1
|
Zhao Y, Liu S, Lu Z, Zhao B, Wang S, Zhang C, Xiao D, Foo JL, Yu A. Hybrid promoter engineering strategies in Yarrowia lipolytica: isoamyl alcohol production as a test study. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:149. [PMID: 34215293 PMCID: PMC8252286 DOI: 10.1186/s13068-021-02002-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND In biological cells, promoters drive gene expression by specific binding of RNA polymerase. They determine the starting position, timing and level of gene expression. Therefore, rational fine-tuning of promoters to regulate the expression levels of target genes for optimizing biosynthetic pathways in metabolic engineering has recently become an active area of research. RESULTS In this study, we systematically detected and characterized the common promoter elements in the unconventional yeast Yarrowia lipolytica, and constructed an artificial hybrid promoter library that covers a wide range of promoter strength. The results indicate that the hybrid promoter strength can be fine-tuned by promoter elements, namely, upstream activation sequences (UAS), TATA box and core promoter. Notably, the UASs of Saccharomyces cerevisiae promoters were reported for the first time to be functionally transferred to Y. lipolytica. Subsequently, using the production of a versatile platform chemical isoamyl alcohol as a test study, the hybrid promoter library was applied to optimize the biosynthesis pathway expression in Y. lipolytica. By expressing the key pathway gene, ScARO10, with the promoter library, 1.1-30.3 folds increase in the isoamyl alcohol titer over that of the control strain Y. lipolytica Po1g KU70∆ was achieved. Interestingly, the highest titer increase was attained with a weak promoter PUAS1B4-EXPm to express ScARO10. These results suggest that our hybrid promoter library can be a powerful toolkit for identifying optimum promoters for expressing metabolic pathways in Y. lipolytica. CONCLUSION We envision that this promoter engineering strategy and the rationally engineered promoters constructed in this study could also be extended to other non-model fungi for strain improvement.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Shiqi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Baixiang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Shuhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Jee Loon Foo
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, 117456 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| |
Collapse
|
2
|
Rawal Y, Chereji RV, Valabhoju V, Qiu H, Ocampo J, Clark DJ, Hinnebusch AG. Gcn4 Binding in Coding Regions Can Activate Internal and Canonical 5' Promoters in Yeast. Mol Cell 2018; 70:297-311.e4. [PMID: 29628310 PMCID: PMC6133248 DOI: 10.1016/j.molcel.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/16/2018] [Accepted: 03/02/2018] [Indexed: 01/07/2023]
Abstract
Gcn4 is a yeast transcriptional activator induced by amino acid starvation. ChIP-seq analysis revealed 546 genomic sites occupied by Gcn4 in starved cells, representing ∼30% of Gcn4-binding motifs. Surprisingly, only ∼40% of the bound sites are in promoters, of which only ∼60% activate transcription, indicating extensive negative control over Gcn4 function. Most of the remaining ∼300 Gcn4-bound sites are within coding sequences (CDSs), with ∼75 representing the only bound sites near Gcn4-induced genes. Many such unconventional sites map between divergent antisense and sub-genic sense transcripts induced within CDSs adjacent to induced TBP peaks, consistent with Gcn4 activation of cryptic bidirectional internal promoters. Mutational analysis confirms that Gcn4 sites within CDSs can activate sub-genic and full-length transcripts from the same or adjacent genes, showing that functional Gcn4 binding is not confined to promoters. Our results show that internal promoters can be regulated by an activator that functions at conventional 5'-positioned promoters.
Collapse
Affiliation(s)
- Yashpal Rawal
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Vishalini Valabhoju
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Josefina Ocampo
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 2012; 189:705-36. [PMID: 22084422 DOI: 10.1534/genetics.111.127019] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms.
Collapse
|
4
|
Nishizawa M, Komai T, Katou Y, Shirahige K, Ito T, Toh-E A. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast. PLoS Biol 2009; 6:2817-30. [PMID: 19108609 PMCID: PMC2605928 DOI: 10.1371/journal.pbio.0060326] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 11/11/2008] [Indexed: 11/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae alters its gene expression profile in response to a change in nutrient availability. The PHO system is a well-studied case in the transcriptional regulation responding to nutritional changes in which a set of genes (PHO genes) is expressed to activate inorganic phosphate (Pi) metabolism for adaptation to Pi starvation. Pi starvation triggers an inhibition of Pho85 kinase, leading to migration of unphosphorylated Pho4 transcriptional activator into the nucleus and enabling expression of PHO genes. When Pi is sufficient, the Pho85 kinase phosphorylates Pho4, thereby excluding it from the nucleus and resulting in repression (i.e., lack of transcription) of PHO genes. The Pho85 kinase has a role in various cellular functions other than regulation of the PHO system in that Pho85 monitors whether environmental conditions are adequate for cell growth and represses inadequate (untimely) responses in these cellular processes. In contrast, Pho4 appears to activate some genes involved in stress response and is required for G1 arrest caused by DNA damage. These facts suggest the antagonistic function of these two players on a more general scale when yeast cells must cope with stress conditions. To explore general involvement of Pho4 in stress response, we tried to identify Pho4-dependent genes by a genome-wide mapping of Pho4 and Rpo21 binding (Rpo21 being the largest subunit of RNA polymerase II) using a yeast tiling array. In the course of this study, we found Pi- and Pho4-regulated intragenic and antisense RNAs that could modulate the Pi signal transduction pathway. Low-Pi signal is transmitted via certain inositol polyphosphate (IP) species (IP7) that are synthesized by Vip1 IP6 kinase. We have shown that Pho4 activates the transcription of antisense and intragenic RNAs in the KCS1 locus to down-regulate the Kcs1 activity, another IP6 kinase, by producing truncated Kcs1 protein via hybrid formation with the KCS1 mRNA and translation of the intragenic RNA, thereby enabling Vip1 to utilize more IP6 to synthesize IP7 functioning in low-Pi signaling. Because Kcs1 also can phosphorylate these IP7 species to synthesize IP8, reduction in Kcs1 activity can ensure accumulation of the IP7 species, leading to further stimulation of low-Pi signaling (i.e., forming a positive feedback loop). We also report that genes apparently not involved in the PHO system are regulated by Pho4 either dependent upon or independent of the Pi conditions, and many of the latter genes are involved in stress response. In S. cerevisiae, a large-scale cDNA analysis and mapping of RNA polymerase II binding using a high-resolution tiling array have identified a large number of antisense RNA species whose functions are yet to be clarified. Here we have shown that nutrient-regulated antisense and intragenic RNAs as well as direct regulation of structural gene transcription function in the response to nutrient availability. Our findings also imply that Pho4 is present in the nucleus even under high-Pi conditions to activate or repress transcription, which challenges our current understanding of Pho4 regulation.
Collapse
Affiliation(s)
- Masafumi Nishizawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF. Transcriptional Response of Candida albicans to Hypoxia: Linkage of Oxygen Sensing and Efg1p-regulatory Networks. J Mol Biol 2006; 361:399-411. [PMID: 16854431 DOI: 10.1016/j.jmb.2006.06.040] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/14/2006] [Accepted: 06/15/2006] [Indexed: 11/28/2022]
Abstract
The major human fungal pathogen, Candida albicans, colonizes different body sites, differing greatly in oxygen levels. Using whole-genome DNA microarrays, we analysed the transcriptomal response of C. albicans to hypoxia. In this condition, transcripts of genes involved in fermentative metabolism, including glycolytic genes, as well as hypha-specific genes, were up-regulated; in contrast, genes regulating oxidative metabolism were down-regulated. Although the morphogenetic and metabolic regulator Efg1p regulates these genes during normoxia, we found that Efg1p is not involved in their hypoxic regulation. Instead, Efg1p was specifically required for hypoxic expression or repression of subsets of genes. One class of hypoxia-regulated genes, encoding proteins involved in fatty acid biosynthesis, was dependent on Efg1p for maximal hypoxic expression, requiring Efg1p for transcriptional activation. During hypoxia, efg1 mutants contained lower levels of unsaturated fatty acids, while hyphal morphogenesis on solid media was significantly increased at temperatures <37 degrees C. These results suggest that during oxygen-limitation, Efg1p acts as a repressor of filamentation and as a positive regulator of fatty acid desaturation. We discuss that C. albicans responds to hypoxia largely by different mechanisms compared to budding yeast and that hypoxic adaptation requiring Efg1p is crucial for successful infection of human cells and tissues.
Collapse
Affiliation(s)
- Eleonora R Setiadi
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
6
|
Eiznhamer DA, Ashburner BP, Jackson JC, Gardenour KR, Lopes JM. Expression of the INO2 regulatory gene of Saccharomyces cerevisiae is controlled by positive and negative promoter elements and an upstream open reading frame. Mol Microbiol 2004. [DOI: 10.1111/j.1365-2958.2001.02330.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Escobar-Henriques M, Collart MA, Daignan-Fornier B. Transcription initiation of the yeast IMD2 gene is abolished in response to nutrient limitation through a sequence in its coding region. Mol Cell Biol 2003; 23:6279-90. [PMID: 12917348 PMCID: PMC180942 DOI: 10.1128/mcb.23.17.6279-6290.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast IMD2 to IMD4 and GUA1 genes, involved in GMP synthesis, are highly expressed in exponentially growing cells but are shut off when cells cease to grow upon nutrient limitation. We show for the IMD2 gene that this effect is not specific to certain carbon sources or to growth rate. Strikingly, the cis elements responsible for this nutritional response are contained within a 23-nucleotide sequence in the coding region of the IMD2 gene. Despite its very unusual location, this regulatory sequence mediates the repression of transcription initiation. From our data, we conclude that GMP synthesis is downregulated upon nutrient limitation through an active mechanism. We show that this transcriptional shutoff abolishes any possibility of the induction of IMD2, even under drastic conditions of guanylic nucleotide limitation. Taken together, these results indicate that low levels of guanylic nucleotides could be required for proper entry into stationary phase.
Collapse
|
8
|
Jiao K, Nau JJ, Cool M, Gray WM, Fassler JS, Malone RE. Phylogenetic footprinting reveals multiple regulatory elements involved in control of the meiotic recombination gene, REC102. Yeast 2002; 19:99-114. [PMID: 11788965 DOI: 10.1002/yea.800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
REC102 is a meiosis-specific early exchange gene absolutely required for meiotic recombination in Saccharomyces cerevisiae. Sequence analysis of REC102 indicates that there are multiple potential regulatory elements in its promoter region, and a possible regulatory element in the coding region. This suggests that the regulation of REC102 may be complex and may include elements not yet reported in other meiotic genes. To identify potential cis-regulatory elements, phylogenetic footprinting analysis was used. REC102 homologues were cloned from other two Saccharomyces spp. and sequence comparison among the three species defined evolutionarily conserved elements. Deletion analysis demonstrated that the early meiotic gene regulatory element URS1 was necessary but not sufficient for proper regulation of REC102. Upstream elements, including the binding sites for Gcr1p, Yap1p, Rap1p and several novel conserved sequences, are also required for the normal regulation of REC102 as well as a Rap1p binding site located in the coding region. The data in this paper support the use of phylogenetic comparisions as a method for determining important sequences in complex promoters.
Collapse
Affiliation(s)
- Kai Jiao
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52246, USA
| | | | | | | | | | | |
Collapse
|
9
|
Wenz P, Schwank S, Hoja U, Schüller HJ. A downstream regulatory element located within the coding sequence mediates autoregulated expression of the yeast fatty acid synthase gene FAS2 by the FAS1 gene product. Nucleic Acids Res 2001; 29:4625-32. [PMID: 11713312 PMCID: PMC92567 DOI: 10.1093/nar/29.22.4625] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The fatty acid synthase genes FAS1 and FAS2 of the yeast Saccharomyces cerevisiae are transcriptionally co-regulated by general transcription factors (such as Reb1, Rap1 and Abf1) and by the phospholipid-specific heterodimeric activator Ino2/Ino4, acting via their corresponding upstream binding sites. Here we provide evidence for a positive autoregulatory influence of FAS1 on FAS2 expression. Even with a constant FAS2 copy number, a 10-fold increase of FAS2 transcript amount was observed in the presence of FAS1 in multi-copy, compared to a fas1 null mutant. Surprisingly, the first 66 nt of the FAS2 coding region turned out as necessary and sufficient for FAS1-dependent gene expression. FAS2-lacZ fusion constructs deleted for this region showed high reporter gene expression even in the absence of FAS1, arguing for a negatively-acting downstream repression site (DRS) responsible for FAS1-dependent expression of FAS2. Our data suggest that the FAS1 gene product, in addition to its catalytic function, is also required for the coordinate biosynthetic control of the yeast FAS complex. An excess of uncomplexed Fas1 may be responsible for the deactivation of an FAS2-specific repressor, acting via the DRS.
Collapse
Affiliation(s)
- P Wenz
- Institut für Mikrobiologie, Biochemie und Genetik, Lehrstuhl Biochemie, Universität Erlangen/Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | | | |
Collapse
|
10
|
Li Q, Johnston SA. Are all DNA binding and transcription regulation by an activator physiologically relevant? Mol Cell Biol 2001; 21:2467-74. [PMID: 11259595 PMCID: PMC86879 DOI: 10.1128/mcb.21.7.2467-2474.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding how a regulatory protein occupies its sites in vivo is central to understanding gene regulation. Using the yeast Gal4 protein as a model for such studies, we have found 239 potential Gal4 binding sites in the yeast genome, 186 of which are in open reading frames (ORFs). This raises the questions of whether these sites are occupied by Gal4 and, if so, to what effect. We have analyzed the Saccharomyces cerevisiae ACC1 gene (encoding acetyl-coenzyme A carboxylase), which has three Gal4 binding sites in its ORF. The plasmid titration assay has demonstrated that Gal4 occupies these sites in the context of an active ACC1 gene. We also find that the expression of the ACC1 is reduced fourfold in galactose medium and that this reduction is dependent on the Gal4 binding sites, suggesting that Gal4 bound to the ORF sites affects transcription of ACC1. Interestingly, removal of the Gal4 binding sites has no obvious effect on the growth in galactose under laboratory conditions. In addition, though the sequence of the ACC1 gene is highly conserved among yeast species, these Gal4 binding sites are not present in the Kluyveromyces lactis ACC1 gene. We suggest that the occurrence of these sites may not be related to galactose regulation and a manifestation of the "noise" in the occurrence of Gal4 binding sites.
Collapse
Affiliation(s)
- Q Li
- Department of Internal Medicine and Biochemistry, University of Texas-Southwestern Medical Center, Dallas, Texas 75390-8573, USA
| | | |
Collapse
|
11
|
Bourdineaud JP, De Sampaïo G, Lauquin GJ. A Rox1-independent hypoxic pathway in yeast. Antagonistic action of the repressor Ord1 and activator Yap1 for hypoxic expression of the SRP1/TIR1 gene. Mol Microbiol 2000; 38:879-90. [PMID: 11115121 DOI: 10.1046/j.1365-2958.2000.02188.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxic SRP1/TIR1 gene expression depends on the absence of haem but is independent of Rox1-mediated repression. We have found a new hypoxic pathway involving an antagonistic interaction between the Ixr1/Ord1 repressor and the Yap1 factor, a transcriptional activator involved in oxidative stress response. Here, we show that Ord1 repressed SRP1 gene expression under normoxia and hypoxia, whereas Yap1 activated it. Ord1 and Yap1 have been shown to bind the SRP1 promoter in a region extending from -299 to -156 bp upstream of the start codon. A typical AP-1 responsive element lying from -247 to -240 bp allows Yap1 binding. Internal deletion of sequences within the SRP1 promoter were introduced. Two regions were characterized at positions -299/-251 and -218/-156 that, once removed, resulted in a constitutive expression of SRP1 in a wild-type strain under normoxic conditions. Deletion of both these two sequences allowed the bypass of YAP1 requirement in a Deltayap1 strain, whereas these two internal deletions did not yield increased expression in a Deltaord1 strain compared with the full-length promoter. Both a single Deltaord1 mutant and a doubly disrupted Deltayap1 Deltaord1 strain yielded normoxic constitutive SRP1 expression and increased hypoxic SRP1 induction, thereby demonstrating that ord1 is epistatic to yap1. Thus, Yap1 is not directly involved in SRP1 induction by hypoxia, but is necessary to counteract the Ord1 effect.
Collapse
Affiliation(s)
- J P Bourdineaud
- Faculté d'Oenologie, Université de Bordeaux II, 351 cours de la Libération, 33405 Talence Cedex, France.
| | | | | |
Collapse
|
12
|
Koering CE, Fourel G, Binet-Brasselet E, Laroche T, Klein F, Gilson E. Identification of high affinity Tbf1p-binding sites within the budding yeast genome. Nucleic Acids Res 2000; 28:2519-26. [PMID: 10871401 PMCID: PMC102697 DOI: 10.1093/nar/28.13.2519] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The yeast TBF1 gene is essential for mitotic growth and encodes a protein that binds the human telomere repeats in vitro, although its cellular function is unknown. The sequence of the DNA-binding domain of Tbf1p is more closely related to that of the human telomeric proteins TRF1 and TRF2 than to any yeast protein sequence, yet the functional homologue of TRF1 and TRF2 is thought to be Rap1p. In this study we show that the Tbf1p DNA-binding domain can target the Gal4 transactivation domain to a (TTAGGG)(n) sequence inserted in the yeast genome, supporting the model that Tbf1p binds this sub-telomeric repeat motif in vivo. Immunofluorescence of Tbf1p shows a spotty pattern throughout the interphase nucleus and along synapsed chromosomes in meiosis, suggesting that Tbf1p binds internal chromosomal sites in addition to sub-telomeric regions. PCR-assisted binding site selection was used to define a consensus for high affinity Tbf1p-binding sites. Compilation of 50 selected oligonucleotides identified the consensus TAGGGTTGG. Five potential Tbf1p-binding sites resulting from a search of the total yeast genome were tested directly in gel shift assays and shown to bind Tbf1p efficiently in vitro, thus confirming this as a valid consensus for Tbf1p recognition.
Collapse
Affiliation(s)
- C E Koering
- Laboratoire de Biologie Moléculaire et Cellulaire de l'Ecole Normale Supérieure de Lyon, UMR 5665 CNRS/ENS, Lyon, France
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The HSV-1 VP5 and VP16 transcripts are expressed with leaky-late (gamma1) kinetics and reach maximal levels after viral DNA replication. While the minimal VP5 promoter includes only an Sp1 site at -48, a TATA box at -30, and an initiator (Inr) element at the cap site, here we show that elements upstream of -48 can functionally compensate for the mutational loss of the critical Sp1 site at -48. To determine whether this is a general feature of leaky-late promoters, we have carried out a detailed analysis of the VP16 promoter in the context of the viral genome at the gC locus. Sequence analysis suggests a great deal of similarity between the two. Despite this, however, mutational analysis revealed that the 5' boundary of the VP16 promoter extends to ca. -90. This region includes an Sp1 binding site at -46, CAAT box homology at -77, and "E box" (CACGTG) at -85. Mutational and deletional analyses demonstrate that the proximal Sp1 site plays little or no role in promoter strength; despite this it can be shown to bind Sp1 protein using DNA mobility shift assays. Like the VP5 promoter, the VP16 promoter also requires an initiator element at the cap site. The VP16 Inr element differs in sequence from that of the VP5 promoter, and its deletion or mutation has a significantly smaller effect on promoter strength. The difference between these two Inr elements was confirmed by our finding that the VP16 initiator element binds to the 65-kDa YY1 transcription factor, and the VP5 Inr element competes poorly for the binding between the VP16 element and infected cell proteins in comparative bandshift assays. While the VP16 Inr sequence is identical to that of several murine TATA-less promoters, the VP16 Inr requires a TATA box for measurable activity.
Collapse
Affiliation(s)
- P T Lieu
- Program in Animal Virology, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
14
|
Tremousaygue D, Manevski A, Bardet C, Lescure N, Lescure B. Plant interstitial telomere motifs participate in the control of gene expression in root meristems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:553-61. [PMID: 10652127 DOI: 10.1046/j.1365-313x.1999.00627.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The promoters of Arabidopsis eEF1A genes contain a telomere motif, the telo-box, associated with an activating sequence, the tef-box. Database searches indicated the presence of telo-boxes in the 5' region of numerous genes encoding components of the translational apparatus. By using several promoter constructs we demonstrate that the telo-box is required for the expression of a beta-glucoronidase gene in root primordia of transgenic Arabidopsis. This effect was observed when a telo-box was inserted upstream or downstream from the transcription initiation site, and occurred in synergy with the tef-box. These results clearly indicate that interstitial telomere motifs in plants are involved in control of gene expression. South-western screening of a lambdaZAP library with a double-stranded Arabidopsis telomere motif resulted in characterization of a protein related to the conserved animal protein Puralpha. The possibility of a regulation process similar to that achieved by the Rap1p in Saccharomyces cerevisiae is discussed.
Collapse
Affiliation(s)
- D Tremousaygue
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, BP 27, 31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
15
|
Brown AJ, Furness LM, Bailey D. 8 Transcript Analysis. J Microbiol Methods 1998. [DOI: 10.1016/s0580-9517(08)70329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Kitagaki H, Shimoi H, Itoh K. Identification and analysis of a static culture-specific cell wall protein, Tir1p/Srp1p in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:343-9. [PMID: 9363789 DOI: 10.1111/j.1432-1033.1997.t01-1-00343.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A 100-kDa protein was found to be a major cell wall protein in Saccharomyces cerevisiae cells cultured without shaking, but was not present in cells cultured with shaking. The amino acid sequence of this protein was identical to the sequence of Tir1p/Srp1p. TIR1/SRP1 has previously been identified as a gene induced by glucose, cold shock or anaerobiosis and was believed to be a cell membrane protein but not a cell wall protein. However, we found that beta-1,3-glucanase solubilized Tir1p/Srp1p from the cell wall and the purified Tir1p/Srp1p reacted with antiserum to beta-1,6-glucan and contained glucose. These results suggest that Tir1p/Srp1p is a major structural cell wall protein in the static-cultured yeast cells and is bound to the cell wall through beta-1,6-glucan. TIR1/SRP1 mRNA was transcribed only in the static culture and its transcription was regulated by the ROX1 repressor.
Collapse
Affiliation(s)
- H Kitagaki
- National Research Institute of Brewing, Higashihiroshima, Japan
| | | | | |
Collapse
|
17
|
Donzeau M, Bourdineaud JP, Lauquin GJ. Regulation by low temperatures and anaerobiosis of a yeast gene specifying a putative GPI-anchored plasma membrane protein [corrected]. Mol Microbiol 1996; 20:449-59. [PMID: 8733242 DOI: 10.1111/j.1365-2958.1996.tb02631.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Expression of the yeast Saccharomyces cerevisiae SRP1 (Serine-rich Protein) gene is shown here to be induced both by low temperature and anaerobic growth conditions. We show that anaerobic SRP1 expression is haem-dependent; however, haem influence does not operate through the action of the hypoxic-gene ROX1 repressor. The SRP1 promoter region displaying the stress-responsive elements is restricted to its first 551 bp, upstream of the initiation codon, although an upstream activation site contained in upstream sequences is required for full promoter activity. In addition, we demonstrate that the TIP1 gene, sharing similar nucleotide and polypeptide structure with SRP1, and previously reported to be a cold-shock-inducible gene, is also a hypoxic gene. Srp1 protein production is similarly induced by low temperature and anaerobic growth conditions. This protein, detected in the plasma membrane fraction, is shown to be exposed on the cell surface via a glycosyl-phosphatidylinositol membrane anchoring.
Collapse
Affiliation(s)
- M Donzeau
- Institut de Biochimie et Génétique Cellularies, Centre National de la Recherche Scientifique, Bordeaux, France
| | | | | |
Collapse
|
18
|
Gray WM, Fassler JS. Isolation and analysis of the yeast TEA1 gene, which encodes a zinc cluster Ty enhancer-binding protein. Mol Cell Biol 1996; 16:347-58. [PMID: 8524314 PMCID: PMC231009 DOI: 10.1128/mcb.16.1.347] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A genetic screen for mutants that affect the activity of internal regulatory sequences of Ty retrotransposons led to the identification of a new gene encoding a DNA-binding protein that interacts with the downstream enhancer-like region of Ty1 elements. The TEA1 (Ty enhancer activator) gene sequence predicts a protein of 86.9 kDa whose N terminus contains a zinc cluster and dimerization motif typical of the Gal4-type family of DNA-binding proteins. The C terminus encodes an acidic domain with a net negative charge of -10 and the ability to mediate transcriptional activation. Like other zinc cluster proteins, purified Tea1 was found to bind to a partially palindromic CGGNxCCG repeat motif located in the Ty1 enhancer region. The Ty1 Tea1 binding site has a spacing of 10 and is located near binding sites for the DNA-binding proteins Rap1 and Mcm1. Analysis of the phenotype of tea1 deletion mutants confirmed that the TEA1 gene is required for activation from the internal Ty1 enhancer characterized in this study and makes a modest contribution to normal Ty1 levels in the cell. Hence, Tea1, like Rap1, is a member of a small family of downstream activators in Saccharomyces cerevisiae. Further analysis of the Tea1 protein and its interactions may provide insight into the mechanism of downstream activation in yeast cells.
Collapse
Affiliation(s)
- W M Gray
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
19
|
Chambers A, Packham EA, Graham IR. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae). Curr Genet 1995; 29:1-9. [PMID: 8595651 DOI: 10.1007/bf00313187] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A Chambers
- Department of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
20
|
Küssel P, Frasch M. Yeast Srp1, a nuclear protein related to Drosophila and mouse pendulin, is required for normal migration, division, and integrity of nuclei during mitosis. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:351-63. [PMID: 7565597 DOI: 10.1007/bf02191602] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This paper describes genes from yeast and mouse with significant sequence similarities to a Drosophila gene that encodes the blood cell tumor suppressor pendulin. The protein encoded by the yeast gene, Srp1p, and mouse pendulin share 42% and 51% amino acid identity with Drosophila pendulin, respectively. All three proteins consist of 10.5 degenerate tandem repeats of approximately 42 amino acids each. Similar repeats occur in a superfamily of proteins that includes the Drosophila Armadillo protein. All three proteins contain a consensus sequence for a bipartite nuclear localization signal (NLS) in the N-terminal domain, which is not part of the repeat structure. Confocal microscopic analysis of yeast cells stained with antibodies against Srp1p reveals that this protein is intranuclear throughout the cell cycle. Targeted gene disruption shows that SRP1 is an essential gene. Despite their sequence similarities, Drosophila and mouse pendulin are unable to rescue the lethality of an SRP1 disruption. We demonstrate that yeast cells depleted of Srp1p arrest in mitosis with a G2 content of DNA. Arrested cells display abnormal structures and orientations of the mitotic spindles, aberrant segregation of the chromatin and the nuclei, and threads of chromatin emanating from the bulk of nuclear DNA. This phenotype suggests that Srp1p is required for the normal function of microtubules and the spindle pole bodies, as well as for nuclear integrity. We suggest that Srp1p interacts with multiple components of the cell nucleus that are required for mitosis and discuss its functional similarities to, and differences from Drosophila pendulin.
Collapse
Affiliation(s)
- P Küssel
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
21
|
Bovy A, Van den Berg C, De Vrieze G, Thompson WF, Weisbeek P, Smeekens S. Light-regulated expression of the Arabidopsis thaliana ferredoxin gene requires sequences upstream and downstream of the transcription initiation site. PLANT MOLECULAR BIOLOGY 1995; 27:27-39. [PMID: 7865794 DOI: 10.1007/bf00019176] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effect of light on the expression of the Arabidopsis thaliana ferredoxin gene (fedA) was studied in mature tobacco plants. In light-treated leaves of tobacco plants transformed with a full-length ferredoxin gene, fedA-specific mRNA levels were more than twenty fold higher than in dark-treated controls. This indicates that all components for regulation of the Arabidopsis ferredoxin gene are present in tobacco. To identify light-regulatory elements in the fedA gene, we have tested a set of chimeric genes containing various parts of the fedA gene for light-dependent expression in mature tobacco plants. A fedA promoter-GUS fusion gene was not light-responsive, indicating that the 5'-upstream promoter region is not sufficient for light regulation. Fusion genes in which different transcribed regions of the fedA gene were expressed from the CaMV 35S promoter showed only limited light regulation, if any at all. This indicates that, like the fedA upstream region, the region downstream of the transcription start site is also not sufficient for full light regulation. The combined results suggest that for full light-regulated expression of the fedA gene, both the promoter region and sequences downstream of the transcription start site are required.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/radiation effects
- Base Sequence
- DNA, Plant/genetics
- DNA, Recombinant/genetics
- Ferredoxins/genetics
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Light
- Molecular Sequence Data
- Pisum sativum/genetics
- Plants, Genetically Modified
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- Regulatory Sequences, Nucleic Acid/genetics
- Nicotiana/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- A Bovy
- Department of Molecular Cell Biology, University of Utrecht, Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Jeenes DJ, Mackenzie DA, Archer DB. Transcriptional and post-transcriptional events affect the production of secreted hen egg white lysozyme by Aspergillus niger. Transgenic Res 1994; 3:297-303. [PMID: 7951332 DOI: 10.1007/bf01973589] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The relationship between heterologous gene copy number, mRNA and secreted protein yields has been studied in Aspergillus niger transformants containing either the hen egg-white lysozyme (HEWL) cDNA gene or a glucoamylase-HEWL gene fusion (incorporating the A. niger glaA gene). The results support a direct relationship between HEWL gene copy number, mRNA and secreted HEWL protein levels at low (< 25) copy numbers. High protein yields are associated with multiple copies of the recombinant gene at a single site. Fusion of the HEWL gene to the glucoamylase gene resulted in higher steady-state levels of heterologous mRNA. Transformants with the HEWL cDNA alone exhibited a ten-fold higher mRNA:protein ratio than transformants with the gene fusion indicating that post-transcriptional events significantly affect final secreted protein yields.
Collapse
Affiliation(s)
- D J Jeenes
- Department of Genetics and Microbiology, Institute of Food Research, Norwich Research Park, Colney, UK
| | | | | |
Collapse
|
23
|
Muñoz-Dorado J, Kondo K, Inouye M, Sone H. Identification of cis- and trans-acting elements involved in the expression of cold shock-inducible TIP1 gene of yeast Saccharomyces cerevisiae. Nucleic Acids Res 1994; 22:560-8. [PMID: 8127704 PMCID: PMC307844 DOI: 10.1093/nar/22.4.560] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Northern blot hybridization analysis of a series of 5' end, 3' end and internal deletions has revealed that at least four different regions are involved in the regulation of the expression of TIP1, a cold shock-inducible gene of Saccharomyces cerevisiae. One of these four regions has negative effect on the expression of the TIP1 gene, while the others are responsible for the activation and cold shock-induction of the gene. A fragment involved in the cold-shock induction of TIP1 was used as a probe in gel retardation assays to identify the cold shock-factor. The cold shock-factor could be detected in cells grown at 30 degrees C as well as 10 degrees C, but both the amount of the factor and its affinity to DNA were found to increase 2-3-fold after cold shock. In addition, another factor was found to bind just upstream of the cold shock element, in a region where a transcriptional activator was predicted to function by Northern blot hybridization analysis. The amount of this activating factor and its affinity for DNA was not affected by temperature. Implications of our data on possible mechanisms of transcriptional regulation of the TIP1 gene by cold shock are discussed.
Collapse
Affiliation(s)
- J Muñoz-Dorado
- Kirin Brewery Co. Ltd, Central Laboratories for Key Technology, Kanagawa, Japan
| | | | | | | |
Collapse
|
24
|
Graham IR, Chambers A. Use of a selection technique to identify the diversity of binding sites for the yeast RAP1 transcription factor. Nucleic Acids Res 1994; 22:124-30. [PMID: 8121795 PMCID: PMC307761 DOI: 10.1093/nar/22.2.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have used the technique known as selected and amplified binding (SAAB) to isolate binding sites for the yeast transcription factor RAP1 from a degenerate pool of oligonucleotides. A total of 47 sequences were isolated, of which two were shown to be contaminating non-RAP1 binding sites. After excluding these two sequences the remainder of the sequences were used to derive a new consensus binding site for RAP1. The new consensus 5' A/G T A/G C A C C C A N N C C/A C C 3' is a significant extension of the existing consensus (4). It is longer by two base pairs at the 5' end and is significantly more constrained at the 3' end. An analysis of the combinations of mis-matches in individual SAAB sequences, compared to the consensus RAP1 binding site, has allowed us to analyse the structure of the RAP1 binding site in some detail. The binding site can be sub-divided into three regions; a core binding site, a 5' flanking region and a 3' flanking region. The core binding site, consisting of the sequence 5'CACCCA3', is critical for recognition by RAP1. The less conserved flanking regions are not as important. Interactions between RAP1 and these regions probably stabilise the interaction between RAP1 and the core binding site. Each of the sequences isolated in the SAAB analysis was used to search release 78 of the EMBL+GenBank DNA data base. The searches identified 102 potential binding sites for RAP1 within promoters of yeast genes.
Collapse
Affiliation(s)
- I R Graham
- Department of Genetics, University of Nottingham, Queen's Medical Centre, UK
| | | |
Collapse
|