1
|
Rodriguez Gallo MC, Li Q, Mehta D, Uhrig RG. Genome-scale analysis of Arabidopsis splicing-related protein kinase families reveals roles in abiotic stress adaptation. BMC PLANT BIOLOGY 2022; 22:496. [PMID: 36273172 PMCID: PMC9587599 DOI: 10.1186/s12870-022-03870-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/04/2022] [Indexed: 05/24/2023]
Abstract
Nearly 60 - 80 % of intron-containing plant genes undergo alternative splicing in response to either stress or plant developmental cues. RNA splicing is performed by a large ribonucleoprotein complex called the spliceosome in conjunction with associated subunits such as serine arginine (SR) proteins, all of which undergo extensive phosphorylation. In plants, there are three main protein kinase families suggested to phosphorylate core spliceosome subunits and related splicing factors based on orthology to human splicing-related kinases: the SERINE/ARGININE PROTEIN KINASES (SRPK), ARABIDOPSIS FUS3 COMPLEMENT (AFC), and Pre-mRNA PROCESSING FACTOR 4 (PRP4K) protein kinases. To better define the conservation and role(s) of these kinases in plants, we performed a genome-scale analysis of the three families across photosynthetic eukaryotes, followed by extensive transcriptomic and bioinformatic analysis of all Arabidopsis thaliana SRPK, AFC, and PRP4K protein kinases to elucidate their biological functions. Unexpectedly, this revealed the existence of SRPK and AFC phylogenetic groups with distinct promoter elements and patterns of transcriptional response to abiotic stress, while PRP4Ks possess no phylogenetic sub-divisions, suggestive of functional redundancy. We also reveal splicing-related kinase families are both diel and photoperiod regulated, implicating different orthologs as discrete time-of-day RNA splicing regulators. This foundational work establishes a number of new hypotheses regarding how reversible spliceosome phosphorylation contributes to both diel plant cell regulation and abiotic stress adaptation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - D Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Islam SU, Ahmed MB, Sonn JK, Jin EJ, Lee YS. PRP4 Induces Epithelial–Mesenchymal Transition and Drug Resistance in Colon Cancer Cells via Activation of p53. Int J Mol Sci 2022; 23:ijms23063092. [PMID: 35328513 PMCID: PMC8955441 DOI: 10.3390/ijms23063092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Pre-mRNA processing factor 4B (PRP4) promotes pre-mRNA splicing and signal transduction. Recent studies have shown that PRP4 modulates the assembly of actin cytoskeleton in cancer cells and induces epithelial–mesenchymal transition (EMT) and drug resistance. PRP4 displays kinase domain-like cyclin-dependent kinases and mitogen-activated protein kinases, making it capable of phosphorylating p53 and other target proteins. In the current study, we report that PRP4 induces drug resistance and EMT via direct binding to the p53 protein, inducing its phosphorylation. Moreover, PRP4 overexpression activates the transcription of miR-210 in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner, which activates p53. The involvement of miR-210 in the activation of p53 was confirmed by utilizing si-miR210. si-miR210 blocked the PRP4-activated cell survival pathways and reversed the PRP4-induced EMT phenotype. Moreover, we used deferoxamine as a hypoxia-mimetic agent, and si-HIF to silence HIF-1α. This procedure demonstrated that PRP4-induced EMT and drug resistance emerged in response to consecutive activation of HIF-1α, miR-210, and p53 by PRP4 overexpression. Collectively, our findings suggest that the PRP4 contributes to EMT and drug resistance induction via direct interactions with p53 and actions that promote upregulation of HIF-1α and miR-210. We conclude that PRP4 is an essential factor promoting cancer development and progression. Specific PRP4 inhibition could benefit patients with colon cancer.
Collapse
Affiliation(s)
- Salman Ul Islam
- Department of Pharmacy, Cecos University, Hayatabad, Peshawar 25000, Pakistan;
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jong-Kyung Sonn
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Eun-Jung Jin
- Department of Biological Science, College of Natural Science, Wonkwang University, Iksan 54538, Korea
- Correspondence: (E.-J.J.); (Y.-S.L.); Tel.: +82-63-8500-6197(E.-J.J.); +82-53-950-6353 (Y.-S.L.); Fax: +82-53-943-2762 (E.-J.J.)
| | - Young-Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (E.-J.J.); (Y.-S.L.); Tel.: +82-63-8500-6197(E.-J.J.); +82-53-950-6353 (Y.-S.L.); Fax: +82-53-943-2762 (E.-J.J.)
| |
Collapse
|
3
|
Habib EB, Mathavarajah S, Dellaire G. Tinker, Tailor, Tumour Suppressor: The Many Functions of PRP4K. Front Genet 2022; 13:839963. [PMID: 35281802 PMCID: PMC8912934 DOI: 10.3389/fgene.2022.839963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential kinase first identified in the fission yeast Schizosaccharomyces pombe that is evolutionarily conserved from amoebae to animals. During spliceosomal assembly, PRP4K interacts with and phosphorylates PRPF6 and PRPF31 to facilitate the formation of the spliceosome B complex. However, over the past decade additional evidence has emerged that PRP4K has many diverse cellular roles beyond splicing that contribute to tumour suppression and chemotherapeutic responses in mammals. For example, PRP4K appears to play roles in regulating transcription and the spindle assembly checkpoint (SAC), a key pathway in maintaining chromosomes stability and the response of cancer cells to taxane-based chemotherapy. In addition, PRP4K has been revealed to be a haploinsufficient tumour suppressor that promotes aggressive cancer phenotypes when partially depleted. PRP4K is regulated by both the HER2 and estrogen receptor, and its partial loss increases resistance to the taxanes in multiple malignancies including cervical, breast and ovarian cancer. Moreover, ovarian and triple negative breast cancer patients harboring tumours with low PRP4K expression exhibit worse overall survival. The depletion of PRP4K also enhances both Yap and epidermal growth factor receptor (EGFR) signaling, the latter promoting anoikis resistance in breast and ovarian cancer. Finally, PRP4K is negatively regulated during epithelial-to-mesenchymal transition (EMT), a process that promotes increased cell motility, drug resistance and cancer metastasis. Thus, as we discuss in this review, PRP4K likely plays evolutionarily conserved roles not only in splicing but in a number of cellular pathways that together contribute to tumour suppression.
Collapse
Affiliation(s)
- Elias B. Habib
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
| | | | - Graham Dellaire
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- *Correspondence: Graham Dellaire,
| |
Collapse
|
4
|
Clarke LE, Cook A, Mathavarajah S, Bera A, Salsman J, Habib E, Van Iderstine C, Bydoun M, Lewis SM, Dellaire G. Haploinsufficient tumor suppressor PRP4K is negatively regulated during epithelial-to-mesenchymal transition. FASEB J 2021; 35:e22001. [PMID: 34674320 PMCID: PMC9298446 DOI: 10.1096/fj.202001063r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 01/28/2023]
Abstract
The pre‐mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential gene. However, reduced PRP4K expression is associated with aggressive breast and ovarian cancer phenotypes including taxane therapy resistance, increased cell migration and invasion in vitro, and cancer metastasis in mice. These results are consistent with PRP4K being a haploinsufficient tumor suppressor. Increased cell migration and invasion is associated with epithelial‐to‐mesenchymal transition (EMT), but how reduced PRP4K levels affect normal epithelial cell migration or EMT has not been studied. Depletion of PRP4K by small hairpin RNA (shRNA) in non‐transformed mammary epithelial cell lines (MCF10A, HMLE) reduced or had no effect on 2D migration in the scratch assay but resulted in greater invasive potential in 3D transwell assays. Depletion of PRP4K in mesenchymal triple‐negative breast cancer cells (MDA‐MB‐231) resulted in both enhanced 2D migration and 3D invasion, with 3D invasion correlated with higher fibronectin levels in both MDA‐MB‐231 and MCF10A cells and without changes in E‐cadherin. Induction of EMT in MCF10A cells, by treatment with WNT‐5a and TGF‐β1, or depletion of eukaryotic translation initiation factor 3e (eIF3e) by shRNA, resulted in significantly reduced PRP4K expression. Mechanistically, induction of EMT by WNT‐5a/TGF‐β1 reduced PRP4K transcript levels, whereas eIF3e depletion led to reduced PRP4K translation. Finally, reduced PRP4K levels after eIF3e depletion correlated with increased YAP activity and nuclear localization, both of which are reversed by overexpression of exogenous PRP4K. Thus, PRP4K is a haploinsufficient tumor suppressor negatively regulated by EMT, that when depleted in normal mammary cells can increase cell invasion without inducing full EMT.
Collapse
Affiliation(s)
- Livia E Clarke
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allyson Cook
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Amit Bera
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Elias Habib
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Moamen Bydoun
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada.,Department of Chemistry & Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
PRP4 Promotes Skin Cancer by Inhibiting Production of Melanin, Blocking Influx of Extracellular Calcium, and Remodeling Cell Actin Cytoskeleton. Int J Mol Sci 2021; 22:ijms22136992. [PMID: 34209674 PMCID: PMC8268783 DOI: 10.3390/ijms22136992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Pre-mRNA processing factor 4B (PRP4) has previously been shown to induce epithelial-mesenchymal transition (EMT) and drug resistance in cancer cell lines. As melanin plays an important photoprotective role in the risk of sun-induced skin cancers, we have investigated whether PRP4 can induce drug resistance and regulate melanin biosynthesis in a murine melanoma (B16F10) cell line. Cells were incubated with a crucial melanogenesis stimulator, alpha-melanocyte-stimulating hormone, followed by transfection with PRP4. This resulted in the inhibition of the production of melanin via the downregulation of adenylyl cyclase-cyclic adenosine 3′,5′-monophosphate (AC)–(cAMP)–tyrosinase synthesis signaling pathway. Inhibition of melanin production by PRP4 leads to the promotion of carcinogenesis and induced drug resistance in B16F10 cells. Additionally, PRP4 overexpression upregulated the expression of β-arrestin 1 and desensitized the extracellular calcium-sensing receptor (CaSR), which in turn, inhibited the influx of extracellular Ca2+ ions. The decreased influx of Ca2+ was confirmed by a decreased expression level of calmodulin. We have demonstrated that transient receptor potential cation channel subfamily C member 1 was involved in the influx of CaSR-induced Ca2+ via a decreasing level of its expression. Furthermore, PRP4 overexpression downregulated the expression of AC, decreased the synthesis of cAMP, and modulated the actin cytoskeleton by inhibiting the expression of Ras homolog family member A (RhoA). Our investigation suggests that PRP4 inhibits the production of melanin in B16F10 cells, blocks the influx of Ca2+ through desensitization of CaSR, and modulates the actin cytoskeleton through downregulating the AC–cAMP pathway; taken together, these observations collectively lead to the promotion of skin carcinogenesis.
Collapse
|
6
|
Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. Interplay Between CMGC Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. Front Microbiol 2021; 12:658721. [PMID: 33854493 PMCID: PMC8040976 DOI: 10.3389/fmicb.2021.658721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
Protein phosphorylation constitutes a major post-translational modification that critically regulates the half-life, intra-cellular distribution, and activity of proteins. Among the large number of kinases that compose the human kinome tree, those targeting RNA-binding proteins, in particular serine/arginine-rich (SR) proteins, play a major role in the regulation of gene expression by controlling constitutive and alternative splicing. In humans, these kinases belong to the CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group and several studies indicate that they also control viral replication via direct or indirect mechanisms. The aim of this review is to describe known and emerging activities of CMGC kinases that share the common property to phosphorylate SR proteins, as well as their interplay with different families of viruses, in order to advance toward a comprehensive knowledge of their pro- or anti-viral phenotype and better assess possible translational opportunities.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| |
Collapse
|
7
|
Ahmed MB, Islam SU, Sonn JK, Lee YS. PRP4 Kinase Domain Loss Nullifies Drug Resistance and Epithelial-Mesenchymal Transition in Human Colorectal Carcinoma Cells. Mol Cells 2020; 43:662-670. [PMID: 32576716 PMCID: PMC7398799 DOI: 10.14348/molcells.2020.2263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 01/24/2023] Open
Abstract
We have investigated the involvement of the pre-mRNA processing factor 4B (PRP4) kinase domain in mediating drug resistance. HCT116 cells were treated with curcumin, and apoptosis was assessed based on flow cytometry and the generation of reactive oxygen species (ROS). Cells were then transfected with PRP4 or pre-mRNA-processing-splicing factor 8 (PRP8), and drug resistance was analyzed both in vitro and in vivo. Furthermore, we deleted the kinase domain in PRP4 using GatewayTM technology. Curcumin induced cell death through the production of ROS and decreased the activation of survival signals, but PRP4 overexpression reversed the curcumin-induced oxidative stress and apoptosis. PRP8 failed to reverse the curcumin-induced apoptosis in the HCT116 colon cancer cell line. In xenograft mouse model experiments, curcumin effectively reduced tumour size whereas PRP4 conferred resistance to curcumin, which was evident from increasing tumour size, while PRP8 failed to regulate the curcumin action. PRP4 overexpression altered the morphology, rearranged the actin cytoskeleton, triggered epithelial-mesenchymal transition (EMT), and decreased the invasiveness of HCT116 cells. The loss of E-cadherin, a hallmark of EMT, was observed in HCT116 cells overexpressing PRP4. Moreover, we observed that the EMT-inducing potential of PRP4 was aborted after the deletion of its kinase domain. Collectively, our investigations suggest that the PRP4 kinase domain is responsible for promoting drug resistance to curcumin by inducing EMT. Further evaluation of PRP4-induced inhibition of cell death and PRP4 kinase domain interactions with various other proteins might lead to the development of novel approaches for overcoming drug resistance in patients with colon cancer.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 4566, Korea
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 4566, Korea
| | - Jong Kyung Sonn
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 4566, Korea
| |
Collapse
|
8
|
Sun M, Zhang Y, Wang Q, Wu C, Jiang C, Xu JR. The tri-snRNP specific protein FgSnu66 is functionally related to FgPrp4 kinase in Fusarium graminearum. Mol Microbiol 2018; 109:494-508. [PMID: 29923654 DOI: 10.1111/mmi.14005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 11/28/2022]
Abstract
Deletion of Prp4, the only kinase among spliceosome components, is not lethal in Fusarium graminearum but Fgprp4 mutants have severe growth defects and produced spontaneous suppressors. To identify novel suppressor mutations of Fgprp4, we sequenced the genome of suppressor S37 that was normal in growth but only partially recovered for intron splicing and identified a tandem duplication of 9-aa in the tri-snRNP component FgSNU66. Among the 19 additional suppressor strains found to have mutations in FgSNU66 (out of 260 screened), five had the same 9-aa duplication event with S37 and another five had the R477H/C mutation. The rest had nonsense or G-to-D mutations in the C-terminal 27-aa (CT27) region of FgSnu66, which is absent in its yeast ortholog. Truncation of this C-terminal region reduced the interaction of FgSnu66 with FgHub1 but increased its interaction with FgPrp8 and FgPrp6. Five phosphorylation sites were identified in FgSnu66 by phosphoproteomic analysis and the T418A-S420A-S422A mutation was shown to reduce virulence. Overall, our results showed that mutations in FgSNU66 can suppress deletion of Fgprp4, which has not been reported in other organisms, and the C-terminal tail of FgSnu66 plays a role in its interaction with key tri-snRNP components during spliceosome activation.
Collapse
Affiliation(s)
- Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunlan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
9
|
PRP4 kinase induces actin rearrangement and epithelial-mesenchymal transition through modulation of the actin-binding protein cofilin. Exp Cell Res 2018; 369:158-165. [PMID: 29787735 DOI: 10.1016/j.yexcr.2018.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 01/26/2023]
Abstract
Cell actin cytoskeleton is primarily modulated by Rho family proteins. RhoA regulates several downstream targets, including Rho-associated protein kinase (ROCK), LIM-Kinase (LIMK), and cofilin. Pre-mRNA processing factor 4B (PRP4) modulates the actin cytoskeleton of cancer cells via RhoA activity inhibition. In this study, we discovered that PRP4 over-expression in HCT116 colon cancer cells induces cofilin dephosphorylation by inhibiting the Rho-ROCK-LIMK-cofilin pathway. Two-dimensional gel electrophoresis, and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) analysis indicated increased expression of protein phosphatase 1A (PP1A) in PRP4-transfected HCT116 cells. The presence of PRP4 increased the expression of PP1A both at the mRNA and protein levels, which possibly activated cofilin through dephosphorylation and subsequently modulated the cell actin cytoskeleton. Furthermore, we found that PRP4 over-expression did not induce cofilin dephosphorylation in the presence of okadaic acid, a potent phosphatase inhibitor. Moreover, we discovered that PRP4 over-expression in HCT116 cells induced dephosphorylation of migration and invasion inhibitory protein (MIIP), and down-regulation of E-cadherin protein levels, which were further restored by the presence of okadaic acid. These findings indicate a possible molecular mechanism of PRP4-induced actin cytoskeleton remodeling and epithelial-mesenchymal transition, and make PRP4 an important target in colon cancer.
Collapse
|
10
|
Cho YS, Zhu J, Li S, Wang B, Han Y, Jiang J. Regulation of Yki/Yap subcellular localization and Hpo signaling by a nuclear kinase PRP4K. Nat Commun 2018; 9:1657. [PMID: 29695716 PMCID: PMC5916879 DOI: 10.1038/s41467-018-04090-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/03/2018] [Indexed: 12/23/2022] Open
Abstract
Hippo (Hpo) signaling pathway controls tissue growth by regulating the subcellular localization of Yorkie (Yki)/Yap via a cytoplasmic kinase cassette containing an upstream kinase Hpo/MST1/2 and a downstream kinase Warts (Wts)/Lats1/2. Here we show that PRP4K, a kinase involved in mRNA splicing, phosphorylates Yki/Yap in the nucleus to prevent its nuclear accumulation and restrict Hpo pathway target gene expression. PRP4K inactivation accelerates whereas excessive PRP4K inhibits Yki-driven tissue overgrowth. PRP4K phosphorylates a subset of Wts/Lats1/2 sites on Yki/Yap to inhibit the binding of Yki/Yap to the Scalloped (Sd)/TEAD transcription factor and exclude Yki/Yap nuclear localization depending on nuclear export. Furthermore, PRP4K inhibits proliferation and invasiveness of cultured breast cancer cells and its high expression correlates with good prognosis in breast cancer patients. Our study unravels an unanticipated layer of Hpo pathway regulation and suggests that PRP4K-mediated Yki/Yap phosphorylation in the nucleus provides a fail-safe mechanism to restrict aberrant pathway activation. The Hippo signaling pathway controls tissue growth by regulating the subcellular localization of Yorkie /Yap. Here the authors show that PRP4K, a kinase involved in mRNA splicing, phosphorylates Yki/Yap in the nucleus, which prevents its nuclear accumulation and inhibits Hippo signaling.
Collapse
Affiliation(s)
- Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jian Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.,Henan Key Laboratory of immunology and targeted therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, People's Republic of China
| | - Shuangxi Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Bing Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, TX, 75390, Dallas, USA.
| |
Collapse
|
11
|
Abstract
The synthesis, processing and function of coding and non-coding RNA molecules and their interacting proteins has been the focus of a great deal of research that has boosted our understanding of key molecular pathways that underlie higher order events such as cell cycle control, development, innate immune response and the occurrence of genetic diseases. In this study, we have found that formamide preferentially weakens RNA related processes in vivo. Using a non-essential Schizosaccharomyces pombe gene deletion collection, we identify deleted loci that make cells sensitive to formamide. Sensitive deletions are significantly enriched in genes involved in RNA metabolism. Accordingly, we find that previously known temperature-sensitive splicing mutants become lethal in the presence of the drug under permissive temperature. Furthermore, in a wild type background, splicing efficiency is decreased and R-loop formation is increased in the presence of formamide. In addition, we have also isolated 35 formamide-sensitive mutants, many of which display remarkable morphology and cell cycle defects potentially unveiling new players in the regulation of these processes. We conclude that formamide preferentially targets RNA related processes in vivo, probably by relaxing RNA secondary structures and/or RNA-protein interactions, and can be used as an effective tool to characterize these processes.
Collapse
|
12
|
Loss of PRP4K drives anoikis resistance in part by dysregulation of epidermal growth factor receptor endosomal trafficking. Oncogene 2017; 37:174-184. [PMID: 28892043 PMCID: PMC5770602 DOI: 10.1038/onc.2017.318] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Anoikis acts as a critical barrier to metastasis by inducing cell death upon cancer cell detachment from the extracellular matrix (ECM), thereby preventing tumor cell dissemination to secondary sites. The induction of anoikis requires the lysosomal-mediated downregulation of epidermal growth factor receptors (EGFRs) leading to termination of pro-survival signaling. In this study, we demonstrate that depletion of pre-mRNA splicing factor 4 kinase (PRP4K; also known as PRPF4B) causes dysregulation of EGFR trafficking and anoikis resistance. We also report a novel cytoplasmic localization of PRP4K at the late endosome, and demonstrate both nuclear and cytoplasmic localization in breast, lung and ovarian cancer tissue. Mechanistically, depletion of PRP4K leads to reduced EGFR degradation following cell detachment from the ECM and correlates with increased TrkB, vimentin and Zeb1 expression. As a result, PRP4K loss promotes sustained growth factor signaling and increased cellular resistance to anoikis in vitro and in a novel zebrafish xenotransplantation model of anoikis sensitivity, as well as increased metastasis in a mouse model of ovarian cancer. Thus, PRP4K may serve as a potential biomarker of anoikis sensitivity in ovarian and other epithelial cancers.
Collapse
|
13
|
Czubaty A, Piekiełko-Witkowska A. Protein kinases that phosphorylate splicing factors: Roles in cancer development, progression and possible therapeutic options. Int J Biochem Cell Biol 2017; 91:102-115. [PMID: 28552434 DOI: 10.1016/j.biocel.2017.05.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022]
Abstract
Disturbed alternative splicing is a common feature of human tumors. Splicing factors that control alternative splicing are phosphorylated by multiple kinases, including these that specifically add phosphoryl groups to serine-arginine rich proteins (e.g. SR-protein kinases, cdc2-like kinases, topoisomerase 1), and protein kinases that govern key cellular signaling pathways (i.e. AKT). Phosphorylation of splicing factors regulates their subcellular localization and interactions with target transcripts and protein partners, and thus significantly contributes the final result of splicing reactions. In this review we aim to summarize the current knowledge on the role of splicing kinases in cancer. Published studies and recently released data of The Cancer Genome Atlas demonstrate that expressions and activities of splicing kinases are commonly disturbed in cancers. Aberrant functioning of splicing kinases results in changed alternative splicing of tumor suppressors (e.g. p53) and regulators of cell signaling (e.g. MAPKs), apoptosis (e.g. MCL), and angiogenesis (VEGF). Splicing kinases act in complicated regulatory networks in which they mutually affect each other's activity to provide tight control of cellular signaling. Dysregulation of these regulatory networks contributes to oncogenic transformation, uncontrolled proliferation, enhanced migration and invasion. Furthermore, the activities of splicing kinases significantly contribute to cellular responses to genotoxic stress. In conclusion, published data provide strong evidence that splicing kinases emerge as important regulators of key processes governing malignant transformation, progression, and response to therapeutic treatments, suggesting their potential as clinically relevant targets.
Collapse
Affiliation(s)
- Alicja Czubaty
- Department of Molecular Biology, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
14
|
PRPF overexpression induces drug resistance through actin cytoskeleton rearrangement and epithelial-mesenchymal transition. Oncotarget 2017; 8:56659-56671. [PMID: 28915620 PMCID: PMC5593591 DOI: 10.18632/oncotarget.17855] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
Pre-mRNA processing factor (PRPF) 4B kinase belongs to the CDK-like kinase family, and is involved in pre-mRNA splicing, and in signal transduction. In this study, we observed that PRPF overexpression decreased the intracellular levels of reactive oxygen species, and inhibited resveratrol-induced apoptosis by activating the cell survival signaling proteins NFκB, ERK, and c-MYC in HCT116 human colon cancer cells. PRPF overexpression altered cellular morphology, and rearranged the actin cytoskeleton, by regulating the activity of Rho family proteins. Moreover, it decreased the activity of RhoA, but increased the expression of Rac1. In addition, PRPF triggered the epithelial-mesenchymal transition (EMT), and decreased the invasiveness of HCT116, PC3 human prostate, and B16-F10 melanoma cells. The loss of E-cadherin, a hallmark of EMT, was observed in HCT116 cells overexpressing PRPF. Taken together, these results indicate that PRPF blocks the apoptotic effects of resveratrol by activating cell survival signaling pathways, rearranging the actin cytoskeleton, and inducing EMT. The elucidation of the mechanisms that underlie anticancer drug resistance and the anti-apoptosis effect of PRPF may provide a therapeutic basis for inhibiting tumor growth and preventing metastasis in various cancers.
Collapse
|
15
|
Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:1513-23. [PMID: 27172183 PMCID: PMC4889648 DOI: 10.1534/g3.116.027508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3ʹ end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways.
Collapse
|
16
|
Lahsaee S, Corkery DP, Anthes LE, Holly A, Dellaire G. Estrogen receptor alpha (ESR1)-signaling regulates the expression of the taxane-response biomarker PRP4K. Exp Cell Res 2015; 340:125-31. [PMID: 26712520 DOI: 10.1016/j.yexcr.2015.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/12/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
The pre-mRNA splicing factor 4 kinase PRP4K (PRPF4B), is an essential kinase that is a component of the U5 snRNP and functions in spliceosome assembly. We demonstrated that PRP4K is a novel biological marker for taxane response in ovarian cancer patients and reduced levels of PRP4K correlate with intrinsic and acquired taxane resistance in both breast and ovarian cancer. Breast cancer treatments are chosen based on hormone and growth factor receptor status, with HER2 (ERBB2) positive breast cancer patients receiving anti-HER2 agents and taxanes and estrogen receptor alpha (ESR1) positive (ER+) breast cancer patients receiving anti-estrogen therapies such as tamoxifen. Here we demonstrate that PRP4K is expressed in the normal mammary duct epithelial cells of the mouse, and that estrogen induces PRP4K gene and protein expression in ER+ human MCF7 breast cancer cells. Estrogen acts through ESR1 to regulate PRP4K expression, as over-expression of ESR1 in the ER-negative MDA-MB-231 breast cancer cell line increased the expression of this kinase, and knock-down of ESR1 in ER+ T47D breast cancer cells reduced PRP4K levels. Furthermore, treatment with 4-hydroxytamoxifen (4-OHT) resulted in a dose-dependent decrease in PRP4K protein expression in MCF7 cells. Consistent with our previous studies identifying PRP4K as a taxane-response biomarker, reduced PRP4K expression in 4-OHT-treated cells correlated with reduced sensitivity to paclitaxel. Thus, PRP4K is novel estrogen regulated kinase, and its levels can be reduced by 4-OHT in ER+ breast cancer cells altering their response to taxanes.
Collapse
Affiliation(s)
- Sara Lahsaee
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dale P Corkery
- Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Livia E Anthes
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alice Holly
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
17
|
Corkery DP, Holly AC, Lahsaee S, Dellaire G. Connecting the speckles: Splicing kinases and their role in tumorigenesis and treatment response. Nucleus 2015; 6:279-88. [PMID: 26098145 PMCID: PMC4615201 DOI: 10.1080/19491034.2015.1062194] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative pre-mRNA splicing in higher eukaryotes enhances transcriptome complexity and proteome diversity. Its regulation is mediated by a complex RNA-protein network that is essential for the maintenance of cellular and tissue homeostasis. Disruptions to this regulatory network underlie a host of human diseases and contribute to cancer development and progression. The splicing kinases are an important family of pre-mRNA splicing regulators, , which includes the CDC-like kinases (CLKs), the SRSF protein kinases (SRPKs) and pre-mRNA splicing 4 kinase (PRP4K/PRPF4B). These splicing kinases regulate pre-mRNA splicing via phosphorylation of spliceosomal components and serine-arginine (SR) proteins, affecting both their nuclear localization within nuclear speckle domains as well as their nucleo-cytoplasmic shuttling. Here we summarize the emerging evidence that splicing kinases are dysregulated in cancer and play important roles in both tumorigenesis as well as therapeutic response to radiation and chemotherapy.
Collapse
Affiliation(s)
- Dale P Corkery
- a Department of Biochemistry & Molecular Biology ; Dalhousie University ; Halifax , Nova Scotia , Canada
| | | | | | | |
Collapse
|
18
|
Livesay SB, Collier SE, Bitton DA, Bähler J, Ohi MD. Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10. EUKARYOTIC CELL 2013; 12:1472-89. [PMID: 24014766 PMCID: PMC3837936 DOI: 10.1128/ec.00140-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023]
Abstract
The spliceosome is a dynamic macromolecular machine that catalyzes the removal of introns from pre-mRNA, yielding mature message. Schizosaccharomyces pombe Cwf10 (homolog of Saccharomyces cerevisiae Snu114 and human U5-116K), an integral member of the U5 snRNP, is a GTPase that has multiple roles within the splicing cycle. Cwf10/Snu114 family members are highly homologous to eukaryotic translation elongation factor EF2, and they contain a conserved N-terminal extension (NTE) to the EF2-like portion, predicted to be an intrinsically unfolded domain. Using S. pombe as a model system, we show that the NTE is not essential, but cells lacking this domain are defective in pre-mRNA splicing. Genetic interactions between cwf10-ΔNTE and other pre-mRNA splicing mutants are consistent with a role for the NTE in spliceosome activation and second-step catalysis. Characterization of Cwf10-NTE by various biophysical techniques shows that in solution the NTE contains regions of both structure and disorder. The first 23 highly conserved amino acids of the NTE are essential for its role in splicing but when overexpressed are not sufficient to restore pre-mRNA splicing to wild-type levels in cwf10-ΔNTE cells. When the entire NTE is overexpressed in the cwf10-ΔNTE background, it can complement the truncated Cwf10 protein in trans, and it immunoprecipitates a complex similar in composition to the late-stage U5.U2/U6 spliceosome. These data show that the structurally flexible NTE is capable of independently incorporating into the spliceosome and improving splicing function, possibly indicating a role for the NTE in stabilizing conformational rearrangements during a splice cycle.
Collapse
Affiliation(s)
- S. Brent Livesay
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott E. Collier
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danny A. Bitton
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Gao Q, Mechin I, Kothari N, Guo Z, Deng G, Haas K, McManus J, Hoffmann D, Wang A, Wiederschain D, Rocnik J, Czechtizky W, Chen X, McLean L, Arlt H, Harper D, Liu F, Majid T, Patel V, Lengauer C, Garcia-Echeverria C, Zhang B, Cheng H, Dorsch M, Huang SMA. Evaluation of cancer dependence and druggability of PRP4 kinase using cellular, biochemical, and structural approaches. J Biol Chem 2013; 288:30125-30138. [PMID: 24003220 DOI: 10.1074/jbc.m113.473348] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PRP4 kinase is known for its roles in regulating pre-mRNA splicing and beyond. Therefore, a wider spectrum of PRP4 kinase substrates could be expected. The role of PRP4 kinase in cancer is also yet to be fully elucidated. Attaining specific and potent PRP4 inhibitors would greatly facilitate the study of PRP4 biological function and its validation as a credible cancer target. In this report, we verified the requirement of enzymatic activity of PRP4 in regulating cancer cell growth and identified an array of potential novel substrates through orthogonal proteomics approaches. The ensuing effort in structural biology unveiled for the first time unique features of PRP4 kinase domain and its potential mode of interaction with a low molecular weight inhibitor. These results provide new and important information for further exploration of PRP4 kinase function in cancer.
Collapse
Affiliation(s)
- Qiang Gao
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Ingrid Mechin
- Tucson Research Center, Sanofi, Tucson, Arizona 85755
| | - Nayantara Kothari
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Zhuyan Guo
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Gejing Deng
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Kimberly Haas
- Lead Generation and Candidate Realization, Sanofi, Bridgewater, New Jersey 08807, and
| | - Jessica McManus
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Dietmar Hoffmann
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Anlai Wang
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Dmitri Wiederschain
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Jennifer Rocnik
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Werngard Czechtizky
- Lead Generation and Candidate Realization, Sanofi, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Xin Chen
- Lead Generation and Candidate Realization, Sanofi, Bridgewater, New Jersey 08807, and
| | - Larry McLean
- Lead Generation and Candidate Realization, Sanofi, Bridgewater, New Jersey 08807, and
| | - Heike Arlt
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - David Harper
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Feng Liu
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Tahir Majid
- Lead Generation and Candidate Realization, Sanofi, Waltham, Massachusetts 02451
| | - Vinod Patel
- Lead Generation and Candidate Realization, Sanofi, Waltham, Massachusetts 02451
| | - Christoph Lengauer
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Carlos Garcia-Echeverria
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Bailin Zhang
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Hong Cheng
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Marion Dorsch
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France
| | - Shih-Min A Huang
- From Discovery and Early Development, Sanofi Oncology, Cambridge, Massachusetts 02139 and 94400 Vitry-sur-Seine Cedex, France,.
| |
Collapse
|
20
|
Lehti-Shiu MD, Shiu SH. Diversity, classification and function of the plant protein kinase superfamily. Philos Trans R Soc Lond B Biol Sci 2012; 367:2619-39. [PMID: 22889912 DOI: 10.1098/rstb.2012.0003] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants.
Collapse
Affiliation(s)
- Melissa D Lehti-Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
21
|
Schneider M, Hsiao HH, Will CL, Giet R, Urlaub H, Lührmann R. Human PRP4 kinase is required for stable tri-snRNP association during spliceosomal B complex formation. Nat Struct Mol Biol 2010; 17:216-21. [PMID: 20118938 DOI: 10.1038/nsmb.1718] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 10/09/2009] [Indexed: 11/09/2022]
Abstract
Reversible protein phosphorylation has an essential role during pre-mRNA splicing. Here we identify two previously unidentified phosphoproteins in the human spliceosomal B complex, namely the pre-mRNA processing factors PRP6 and PRP31, both components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP). We provide evidence that PRP6 and PRP31 are directly phosphorylated by human PRP4 kinase (PRP4K) concomitant with their incorporation into B complexes. Immunodepletion and complementation studies with HeLa splicing extracts revealed that active human PRP4K is required for the phosphorylation of PRP6 and PRP31 and for the assembly of stable, functional B complexes. Thus, the phosphorylation of PRP6 and PRP31 is likely to have a key role during spliceosome assembly. Our data provide new insights into the molecular mechanism by which PRP4K contributes to splicing. They further indicate that numerous phosphorylation events contribute to spliceosome assembly and, thus, that splicing can potentially be modulated at multiple regulatory checkpoints.
Collapse
Affiliation(s)
- Marc Schneider
- Department of Cellular Biochemistry, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Chinen M, Morita M, Fukumura K, Tani T. Involvement of the spliceosomal U4 small nuclear RNA in heterochromatic gene silencing at fission yeast centromeres. J Biol Chem 2009; 285:5630-8. [PMID: 20018856 DOI: 10.1074/jbc.m109.074393] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
prp13-1 is one of the mutants isolated in a screen for defective pre-mRNA splicing at a nonpermissive temperature in fission yeast Schizosaccharomyces pombe. We cloned the prp13(+) gene and found that it encodes U4 small nuclear RNA (snRNA) involved in the assembly of the spliceosome. The prp13-1 mutant produced elongated cells, a phenotype similar to cell division cycle mutants, and displays a high incidence of lagging chromosomes on anaphase spindles. The mutant is hypersensitive to the microtubule-destabilizing drug thiabendazole, supporting that prp13-1 has a defect in chromosomal segregation. We found that the prp13-1 mutation resulted in expression of the ura4(+) gene inserted in the pericentromeric heterochromatin region and reduced recruitment of the heterochromatin protein Swi6p to that region, indicating defects in the formation of pericentromeric heterochromatin, which is essential for the segregation of chromosomes, in prp13-1. The formation of centromeric heterochromatin is induced by the RNA interference (RNAi) system in S. pombe. In prp13-1, the processing of centromeric noncoding RNAs to siRNAs, which direct the heterochromatin formation, was impaired and unprocessed noncoding RNAs were accumulated. These results suggest that U4 snRNA is required for the RNAi-directed heterochromatic gene silencing at the centromeres. In relation to the linkage between the spliceosomal U4 snRNA and the RNAi-directed formation of heterochromatin, we identified a mRNA-type intron in the centromeric noncoding RNAs. We propose a model in which the assembly of the spliceosome or a sub-spliceosome complex on the intron-containing centromeric noncoding RNAs facilitates the RNAi-directed formation of heterochromatin at centromeres, through interaction with the RNA-directed RNA polymerase complex.
Collapse
Affiliation(s)
- Madoka Chinen
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | |
Collapse
|
23
|
Lützelberger M, Bottner CA, Schwelnus W, Zock-Emmenthal S, Razanau A, Käufer NF. The N-terminus of Prp1 (Prp6/U5-102 K) is essential for spliceosome activation in vivo. Nucleic Acids Res 2009; 38:1610-22. [PMID: 20007600 PMCID: PMC2836577 DOI: 10.1093/nar/gkp1155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The spliceosomal protein Prp1 (Prp6/U5-102 K) is necessary for the integrity of pre-catalytic spliceosomal complexes. We have identified a novel regulatory function for Prp1. Expression of mutations in the N-terminus of Prp1 leads to the accumulation of pre-catalytic spliceosomal complexes containing the five snRNAs U1, U2, U5 and U4/U6 and pre-mRNAs. The mutations in the N-terminus, which prevent splicing to occur, include in vitro and in vivo identified phosphorylation sites of Prp4 kinase. These sites are highly conserved in the human ortholog U5-102 K. The results presented here demonstrate that structural integrity of the N-terminus is required to mediate a splicing event, but is not necessary for the assembly of spliceosomes.
Collapse
Affiliation(s)
- Martin Lützelberger
- Institute of Genetics, University of Braunschweig TU, Spielmannstr. 7, 38106 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Bayne EH, Portoso M, Kagansky A, Kos-Braun IC, Urano T, Ekwall K, Alves F, Rappsilber J, Allshire RC. Splicing factors facilitate RNAi-directed silencing in fission yeast. Science 2008; 322:602-6. [PMID: 18948543 PMCID: PMC2585287 DOI: 10.1126/science.1164029] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterochromatin formation at fission yeast centromeres is directed by RNA interference (RNAi). Noncoding transcripts derived from centromeric repeats are processed into small interfering RNAs (siRNAs) that direct the RNA-induced transcriptional silencing (RITS) effector complex to engage centromere transcripts, resulting in recruitment of the histone H3 lysine 9 methyltransferase Clr4, and hence silencing. We have found that defects in specific splicing factors, but not splicing itself, affect the generation of centromeric siRNAs and consequently centromeric heterochromatin integrity. Moreover, splicing factors physically associate with Cid12, a component of the RNAi machinery, and with centromeric chromatin, consistent with a direct role in RNAi. We propose that spliceosomal complexes provide a platform for siRNA generation and hence facilitate effective centromere repeat silencing.
Collapse
Affiliation(s)
- Elizabeth H Bayne
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, 6.34 Swann Building, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Duan Z, Weinstein EJ, Ji D, Ames RY, Choy E, Mankin H, Hornicek FJ. Lentiviral short hairpin RNA screen of genes associated with multidrug resistance identifies PRP-4 as a new regulator of chemoresistance in human ovarian cancer. Mol Cancer Ther 2008; 7:2377-85. [PMID: 18687998 PMCID: PMC2597512 DOI: 10.1158/1535-7163.mct-08-0316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Published reports implicate a variety of mechanisms that may contribute to drug resistance in ovarian cancer. The chief aim of this study is to understand the relationship between overexpression of drug resistance associated genes and multidrug resistance in ovarian cancer. Using lentiviral short hairpin RNA collections targeting 132 genes identified from transcriptional profiling of drug-resistant cancer cell lines, individual knockdown experiments were done in the presence of sublethal doses of paclitaxel. Specific genes whose knockdown was found to be associated with cellular toxicity included MDR1 (ABCB1), survivin, and pre-mRNA processing factor-4 (PRP-4). These genes, when repressed, can reverse paclitaxel resistance in the multidrug-resistant cell line SKOV-3(TR) and OVCAR8(TR). Both MDR1 and survivin have been reported previously to play a role in multidrug resistance and chemotherapy-induced apoptosis; however, the effect of PRP-4 expression on drug sensitivity is currently unrecognized. PRP-4 belongs to the serine/threonine protein kinase family, plays a role in pre-mRNA splicing and cell mitosis, and interacts with CLK1. Northern analysis shows that PRP-4 is overexpressed in several paclitaxel-resistant cell lines and confirms that PRP-4 expression could be significantly repressed by PRP-4 lentiviral short hairpin RNA. Both clonogenic and MTT assays confirm that transcriptional repression of PRP-4 could reverse paclitaxel resistance 5-10-fold in SKOV-3(TR). Finally, overexpression of PRP-4 in drug-sensitive cells could induce a modest level of drug resistance to paclitaxel, doxorubicin, and vincristine.
Collapse
Affiliation(s)
- Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, 100 Blossom Street, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Montembault E, Dutertre S, Prigent C, Giet R. PRP4 is a spindle assembly checkpoint protein required for MPS1, MAD1, and MAD2 localization to the kinetochores. ACTA ACUST UNITED AC 2007; 179:601-9. [PMID: 17998396 PMCID: PMC2080909 DOI: 10.1083/jcb.200703133] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spindle checkpoint delays anaphase onset until every chromosome kinetochore has been efficiently captured by the mitotic spindle microtubules. In this study, we report that the human pre–messenger RNA processing 4 (PRP4) protein kinase associates with kinetochores during mitosis. PRP4 depletion by RNA interference induces mitotic acceleration. Moreover, we frequently observe lagging chromatids during anaphase leading to aneuploidy. PRP4-depleted cells do not arrest in mitosis after nocodazole treatment, indicating a spindle assembly checkpoint (SAC) failure. Thus, we find that PRP4 is necessary for recruitment or maintenance of the checkpoint proteins MPS1, MAD1, and MAD2 at the kinetochores. Our data clearly identify PRP4 as a previously unrecognized kinetochore component that is necessary to establish a functional SAC.
Collapse
Affiliation(s)
- Emilie Montembault
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6061, Université de Rennes I, Institut de Génétique et Développement, 35043 Rennes, France
| | | | | | | |
Collapse
|
27
|
Bimbó A, Jia Y, Poh SL, Karuturi RKM, den Elzen N, Peng X, Zheng L, O'Connell M, Liu ET, Balasubramanian MK, Liu J. Systematic deletion analysis of fission yeast protein kinases. EUKARYOTIC CELL 2005; 4:799-813. [PMID: 15821139 PMCID: PMC1087820 DOI: 10.1128/ec.4.4.799-813.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eukaryotic protein kinases are key molecules mediating signal transduction that play a pivotal role in the regulation of various biological processes, including cell cycle progression, cellular morphogenesis, development, and cellular response to environmental changes. A total of 106 eukaryotic protein kinase catalytic-domain-containing proteins have been found in the entire fission yeast genome, 44% (or 64%) of which possess orthologues (or nearest homologues) in humans, based on sequence similarity within catalytic domains. Systematic deletion analysis of all putative protein kinase-encoding genes have revealed that 17 out of 106 were essential for viability, including three previously uncharacterized putative protein kinases. Although the remaining 89 protein kinase mutants were able to form colonies under optimal growth conditions, 46% of the mutants exhibited hypersensitivity to at least 1 of the 17 different stress factors tested. Phenotypic assessment of these mutants allowed us to arrange kinases into functional groups. Based on the results of this assay, we propose also the existence of four major signaling pathways that are involved in the response to 17 stresses tested. Microarray analysis demonstrated a significant correlation between the expression signature and growth phenotype of kinase mutants tested. Our complete microarray data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/kinome.
Collapse
Affiliation(s)
- Andrea Bimbó
- Temasek Life Sciences Laboratory, 1 Research Link, NUS, Singapore 117604
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bennett EM, Lever AML, Allen JF. Human immunodeficiency virus type 2 Gag interacts specifically with PRP4, a serine-threonine kinase, and inhibits phosphorylation of splicing factor SF2. J Virol 2004; 78:11303-12. [PMID: 15452250 PMCID: PMC521795 DOI: 10.1128/jvi.78.20.11303-11312.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 06/10/2004] [Indexed: 11/20/2022] Open
Abstract
Using a yeast two-hybrid screen of a T-cell cDNA library to identify cellular proteins that bind to the human immunodeficiency virus type 2 (HIV-2) Gag polyprotein, we identified PRP4, a serine-threonine protein kinase. Specific interaction of PRP4 and HIV-2 Gag was confirmed in in vitro and in vivo assays. The interacting region of HIV-2 Gag is located in the conserved matrix and capsid domains, while both the RS (arginine-serine-rich) domain and the KS (kinase) domain of PRP4 are able to bind to HIV-2 Gag. PRP4 is not incorporated into virus particles. HIV-2 Gag is able to inhibit PRP4-mediated phosphorylation of the splicing factor SF2. This is also observed with Gag from simian immunodeficiency virus, a closely related virus, but not with Gag from human T-cell lymphotropic virus type 1. Our results provide evidence for a novel interaction between Gag and a cellular protein kinase involved in the control of constitutive splicing in two closely related retroviruses. We hypothesize that as Gag accumulates in the cell, down regulation of splicing occurs through reduced phosphorylation of SF2. At late stages of infection, this interaction may replace the function of the early viral regulatory protein Rev.
Collapse
Affiliation(s)
- Erin M Bennett
- Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | |
Collapse
|
29
|
Kuhn AN, Käufer NF. Pre-mRNA splicing in Schizosaccharomyces pombe: regulatory role of a kinase conserved from fission yeast to mammals. Curr Genet 2003; 42:241-51. [PMID: 12589463 DOI: 10.1007/s00294-002-0355-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 11/05/2002] [Accepted: 11/05/2002] [Indexed: 11/28/2022]
Abstract
Most primary messenger RNA transcripts (pre-mRNAs) in eukaryotes contain intervening sequences that must be precisely removed to generate a functional mRNA. The excision of the intervening sequences, the introns, from a pre-mRNA and the concomitant joining of the flanking sequences, the exons, is called pre-mRNA splicing. Pre-mRNA splicing takes place in large ribonucleoprotein machinery, the spliceosome. Although the function and components of this machinery appear to be highly conserved between organisms, many distinct differences between budding yeast, Saccharomyces cerevisiae, and fission yeast, Schizosaccharomyces pombe, have been found, emphasizing their evolutionary distance. Most interestingly, fission yeast appears to reflect the more conservative evolutionary development regarding pre-mRNA splicing. Many spliceosomal components, including the five small nuclear RNAs, which most likely form the catalytic core of the spliceosome, show a higher degree of similarity with the components of the splicing machinery found in mammals. In addition, several regulatory components of the spliceosome detected in mammals are absent in Sac. cerevisiae, but present in Sch. pombe. Here, we review recent progress made in our understanding of the control of pre-mRNA splicing in Sch. pombe. The focus is on Prp4p kinase, first discovered in fission yeast and also present in mammals, but absent in Sac. cerevisiae. Results from both mammals and Sch. pombe suggest that Prp4p plays a key role in regulating pre-mRNA splicing and in connecting this process with the cell cycle.
Collapse
Affiliation(s)
- Andreas N Kuhn
- Institut für Genetik-Biozentrum, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.
| | | |
Collapse
|
30
|
Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Res 2002; 12:1231-45. [PMID: 12176931 PMCID: PMC186633 DOI: 10.1101/gr.473902] [Citation(s) in RCA: 703] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In a previous proteomic study of the human spliceosome, we identified 42 spliceosome-associated factors, including 19 novel ones. Using enhanced mass spectrometric tools and improved databases, we now report identification of 311 proteins that copurify with splicing complexes assembled on two separate pre-mRNAs. All known essential human splicing factors were found, and 96 novel proteins were identified, of which 55 contain domains directly linking them to functions in splicing/RNA processing. We also detected 20 proteins related to transcription, which indicates a direct connection between this process and splicing. This investigation provides the most detailed inventory of human spliceosome-associated factors to date, and the data indicate a number of interesting links coordinating splicing with other steps in the gene expression pathway.
Collapse
Affiliation(s)
- Juri Rappsilber
- Protein Interaction Laboratory in the Center of Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
31
|
Ohi MD, Link AJ, Ren L, Jennings JL, McDonald WH, Gould KL. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol Cell Biol 2002; 22:2011-24. [PMID: 11884590 PMCID: PMC133674 DOI: 10.1128/mcb.22.7.2011-2024.2002] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2001] [Revised: 09/19/2001] [Accepted: 12/20/2001] [Indexed: 11/20/2022] Open
Abstract
Schizosaccharomyces pombe Cdc5p and its Saccharomyces cerevisiae ortholog, Cef1p, are essential Myb-related proteins implicated in pre-mRNA splicing and contained within large multiprotein complexes. Here we describe the tandem affinity purification (TAP) of Cdc5p- and Cef1p-associated complexes. Using transmission electron microscopy, we show that the purified Cdc5p complex is a discrete structure. The components of the S. pombe Cdc5p/S. cerevisiae Cef1p complexes (termed Cwfs or Cwcs, respectively) were identified using direct analysis of large protein complex (DALPC) mass spectrometry (A. J. Link et al., Nat. Biotechnol. 17:676-682, 1999). At least 26 proteins were detected in the Cdc5p/Cef1p complexes. Comparison of the polypeptides identified by S. pombe Cdc5p purification with those identified by S. cerevisiae Cef1p purification indicates that these two yeast complexes are nearly identical in composition. The majority of S. pombe Cwf proteins and S. cerevisiae Cwc proteins are known pre-mRNA splicing factors including core Sm and U2 and U5 snRNP components. In addition, the complex contains the U2, U5, and U6 snRNAs. Previously uncharacterized proteins were also identified, and we provide evidence that several of these novel factors are involved in pre-mRNA splicing. Our data represent the first comprehensive analysis of CDC5-associated proteins in yeasts, describe a discrete highly conserved complex containing novel pre-mRNA splicing factors, and demonstrate the power of DALPC for identification of components in multiprotein complexes.
Collapse
Affiliation(s)
- Melanie D Ohi
- Howard Hughes Medical Institute. Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kojima T, Zama T, Wada K, Onogi H, Hagiwara M. Cloning of human PRP4 reveals interaction with Clk1. J Biol Chem 2001; 276:32247-56. [PMID: 11418604 DOI: 10.1074/jbc.m103790200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prp4 is a protein kinase of Schizosaccharomyces pombe identified through its role in pre-mRNA splicing, and belongs to a kinase family including mammalian serine/arginine-rich protein-specific kinases and Clks, whose substrates are serine/arginine-rich proteins. We cloned human PRP4 (hPRP4) full-length cDNA and the antiserum raised against a partial peptide of hPRP4 recognized 170-kDa polypeptide in HeLa S3 cell extracts. Northern blot analysis revealed that hPRP4 mRNA was ubiquitously expressed in multiple tissues. The extended NH(2)-terminal region of hPRP4 contains an arginine/serine-rich domain and putative nuclear localization signals. hPRP4 phosphorylated and interacted with SF2/ASF, one of the essential splicing factors. Indirect immunofluorescence analysis revealed that endogenous hPRP4 was distributed in a nuclear speckled pattern and colocalized with SF2/ASF in HeLa S3 cells. Furthermore, hPRP4 interacted directly with Clk1 on its COOH terminus, and the arginine/serine-rich domain of hPRP4 was phosphorylated by Clk1 in vitro. Overexpression of Clk1 caused redistribution of hPRP4, from the speckled to the diffuse pattern in nucleoplasm, whereas inactive mutant of Clk1 caused no change of hPRP4 localization. These findings suggest that the NH(2)-terminal region of hPRP4 may play regulatory roles under an unidentified signal transduction pathway through Clk1.
Collapse
Affiliation(s)
- T Kojima
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
33
|
Schwelnus W, Richert K, Opitz F, Gross T, Habara Y, Tani T, Käufer NF. Fission yeast Prp4p kinase regulates pre-mRNA splicing by phosphorylating a non-SR-splicing factor. EMBO Rep 2001; 2:35-41. [PMID: 11252721 PMCID: PMC1083806 DOI: 10.1093/embo-reports/kve009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We provide evidence that Prp4p kinase activity is required for pre-mRNA splicing in vivo and show that loss of activity impairs G1-S and G2-M progression in the cell cycle. Prp4p interacts genetically with the non-SR (serine/arginine) splicing factors Prp1p and Prp5p. Bacterially produced Prp1p is phosphorylated by Prp4p in vitro. Prp4p and Prp1p also interact in the yeast two-hybrid system. In vivo labelling studies using a strain with a mutant allele of the prp4 gene in the genetic background indicate a change in phosphorylation of the Prp1p protein. These results are consistent with the notion that Prp4p kinase is involved in the control of the formation of active spliceosomes, targeting non-SR splicing factors.
Collapse
Affiliation(s)
- W Schwelnus
- Institute of Genetics, Technical University of Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Tang Z, Kuo T, Shen J, Lin RJ. Biochemical and genetic conservation of fission yeast Dsk1 and human SR protein-specific kinase 1. Mol Cell Biol 2000; 20:816-24. [PMID: 10629038 PMCID: PMC85198 DOI: 10.1128/mcb.20.3.816-824.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arginine/serine-rich (RS) domain-containing proteins and their phosphorylation by specific protein kinases constitute control circuits to regulate pre-mRNA splicing and coordinate splicing with transcription in mammalian cells. We present here the finding that similar SR networks exist in Schizosaccharomyces pombe. We previously showed that Dsk1 protein, originally described as a mitotic regulator, displays high activity in phosphorylating S. pombe Prp2 protein (spU2AF59), a homologue of human U2AF65. We now demonstrate that Dsk1 also phosphorylates two recently identified fission yeast proteins with RS repeats, Srp1 and Srp2, in vitro. The phosphorylated proteins bear the same phosphoepitope found in mammalian SR proteins. Consistent with its substrate specificity, Dsk1 forms kinase-competent complexes with those proteins. Furthermore, dsk1(+) gene determines the phenotype of prp2(+) overexpression, providing in vivo evidence that Prp2 is a target for Dsk1. The dsk1-null mutant strain became severely sick with the additional deletion of a related kinase gene. Significantly, human SR protein-specific kinase 1 (SRPK1) complements the growth defect of the double-deletion mutant. In conjunction with the resemblance of dsk1(+) and SRPK1 in sequence homology, biochemical properties, and overexpression phenotypes, the complementation result indicates that SRPK1 is a functional homologue of Dsk1. Collectively, our studies illustrate the conserved SR networks in S. pombe consisting of RS domain-containing proteins and SR protein-specific kinases and thus establish the importance of the networks in eucaryotic organisms.
Collapse
Affiliation(s)
- Z Tang
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
35
|
Schmidt H, Richert K, Drakas RA, Käufer NF. spp42, identified as a classical suppressor of prp4-73, which encodes a kinase involved in pre-mRNA splicing in fission yeast, is a homologue of the splicing factor Prp8p. Genetics 1999; 153:1183-91. [PMID: 10545451 PMCID: PMC1460826 DOI: 10.1093/genetics/153.3.1183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have identified two classical extragenic suppressors, spp41 and spp42, of the temperature sensitive (ts) allele prp4-73. The prp4(+) gene of Schizosaccharomyces pombe encodes a protein kinase. Mutations in both suppressor genes suppress the growth and the pre-mRNA splicing defect of prp4-73(ts) at the restrictive temperature (36 degrees ). spp41 and spp42 are synthetically lethal with each other in the presence of prp4-73(ts), indicating a functional relationship between spp41 and spp42. The suppressor genes were mapped on the left arm of chromosome I proximal to the his6 gene. Based on our mapping data we isolated spp42 by screening PCR fragments for functional complementation of the prp4-73(ts) mutant at the restrictive temperature. spp42 encodes a large protein (p275), which is the homologue of Prp8p. This protein has been shown in budding yeast and mammalian cells to be a bona fide pre-mRNA splicing factor. Taken together with other recent genetic and biochemical data, our results suggest that Prp4 kinase plays an important role in the formation of catalytic spliceosomes.
Collapse
Affiliation(s)
- H Schmidt
- Institut für Genetik-Biozentrum, Technische Universitsät Braunschweig, 38106 Braunschweig, Germany
| | | | | | | |
Collapse
|
36
|
Siebel CW, Feng L, Guthrie C, Fu XD. Conservation in budding yeast of a kinase specific for SR splicing factors. Proc Natl Acad Sci U S A 1999; 96:5440-5. [PMID: 10318902 PMCID: PMC21878 DOI: 10.1073/pnas.96.10.5440] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SR protein kinases (SRPKs) and their substrates, the SR family of serine/arginine-rich pre-mRNA splicing factors, appear to be key regulators of alternative splicing. Although SR proteins have been well characterized through biochemical experiments in metazoans, their functions in vivo are unclear. Because of the strict splice site consensus and near absence of alternative splicing in Saccharomyces cerevisiae, it had been thought that budding yeast would lack an SRPK and its substrates. Here, we present structural, biochemical, and cell-biological evidence that directly demonstrates an SR protein kinase, Sky1p, as well as a number of SRPK substrates in S. cerevisiae. One of these substrates is Npl3p, an SR-like protein involved in mRNA export. This finding raises the provocative possibility that Sky1p, and by extension metazoan SRPKs, regulates mRNA export or the nucleocytoplasmic shuttling of RS domain proteins. The unexpected discovery of an SR protein kinase in budding yeast provides a foundation for genetic dissection of the biological functions of SR proteins and their kinases.
Collapse
Affiliation(s)
- C W Siebel
- Department of Biochemistry and Biophysics, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA
| | | | | | | |
Collapse
|
37
|
Gross T, Richert K, Mierke C, Lützelberger M, Käufer NF. Identification and characterization of srp1, a gene of fission yeast encoding a RNA binding domain and a RS domain typical of SR splicing factors. Nucleic Acids Res 1998; 26:505-11. [PMID: 9421507 PMCID: PMC147300 DOI: 10.1093/nar/26.2.505] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The SR protein family is involved in constitutive and regulated pre-mRNA splicing and has been found to be evolutionarily conserved in metazoan organisms. In contrast, the genome of the unicellular yeast Saccharomyces cerevisiae does not contain genes encoding typical SR proteins. The mammalian SR proteins consist of one or two characteristic RNA binding domains (RBD), containing the signature sequences RDAEDA and SWQDLKD respectively, and a RS (arginine/serine-rich) domain which gave the family its name. We have now cloned from the fission yeast Schizosaccharomyces pombe the gene srp1. This gene is the first yeast gene encoding a protein with typical features of mammalian SR protein family members. The gene is not essential for growth. We show that overexpression of the RNA binding domain inhibits pre-mRNA splicing and that the highly conserved sequence RDAEDA in the RBD is involved. Overexpression of Srp1 containing mutations in the RS domain also inhibits pre-mRNA splicing activity. Furthermore, we show that overexpression of Srp1 and overexpression of the mammalian SR splicing factor ASF/SF2 suppress the pre-mRNA splicing defect of the temperature-sensitive prp4-73 allele. prp4 encodes a protein kinase involved in pre-mRNA splicing. These findings are consistent with the notion that Srp1 plays a role in the splicing process.
Collapse
Affiliation(s)
- T Gross
- Institut für Genetik-Biozentrum, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
38
|
Gross T, Lützelberger M, Weigmann H, Klingenhoff A, Shenoy S, Käufer NF. Functional analysis of the fission yeast Prp4 protein kinase involved in pre-mRNA splicing and isolation of a putative mammalian homologue. Nucleic Acids Res 1997; 25:1028-35. [PMID: 9102632 PMCID: PMC146536 DOI: 10.1093/nar/25.5.1028] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The prp4 gene of Schizosaccharomyces pombe encodes a protein kinase. A physiological substrate is not yet known. A mutational analysis of prp4 revealed that the protein consists of a short N-terminal domain, containing several essential motifs, which is followed by the kinase catalytic domain comprising the C-terminus of the protein. Overexpression of N-terminal mutations disturbs mitosis and produces elongated cells, Using a PCR approach, we isolated a putative homologue of Prp4 from human and mouse cells. The mammalian kinase domain is 53% identical to the kinase domain of Prp4. The short N-terminal domains share <20% identical amino acids, but contain conserved motifs. A fusion protein consisting of the N-terminal region from S. pombe followed by the mammalian kinase domain complements a temperature-sensitive prp4 mutation of S. pombe. Prp4 and the recombinant yeast/mouse protein kinase phosphorylate the human SR splicing factor ASF/SF2 in vitro in its RS domain.
Collapse
Affiliation(s)
- T Gross
- Institüt für Genetik-Biozentrum, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Lundgren K, Allan S, Urushiyama S, Tani T, Ohshima Y, Frendewey D, Beach D. A connection between pre-mRNA splicing and the cell cycle in fission yeast: cdc28+ is allelic with prp8+ and encodes an RNA-dependent ATPase/helicase. Mol Biol Cell 1996; 7:1083-94. [PMID: 8862522 PMCID: PMC275960 DOI: 10.1091/mbc.7.7.1083] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The fission-yeast gene cdc28+ was originally identified in a screen for temperature-sensitive mutants that exhibit a cell-division cycle arrest and was found to be required for mitosis. We undertook a study of this gene to understand more fully the general requirements for entry into mitosis. Cells carrying the conditional lethal cdc28-P8 mutation divide once and arrest in G2 after being shifted to the restrictive temperature. We cloned the cdc28+ gene by complementation of the temperature-sensitive growth arrest in cdc28-P8. DNA sequence analysis indicated that cdc28+ encodes a member of the DEAH-box family of putative RNA-dependent ATPases or helicases. The Cdc28 protein is most similar to the Prp2, Prp16, and Prp22 proteins from budding yeast, which are required for the splicing of mRNA precursors. Consistent with this similarity, the cdc28-P8 mutant accumulates unspliced precursors at the restrictive temperature. Independently, we isolated a temperature-sensitive pre-mRNA splicing mutant prp8-1 that exhibits a cell-cycle phenotype identical to that of cdc28-P8. We have shown that cdc28 and prp8 are allelic. These results suggest a connection between pre-mRNA splicing and progression through the cell cycle.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Alleles
- Amino Acid Sequence
- Base Sequence
- CDC28 Protein Kinase, S cerevisiae/genetics
- CDC28 Protein Kinase, S cerevisiae/metabolism
- Cell Cycle/genetics
- Cell Cycle/physiology
- Cloning, Molecular
- DNA, Fungal/genetics
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Fungal
- Molecular Sequence Data
- Phenotype
- RNA Helicases
- RNA Nucleotidyltransferases/genetics
- RNA Nucleotidyltransferases/metabolism
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Splicing
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- Restriction Mapping
- Ribonucleoprotein, U4-U6 Small Nuclear
- Ribonucleoprotein, U5 Small Nuclear
- Saccharomyces cerevisiae Proteins
- Schizosaccharomyces/cytology
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- K Lundgren
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Alahari SK, Schmidt H, Käufer NF. The fission yeast prp4+ gene involved in pre-mRNA splicing codes for a predicted serine/threonine kinase and is essential for growth. Nucleic Acids Res 1993; 21:4079-83. [PMID: 8371982 PMCID: PMC310008 DOI: 10.1093/nar/21.17.4079] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Only four prp (pre-mRNA processing) genes of the fission yeast Schizosaccharomyces pombe have been reported. We exploited yeast genetics and identified and isolated the prp4 gene. Sequence analysis revealed that the splicing factor encoded by this gene contains the signature sequences that define the serine/threonine protein kinase family. This is the first kinase gene identified whose product is involved in pre-mRNA splicing. The prp4 gene contains one intron in the kinase domain. Gene replacement studies provided evidence that this gene is essential for growth and is located on chromosome III.
Collapse
Affiliation(s)
- S K Alahari
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, PA 19104
| | | | | |
Collapse
|
42
|
Prabhala G, Rosenberg GH, Käufer NF. Architectural features of pre-mRNA introns in the fission yeast Schizosaccharomyces pombe. Yeast 1992; 8:171-82. [PMID: 1574925 DOI: 10.1002/yea.320080303] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The architectural features of 73 introns found in 36 genes of the fission yeast Schizosaccharomyces pombe have been compiled and tabulated. The introns from S. pombe can be grouped into two size classes. Intron features are discussed in comparison to intron features of Saccharomyces cerevisiae and other eukaryotes. The results indicate that S. pombe displays quite different architectural features than the budding yeast S. cerevisiae. However, particularly in the 3' region, S. pombe introns also appear to differ from mammalian introns.
Collapse
Affiliation(s)
- G Prabhala
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, PA 19104
| | | | | |
Collapse
|