1
|
Boakye-Yiadom E, Odoom A, Osman AH, Ntim OK, Kotey FCN, Ocansey BK, Donkor ES. Fungal Infections, Treatment and Antifungal Resistance: The Sub-Saharan African Context. Ther Adv Infect Dis 2024; 11:20499361241297525. [PMID: 39544852 PMCID: PMC11562003 DOI: 10.1177/20499361241297525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal pathogens cause a wide range of infections in humans, from superficial to disfiguring, allergic syndromes, and life-threatening invasive infections, affecting over a billion individuals globally. With an estimated 1.5 million deaths annually attributable to them, fungal pathogens are a major cause of mortality in humans, especially people with underlying immunosuppression. The continuous increase in the population of individuals at risk of fungal infections in sub-Saharan Africa, such as HIV patients, tuberculosis patients, intensive care patients, patients with haematological malignancies, transplant (haematopoietic stem cell and organ) recipients and the growing global threat of multidrug-resistant fungal strains, raise the need for an appreciation of the region's perspective on antifungal usage and resistance. In addition, the unavailability of recently introduced novel antifungal drugs in sub-Saharan Africa further calls for regular evaluation of resistance to antifungal agents in these settings. This is critical for ensuring appropriate and optimal use of the limited available arsenal to minimise antifungal resistance. This review, therefore, elaborates on the multifaceted nature of fungal resistance to the available antifungal drugs on the market and further provides insights into the prevalence of fungal infections and the use of antifungal agents in sub-Saharan Africa.
Collapse
Affiliation(s)
- Emily Boakye-Yiadom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
- Department of Microbiology and Immunology, University of Health and Allied Sciences, Ho, Ghana
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Abdul-Halim Osman
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Onyansaniba K. Ntim
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Bright K. Ocansey
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, P.O. Box KB 4236, Ghana
| |
Collapse
|
2
|
Czajka KM, Venkataraman K, Brabant-Kirwan D, Santi SA, Verschoor C, Appanna VD, Singh R, Saunders DP, Tharmalingam S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023; 12:2655. [PMID: 37998390 PMCID: PMC10670235 DOI: 10.3390/cells12222655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Candidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic Candida species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in Candida species. Resistance can be conferred via gain-of-function mutations in target pathway genes or their transcriptional regulators. Therefore, an overview of the known gene mutations is presented for the following antifungals: azoles (fluconazole, voriconazole, posaconazole and itraconazole), echinocandins (caspofungin, anidulafungin and micafungin), polyenes (amphotericin B and nystatin) and 5-fluorocytosine (5-FC). The following mutation hot spots were identified: (1) ergosterol biosynthesis pathway mutations (ERG11 and UPC2), resulting in azole resistance; (2) overexpression of the efflux pumps, promoting azole resistance (transcription factor genes: tac1 and mrr1; transporter genes: CDR1, CDR2, MDR1, PDR16 and SNQ2); (3) cell wall biosynthesis mutations (FKS1, FKS2 and PDR1), conferring resistance to echinocandins; (4) mutations of nucleic acid synthesis/repair genes (FCY1, FCY2 and FUR1), resulting in 5-FC resistance; and (5) biofilm production, promoting general antifungal resistance. This review also provides a summary of standardized inhibitory breakpoints obtained from international guidelines for prominent Candida species. Notably, N. glabrata, P. kudriavzevii and C. auris demonstrate fluconazole resistance.
Collapse
Affiliation(s)
- Karolina M. Czajka
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
| | - Krishnan Venkataraman
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | | | - Stacey A. Santi
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Chris Verschoor
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Ravi Singh
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Deborah P. Saunders
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| |
Collapse
|
3
|
Osset-Trénor P, Pascual-Ahuir A, Proft M. Fungal Drug Response and Antimicrobial Resistance. J Fungi (Basel) 2023; 9:jof9050565. [PMID: 37233275 DOI: 10.3390/jof9050565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Antifungal resistance is a growing concern as it poses a significant threat to public health. Fungal infections are a significant cause of morbidity and mortality, especially in immunocompromised individuals. The limited number of antifungal agents and the emergence of resistance have led to a critical need to understand the mechanisms of antifungal drug resistance. This review provides an overview of the importance of antifungal resistance, the classes of antifungal agents, and their mode of action. It highlights the molecular mechanisms of antifungal drug resistance, including alterations in drug modification, activation, and availability. In addition, the review discusses the response to drugs via the regulation of multidrug efflux systems and antifungal drug-target interactions. We emphasize the importance of understanding the molecular mechanisms of antifungal drug resistance to develop effective strategies to combat the emergence of resistance and highlight the need for continued research to identify new targets for antifungal drug development and explore alternative therapeutic options to overcome resistance. Overall, an understanding of antifungal drug resistance and its mechanisms will be indispensable for the field of antifungal drug development and clinical management of fungal infections.
Collapse
Affiliation(s)
- Paloma Osset-Trénor
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, 46010 Valencia, Spain
| |
Collapse
|
4
|
Lee SW, Rugbjerg P, Sommer MOA. Exploring Selective Pressure Trade-Offs for Synthetic Addiction to Extend Metabolite Productive Lifetimes in Yeast. ACS Synth Biol 2021; 10:2842-2849. [PMID: 34699715 DOI: 10.1021/acssynbio.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineered microbes often suffer from reduced fitness resulting from metabolic burden and various stresses. The productive lifetime of a bioreactor with engineered microbes is therefore susceptible to the rise of nonproductive mutants with better fitness. Synthetic addiction is emerging as a concept to artificially couple the growth rate of the microbe to production to tackle this problem. However, only a few successful cases of synthetic addiction systems have been reported to date. To understand the limitations and design constraints in long-term cultivations, we designed and studied conditional synthetic addiction circuits in Saccharomyces cerevisiae. This allowed us to probe a range of selective pressure strengths and identify the optimal balance between circuit stability and production-to-growth coupling. In the optimal balance, the productive lifetime was greatly extended compared with suboptimal circuit tuning. With a too-high or -low pressure, we found that production declines mainly through homologous recombination. These principles of trade-off in the design of synthetic addition systems should lead to the better control of bioprocess performance.
Collapse
Affiliation(s)
- Sang-Woo Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Peter Rugbjerg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Enduro Genetics ApS, 2200 Copenhagen, Denmark
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Delma FZ, Al-Hatmi AMS, Brüggemann RJM, Melchers WJG, de Hoog S, Verweij PE, Buil JB. Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J Fungi (Basel) 2021; 7:jof7110909. [PMID: 34829198 PMCID: PMC8623157 DOI: 10.3390/jof7110909] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/30/2022] Open
Abstract
Effective management and treatment of fungal diseases is hampered by poor diagnosis, limited options for antifungal therapy, and the emergence of antifungal drug resistance. An understanding of molecular mechanisms contributing to resistance is essential to optimize the efficacy of currently available antifungals. In this perspective, one of the oldest antifungals, 5-fluorocytosine (5-FC), has been the focus of recent studies applying advanced genomic and transcriptomic techniques to decipher the order of events at the molecular level that lead to resistance. These studies have highlighted the complexity of resistance and provided new insights that are reviewed in the present paper.
Collapse
Affiliation(s)
- Fatima Zohra Delma
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
| | - Abdullah M. S. Al-Hatmi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Foundation Atlas of Clinical Fungi, 1214 GP Hilversum, The Netherlands
| | - Roger J. M. Brüggemann
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Department of Pharmacy, Radboud University Medical Center, 6252 AG Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
| | - Sybren de Hoog
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Foundation Atlas of Clinical Fungi, 1214 GP Hilversum, The Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
| | - Jochem B. Buil
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Correspondence: ; Tel.: +31-24-361-4356
| |
Collapse
|
6
|
Han T, Kim JK. Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Experimental Procedures. Methods Mol Biol 2016; 1361:77-90. [PMID: 26483017 DOI: 10.1007/978-1-4939-3079-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An estimated 5-10 % of protein-coding genes in eukaryotic genomes encode RNA-binding proteins (RBPs). Through dynamic changes in RNA recognition, RBPs posttranscriptionally regulate the biogenesis, transport, inheritance, storage, and degradation of RNAs. Understanding such widespread RBP-mediated posttranscriptional regulatory mechanisms requires comprehensive discovery of the in vivo binding sites of RBPs. Here, we describe the experimental procedures of the gPAR-CLIP-seq (global photoactivatable-ribonucleoside-enhanced cross-linking and precipitation followed by deep sequencing) approach we recently developed for capturing and sequencing regions of the transcriptome bound by RBPs in budding yeast. Unlike the standard PAR-CLIP method, which identifies the bound RNA substrates for a single RBP, the gPAR-CLIP-seq method was developed to isolate and sequence all mRNA sites bound by the cellular "RBPome." The gPAR-CLIP-seq approach is readily applicable to a variety of organisms and cell lines to profile global RNA-protein interactions underlying posttranscriptional gene regulation. The complete landscape of RBP binding sites provides insights to the function of all RNA cis-regulatory elements in an organism and reveals fundamental mechanisms of posttranscriptional gene regulation.
Collapse
Affiliation(s)
- Ting Han
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390-9152, USA
| | - John K Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109-2216, USA. .,Department of Biology, Johns Hopkins University, Baltimore, MD, 21211, USA.
| |
Collapse
|
7
|
Mutational analysis of flucytosine resistance in Candida glabrata. Antimicrob Agents Chemother 2010; 54:4733-8. [PMID: 20823283 DOI: 10.1128/aac.00605-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The antifungal flucytosine (5-fluorocytosine [5FC]) is a prodrug metabolized to its toxic form, 5-fluorouracil (5FU), only by organisms expressing cytosine deaminase. One such organism is Candida glabrata, which has emerged as the second most common agent of bloodstream and mucosal candidiasis. This emergence has been attributed to the high rate at which C. glabrata develops resistance to azole antifungals. As an oral agent, 5FC represents an attractive alternative or complement to azoles; however, the frequency of 5FC resistance mutations and the mechanisms by which these mutations confer resistance have been explored only minimally. On RPMI 1640 medium containing 1 μg/ml 5FC (32-fold above the MIC, but less than 1/10 of typical serum levels), resistant mutants occurred at a relatively low frequency (2 × 10⁻⁷). Three of six mutants characterized were 5FU cross-resistant, suggesting a mutation downstream of the Fcy1 gene (cytosine deaminase), which was confirmed by sequence analysis of the Fur1 gene (uracil phosphoribosyl transferase). The remaining three mutants had Fcy1 mutations. To ascertain the effects of 5FC resistance mutations on enzyme function, mutants were isolated in ura3 strains. Three of seven mutants harbored Fcy1 mutations and failed to grow in uridine-free, cytosine-supplemented medium, consistent with inactive Fcy1. The remainder grew in this medium and had wild-type Fcy1; further analysis revealed these to be mutated in the Fcy2L homolog of S. cerevisiae Fcy2 (purine-cytosine transporter). Based on this analysis, we characterized three 5FC-resistant clinical isolates, and mutations were identified in Fur1 and Fcy1. These data provide a framework for understanding 5FC resistance in C. glabrata and potentially in other fungal pathogens.
Collapse
|
8
|
Leu JY, Murray AW. Experimental evolution of mating discrimination in budding yeast. Curr Biol 2006; 16:280-6. [PMID: 16461281 DOI: 10.1016/j.cub.2005.12.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/05/2005] [Accepted: 12/08/2005] [Indexed: 11/16/2022]
Abstract
Assortative mating, when individuals of similar phenotypes mate, likely plays a key role in preventing gene flow during speciation. Reinforcement occurs when two previously geographically separated (allopatric) groups meet after having evolved partial postzygotic isolation; they are selected to evolve or enhance assortative mating to prevent costly intergroup matings that produce only maladaptive or sterile hybrids. Studies in Drosophila have shown that the genetic architectures of mating discrimination could differ significantly with or without reinforcement, suggesting that the evolution of assortative mating may be more complicated than expected. To study the evolution of assortative mating, we evolved mating discrimination in populations of the budding yeast, Saccharomyces cerevisiae. After 36 cycles of selection, these cells are five times more likely to mate with each other than to their ancestors, despite detectable one-way gene flow between the selected and reference populations. Several individual cultures evolved mating discrimination by changing their mating kinetics, with some mating more rapidly and others more slowly than the ancestral population. Genetic analysis indicates that multiple mutations have accumulated to produce the altered mating preference. Our results show that subtle details of mating behavior can play an important role in the evolution of reproductive isolation.
Collapse
Affiliation(s)
- Jun-Yi Leu
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave, Room 3000, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
9
|
Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother 2004; 48:4377-86. [PMID: 15504867 PMCID: PMC525410 DOI: 10.1128/aac.48.11.4377-4386.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary resistance in Candida albicans to flucytosine (5-FC) was investigated in 25 strains by identifying and sequencing the genes FCA1, FUR1, FCY21, and FCY22, which code for cytosine deaminase, uracil phosphoribosyltransferase (UPRT), and two purine-cytosine permeases, respectively. These proteins are involved in pyrimidine salvage and 5-FC metabolism. An association between a polymorphic nucleotide and resistance to 5-FC was found within FUR1 where the substitution of cytidylate for thymidylate at nucleotide position 301 results in the replacement of arginine with cysteine at amino acid position 101 in UPRT. Isolates that are homozygous for this mutation display increased levels of resistance to 5-FC, whereas heterozygous isolates have reduced susceptibility. Three-dimensional protein modeling of UPRT suggests that the Arg101Cys mutation disturbs the quaternary structure of the enzyme, which is postulated to compromise optimal enzyme activity. A single resistant isolate, lacking the above polymorphism in FUR1, has a homozygous polymorphism in FCA1 that results in a glycine-to-aspartate substitution at position 28 in cytosine deaminase.
Collapse
Affiliation(s)
- William W Hope
- Immunocompromised Host Section POB, NCI, NIH CRC, Room 1-5700, 10 Center Dr., MSC 1100, Bethesda, MD 20892-1100, USA.
| | | | | | | |
Collapse
|
10
|
MacGregor BJ, Brüchert V, Fleischer S, Amann R. Isolation of small-subunit rRNA for stable isotopic characterization. Environ Microbiol 2002; 4:451-64. [PMID: 12153586 DOI: 10.1046/j.1462-2920.2002.00324.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small-subunit ribosomal RNA (SSU rRNA) has several characteristics making it a good candidate biomarker compound: it is found in bacteria, archaea and eukaryotes; it is quickly degraded extracellularly, hence SSU rRNA extracted from a sample probably derives from the currently active population; it includes both conserved and variable regions, allowing the design of capture probes at various levels of phylogenetic discrimination; and rRNA sequences from uncultured species can be classified by comparison with the large and growing public database. Here we present a method for isolation of specific classes of rRNAs from mixtures of total RNA, employing biotin-labelled oligonucleotide probes and streptavidin-coated paramagnetic beads. We also show that the stable carbon isotope composition of Escherichia coli total RNA and SSU rRNA reflects that of the growth substrate for cells grown on LB, M9 glucose and M9 acetate media. SSU rRNA is therefore a promising biomarker for following the flow of carbon, and potentially nitrogen, in natural microbial populations. Some possible applications are discussed.
Collapse
|
11
|
Séron K, Blondel MO, Haguenauer-Tsapis R, Volland C. Uracil-induced down-regulation of the yeast uracil permease. J Bacteriol 1999; 181:1793-800. [PMID: 10074071 PMCID: PMC93577 DOI: 10.1128/jb.181.6.1793-1800.1999] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae the FUR4-encoded uracil permease catalyzes the first step of the pyrimidine salvage pathway. The availability of uracil has a negative regulatory effect upon its own transport. Uracil causes a decrease in the level of uracil permease, partly by decreasing the FUR4 mRNA level in a promoter-independent fashion, probably by increasing its instability. Uracil entry also triggers more rapid degradation of the existing permease by promoting high efficiency of ubiquitination of the permease that signals its internalization. A direct binding of intracellular uracil to the permease is possibly involved in this feedback regulation, as the behavior of the permease is similar in mutant cells unable to convert intracellular uracil into UMP. We used cells impaired in the ubiquitination step to show that the addition of uracil produces rapid inhibition of uracil transport. This may be the first response prior to the removal of the permease from the plasma membrane. Similar down-regulation of uracil uptake, involving several processes, was observed under adverse conditions mainly corresponding to a decrease in the cellular content of ribosomes. These results suggest that uracil of exogenous or catabolic origin down-regulates the cognate permease to prevent buildup of excess intracellular uracil-derived nucleotides.
Collapse
Affiliation(s)
- K Séron
- Institut Jacques Monod, CNRS/Université Paris 7-Denis Diderot 2, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
12
|
Jaquet L, Lollier M, Souciet JL, Potier S. Genetic analysis of yeast strains lacking negative feedback control: a one-step method for positive selection and cloning of carbamoylphosphate synthetase-aspartate transcarbamoylase mutants unable to respond to UTP. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:81-8. [PMID: 8232215 DOI: 10.1007/bf00280204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have undertaken an in vivo genetic approach to the analysis of negative feedback control by uridine triphosphate (UTP) of the yeast carbamoylphosphate synthetase-aspartate transcarbamoylase multifunctional protein (CPSase-ATCase). Using an analog of uracil, 5-fluorouracil, we have constructed a screening system leading, in one step, to selection and cloning of a functional aspartate transcarbamoylase that is defective in negative feedback control by UTP. Due to the nature of the screen, spontaneous or UV-induced mutants could be recovered. Well-characterized cloned mutants have been sequenced and reveal one or two modifications in single codons leading to single amino acid replacements. These amino acid changes occurred either in the CPSase or ATCase domains, abolishing their sensitivity to regulation but not their catalytic activities. Hence the regulatory and catalytic sites are distinct. With the same screening system, it may also be possible to enlarge the scope of the molecular study of the feedback processes to include equivalent proteins in fungi as well as higher eukaryotes.
Collapse
Affiliation(s)
- L Jaquet
- Laboratoire de Microbiologie et Génétique, URA-GEM 1481, Université Louis Pasteur/CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|