethylallyl diphosphate: umbelliferone dimethylallyltransferase are known to be required for furanocoumarin biosynthesis, the involvement of 4-coumarate: CoA ligase is as yet unclear. The concomitant increase and decrease of the ligase activity with the activities of the lyase and the dimethylallyltransferase, as well as its similar response to elicitor concentrations, suggest that CoA esters of cinnamic acids play a role in the biosynthesis of furanocoumarins.
Collapse
|
38
|
Lawton MA, Dixon RA, Hahlbrock K, Lamb C. Rapid induction of the synthesis of phenylalanine ammonia-lyase and of chalcone synthase in elicitor-treated plant cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 129:593-601. [PMID: 6825675 DOI: 10.1111/j.1432-1033.1983.tb07090.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Changes in the rate of synthesis of phenylalanine ammonia-lyase and chalcone synthase, two characteristic enzymes of phenylpropanoid biosynthesis, have been investigated by direct immunoprecipitation of in vivo [35S]methionine-labelled enzyme subunits in elicitor-treated cells of dwarf French bean (Phaseolus vulgaris). Elicitor, heat-released from cell walls of Colletotrichum lindemuthianum, the causal agent of anthracnose disease of bean, causes marked but transient increases in the rates of synthesis of both enzymes concomitant with the phase of rapid increase in enzyme activity at the onset of phaseollin accumulation during the phytoalexin defence response. Increased rates of synthesis of both enzymes can be observed 20 min after elicitor treatment and the pattern of induction of synthesis of phenylalanine ammonia-lyase and chalcone synthase are broadly similar with respect to elicitor concentration and time, maximum rates of synthesis being attained between 2.5 h and 3.0 h after elicitor treatment. Within this overall co-ordination small but distinct differences between the enzymes were observed in: (a) the elicitor concentrations giving maximum enzyme synthesis, and (b) the precise timing of maximum enzyme synthesis, with that for chalcone synthase occurring 20-30 min earlier than that for phenylalanine ammonia-lyase. However, for a given rate of enzyme synthesis, induction of the activities of phenylalanine ammonia-lyase and chalcone synthase is more efficient at high elicitor concentrations. This may reflect the operation under certain circumstances of post-translational control of the activity levels of these enzymes as implicated for phenylalanine ammonia-lyase by previous density-labelling experiments [Lawton et al. (1980) Biochim. Biophys. Acta, 633, 162-175]. The same pattern of induction of enzyme synthesis is observed with elicitor preparations from a variety of sources.
Collapse
|
39
|
Börner H, Grisebach H. Enzyme induction in soybean infected by Phytophthora megasperma f.sp. glycinea. Arch Biochem Biophys 1982; 217:65-71. [PMID: 6889840 DOI: 10.1016/0003-9861(82)90479-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|