1
|
Fock E, Parnova R. Omega-3 polyunsaturated fatty acids in the brain and visual system: Focus on invertebrates. Comp Biochem Physiol B Biochem Mol Biol 2025; 275:111023. [PMID: 39154851 DOI: 10.1016/j.cbpb.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A critical role of omega-3 polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid 22:6ω3 (DHA), in the development and function of the brain and visual system is well established. DHA, the most abundant omega-3 PUFA in the vertebrate brain, contributes to neuro- and synaptogenesis, neuronal differentiation, synaptic transmission and plasticity, neuronal network formation, memory and behaviour formation. Based on these data, the unique importance of DHA and its irreplaceability in neural and retinal tissues has been postulated. In this review, we consider omega-3 PUFA composition in the brain and retina of various invertebrates, and show that DHA has only been found in marine mollusks and crustaceans. A gradual decrease in the DHA content until its disappearance can be observed in the brain lipids of the series marine-freshwater-terrestrial crustaceans and marine-terrestrial mollusks, suggesting that the transition to the land lifestyle in the evolution of invertebrates, but not vertebrates, was accompanied by a loss of DHA. As with terrestrial crustaceans and mollusks, DHA was not found in insects, either terrestrial or aquatic, or in nematodes. We show that the nervous and visual systems of various DHA-free invertebrates can be highly enriched in alpha-linolenic acid 18:3ω3 or eicosapentaenoic acid 20:5ω3, which affect neurological and visual function, stimulating synaptogenesis, synaptic transmission, visual processing, learning and even cognition. The review data show that, in animals at different levels of organization, omega-3 PUFA are required for the functioning of the nervous and visual systems and that their specific needs can be met by various omega-3 PUFA.
Collapse
Affiliation(s)
- Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia
| | - Rimma Parnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223, Torez Av., 44, Saint-Petersburg, Russia.
| |
Collapse
|
2
|
Ting SY, Lau NS, Sam KK, Janaranjani M, Wong SC, Monroig Ó, Quah ESH, Ahmad AB, Him NAIIN, Jaya-Ram A, Shu-Chien AC. Long-chain polyunsaturated fatty acid biosynthesis in a land-crab with advanced terrestrial adaptations: Molecular cloning and functional characterization of two fatty acyl elongases. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110773. [PMID: 35718326 DOI: 10.1016/j.cbpb.2022.110773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
Depending on the presence and activities of the front-end fatty acyl desaturases and elongation of very long-chain fatty acid (Elovl) enzymes, animals have different capacities for long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) biosynthesis. Successful land colonisation in brachyuran crabs requires a shift towards terrestrial food chain with limited LC-PUFA availability. We cloned and functionally characterised two elovl genes from the purple land crab Gecarcoidea lalandii. The two Elovl contained all the necessary motifs of a typical polyunsaturated fatty acids (PUFA) Elovl and phylogenetically clustered in the Elovl1 and Elovl6 clades, respectively. The G. lalandii Elovl1 elongated saturated fatty acids, with low activities towards C20 and C22 PUFA substrates. Moreover, the G. lalandii Elovl6 was particularly active in the elongation of C18 PUFA, although it also recognised monounsaturated fatty acids as substrates for elongation. Collectively, the herein characterised G. lalandii elovl paralogues fulfil all the elongation steps involved in the LC-PUFA biosynthetic pathways. Tissue distribution of the G. lalandii elovl genes, along with the FA composition analyses, suggest the hepatopancreas and gill as key metabolic sites for fatty acid elongation. However, current data suggest that G. lalandii is unable to rely solely on biosynthesis to fulfil LC-PUFA requirements, since front-end desaturase appears to be absent in this species and other decapods.
Collapse
Affiliation(s)
- Seng Yeat Ting
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang 11900, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang 11900, Malaysia
| | - Ka-Kei Sam
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang 11900, Malaysia
| | - M Janaranjani
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang 11900, Malaysia
| | - Swe Cheng Wong
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - Evan S H Quah
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Amirrudin B Ahmad
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | | | - Annette Jaya-Ram
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang 11900, Malaysia; School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
3
|
Sushchik NN, Popova ON, Makhutova ON, Gladyshev MI. Fatty acid composition of odonate’s eyes. DOKL BIOCHEM BIOPHYS 2017; 475:280-282. [DOI: 10.1134/s1607672917040093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 11/23/2022]
|
4
|
Porter ML, Roberts NW, Partridge JC. Evolution under pressure and the adaptation of visual pigment compressibility in deep-sea environments. Mol Phylogenet Evol 2016; 105:160-165. [DOI: 10.1016/j.ympev.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/22/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022]
|
5
|
Roberts NW, Porter ML, Cronin TW. The molecular basis of mechanisms underlying polarization vision. Philos Trans R Soc Lond B Biol Sci 2011; 366:627-37. [PMID: 21282166 PMCID: PMC3049014 DOI: 10.1098/rstb.2010.0206] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The underlying mechanisms of polarization sensitivity (PS) have long remained elusive. For rhabdomeric photoreceptors, questions remain over the high levels of PS measured experimentally. In ciliary photoreceptors, and specifically cones, little direct evidence supports any type of mechanism. In order to promote a greater interest in these fundamental aspects of polarization vision, we examined a varied collection of studies linking membrane biochemistry, protein-protein interactions, molecular ordering and membrane phase behaviour. While initially these studies may seem unrelated to polarization vision, a common narrative emerges. A surprising amount of evidence exists demonstrating the importance of protein-protein interactions in both rhabdomeric and ciliary photoreceptors, indicating the possible long-range ordering of the opsin protein for increased PS. Moreover, we extend this direction by considering how such protein paracrystalline organization arises in all cell types from controlled membrane phase behaviour and propose a universal pathway for PS to occur in both rhabdomeric and cone photoreceptors.
Collapse
Affiliation(s)
- Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK.
| | | | | |
Collapse
|
6
|
Hayward SAL, Murray PA, Gracey AY, Cossins AR. Beyond the lipid hypothesis: mechanisms underlying phenotypic plasticity in inducible cold tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:132-42. [PMID: 17205681 DOI: 10.1007/978-0-387-39975-1_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The physiological adjustment of organisms in response to temperature variation is a crucial part of coping with environmental stress. An important component of the cold response is the increase in membrane lipid unsaturation, and this has been linked to an enhanced resistance to the debilitating or lethal effects of cold. Underpinning the lipid response is the upregulation of fatty acid desaturases (des), particularly those introducing double bonds at the 9-10 position of saturated fatty acids. For plants and microbes there is good genetic evidence that regulation of des genes, and the consequent changes in lipid saturation, are causally linked to generation of a cold-tolerant phenotype. In animals, however, supporting evidence is almost entirely limited to correlations of saturation with cold conditions. We describe our recent attempts to provide a direct test of this relationship by genetic manipulation of the nematode Caenorhabditis elegans. We show that this species displays a strong cold tolerant phenotype induced by prior conditioning to cold, and that this is directly linked to upregulated des activity. However, whilst genetic disruption of des activity and lipid unsaturation significantly reduced cold tolerance, animals retained a substantial component of their stress tolerant phenotype produced by cold conditioning. This indicates that mechanisms other than lipid unsaturation play an important role in cold adaptation.
Collapse
Affiliation(s)
- Scott A L Hayward
- School of Biological Sciences, Liverpool University, The Biosciences Building, Crown St., Liverpool, L69 7ZB, UK
| | | | | | | |
Collapse
|