1
|
Mower JP, Guo W, Partha R, Fan W, Levsen N, Wolff K, Nugent JM, Pabón-Mora N, González F. Plastomes from tribe Plantagineae (Plantaginaceae) reveal infrageneric structural synapormorphies and localized hypermutation for Plantago and functional loss of ndh genes from Littorella. Mol Phylogenet Evol 2021; 162:107217. [PMID: 34082129 DOI: 10.1016/j.ympev.2021.107217] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Tribe Plantagineae (Plantaginaceae) comprises ~ 270 species in three currently recognized genera (Aragoa, Littorella, Plantago), of which Plantago is most speciose. Plantago plastomes exhibit several atypical features including large inversions, expansions of the inverted repeat, increased repetitiveness, intron losses, and gene-specific increases in substitution rate, but the prevalence of these plastid features among species and subgenera is unknown. To assess phylogenetic relationships and plastomic evolutionary dynamics among Plantagineae genera and Plantago subgenera, we generated 25 complete plastome sequences and compared them with existing plastome sequences from Plantaginaceae. Using whole plastome and partitioned alignments, our phylogenomic analyses provided strong support for relationships among major Plantagineae lineages. General plastid features-including size, GC content, intron content, and indels-provided additional support that reinforced major Plantagineae subdivisions. Plastomes from Plantago subgenera Plantago and Coronopus have synapomorphic expansions and inversions affecting the size and gene order of the inverted repeats, and particular genes near the inversion breakpoints exhibit accelerated nucleotide substitution rates, suggesting localized hypermutation associated with rearrangements. The Littorella plastome lacks functional copies of ndh genes, which may be related to an amphibious lifestyle and partial reliance on CAM photosynthesis.
Collapse
Affiliation(s)
- Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| | - Wenhu Guo
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Raghavendran Partha
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Weishu Fan
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Nick Levsen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Kirsten Wolff
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Jacqueline M Nugent
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Apartado 1226, Medellín, Colombia
| | - Favio González
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Instituto de Ciencias Naturales, Apartado 7495, Colombia
| |
Collapse
|
2
|
Horiguchi G, Nemoto K, Yokoyama T, Hirotsu N. Photosynthetic acclimation of terrestrial and submerged leaves in the amphibious plant Hygrophila difformis. AOB PLANTS 2019; 11:plz009. [PMID: 30911367 PMCID: PMC6426153 DOI: 10.1093/aobpla/plz009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/17/2019] [Accepted: 02/25/2019] [Indexed: 05/07/2023]
Abstract
Hygrophila difformis, a heterophyllous amphibious plant, develops serrated or dissected leaves when grown in terrestrial or submerged conditions, respectively. In this study, we tested whether submerged leaves and ethylene-induced leaves of the heterophyllous, amphibious plant H. difformis have improved photosynthetic ability under submerged conditions. Also, we investigated how this amphibious plant photosynthesizes underwater and whether a HCO3 - transport system is present. We have analysed leaf morphology, measured underwater photosynthetic rates and HCO3 - affinity in H. difformis to determine if there are differences in acclimation ability dependent on growth conditions: terrestrial, submerged, terrestrial treated with ethylene and submerged treated with an ethylene inhibitor. Moreover, we measured time courses for changes in leaf anatomical characteristics and underwater photosynthesis in terrestrial leaves after submersion. Compared with the leaves of terrestrially grown plants, leaf thickness of submerged plants was significantly thinner. The stomatal density on the abaxial surface of submerged leaves was also reduced, and submerged plants had a significantly higher O2 evolution rate. When the leaves of terrestrially grown plants were treated with ethylene, their leaf morphology and underwater photosynthesis increased to levels comparable to those of submerged leaves. Underwater photosynthesis of terrestrial leaves was significantly higher by 5 days after submersion. In contrast, leaf morphology did not change after submergence. Submerged leaves and submerged terrestrial leaves were able to use bicarbonate but submerged terrestrial leaves had an intermediate ability to use HCO3 - that was between terrestrial leaves and submerged leaves. Ethoxyzolamide, an inhibitor of intracellular carbonic anhydrase, significantly inhibited underwater photosynthesis in submerged leaves. This amphibious plant acclimates to the submerged condition by changing leaf morphology and inducing a HCO3 - utilizing system, two processes that are regulated by ethylene.
Collapse
Affiliation(s)
- Genki Horiguchi
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Oura-gun, Gunma, Japan
| | - Kyosuke Nemoto
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Oura-gun, Gunma, Japan
| | - Tomomi Yokoyama
- Faculty of Life Sciences, Toyo University, Itakura-machi, Oura-gun, Gunma, Japan
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Oura-gun, Gunma, Japan
- Faculty of Life Sciences, Toyo University, Itakura-machi, Oura-gun, Gunma, Japan
| |
Collapse
|
3
|
Huang WM, Shao H, Zhou SN, Zhou Q, Fu WL, Zhang T, Jiang HS, Li W, Gontero B, Maberly SC. Different CO 2 acclimation strategies in juvenile and mature leaves of Ottelia alismoides. PHOTOSYNTHESIS RESEARCH 2018; 138:219-232. [PMID: 30078074 DOI: 10.1007/s11120-018-0568-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
The freshwater macrophyte, Ottelia alismoides, is a bicarbonate user performing C4 photosynthesis in the light, and crassulacean acid metabolism (CAM) when acclimated to low CO2. The regulation of the three mechanisms by CO2 concentration was studied in juvenile and mature leaves. For mature leaves, the ratios of phosphoenolpyruvate carboxylase (PEPC) to ribulose-bisphosphate carboxylase/oxygenase (Rubisco) are in the range of that of C4 plants regardless of CO2 concentration (1.5-2.5 at low CO2, 1.8-3.4 at high CO2). In contrast, results for juvenile leaves suggest that C4 is facultative and only present under low CO2. pH-drift experiments showed that both juvenile and mature leaves can use bicarbonate irrespective of CO2 concentration, but mature leaves have a significantly greater carbon-extracting ability than juvenile leaves at low CO2. At high CO2, neither juvenile nor mature leaves perform CAM as indicated by lack of diurnal acid fluctuation. However, CAM was present at low CO2, though the fluctuation of titratable acidity in juvenile leaves (15-17 µequiv g-1 FW) was slightly but significantly lower than in mature leaves (19-25 µequiv g-1 FW), implying that the capacity to perform CAM increases as leaves mature. The increased CAM activity is associated with elevated PEPC activity and large diel changes in starch content. These results show that in O. alismoides, carbon-dioxide concentrating mechanisms are more effective in mature compared to juvenile leaves, and C4 is facultative in juvenile leaves but constitutive in mature leaves.
Collapse
Affiliation(s)
- Wen Min Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hui Shao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Aix Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Joseph Aiguier, CS70071, 13402, Marseille Cedex 09, France
| | - Si Ning Zhou
- Sino-Danish Center, The University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Qin Zhou
- School of Resources and Environmental Science, Hubei University, Wuhan, 430074, China
| | - Wen Long Fu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ting Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hong Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Joseph Aiguier, CS70071, 13402, Marseille Cedex 09, France.
| | - Stephen C Maberly
- Lake Ecosystems Group, Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Lancaster, Bailrigg, LA1 4AP, UK.
| |
Collapse
|
4
|
Shao H, Gontero B, Maberly SC, Jiang HS, Cao Y, Li W, Huang WM. Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3985-3995. [PMID: 28369629 PMCID: PMC5853927 DOI: 10.1093/jxb/erx064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/03/2017] [Indexed: 05/29/2023]
Abstract
Ottelia alismoides is a constitutive C4 plant and bicarbonate user, and has facultative crassulacean acid metabolism (CAM) at low CO2. Acclimation to a factorial combination of light and CO2 showed that the ratio of phosphoenolpyruvate carboxylase (PEPC) to ribulose-bisphosphate carboxylase/oxygenase (Rubisco) (>5) is in the range of that of C4 plants. This and short-term response experiments showed that the activity of PEPC and pyruvate phosphate dikinase (PPDK) was high even at the end of the night, consistent with night-time acid accumulation and daytime carbon fixation. The diel acidity change was maximal at high light and low CO2 at 17-25 µequiv g-1 FW. Decarboxylation proceeded at ~2-3 µequiv g-1 FW h-1, starting at the beginning of the photoperiod, but did not occur at high CO2; the rate was greater at high, compared with low light. There was an inverse relationship between starch formation and acidity loss. Acidity changes account for up to 21% of starch production and stimulate early morning photosynthesis, but night-time accumulation of acid traps <6% of respiratory carbon release. Ottelia alismoides is the only known species to operate CAM and C4 in the same tissue, and one of only two known aquatic species to operate CAM and bicarbonate use.
Collapse
Affiliation(s)
- Hui Shao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Brigitte Gontero
- Aix Marseille Univ CNRS, BIP UMR, IMM, FR, Chemin Joseph Aiguier, Marseille Cedex, France
| | - Stephen C Maberly
- Lake Ecosystems Group, Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, UK
| | - Hong Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aix Marseille Univ CNRS, BIP UMR, IMM, FR, Chemin Joseph Aiguier, Marseille Cedex, France
| | - Yu Cao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wen Min Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Maberly SC, Gontero B. Ecological imperatives for aquatic CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3797-3814. [PMID: 28645178 DOI: 10.1093/jxb/erx201] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In aquatic environments, the concentration of inorganic carbon is spatially and temporally variable and CO2 can be substantially oversaturated or depleted. Depletion of CO2 plus low rates of diffusion cause inorganic carbon to be more limiting in aquatic than terrestrial environments, and the frequency of species with a CO2-concentrating mechanism (CCM), and their contribution to productivity, is correspondingly greater. Aquatic photoautotrophs may have biochemical or biophysical CCMs and exploit CO2 from the sediment or the atmosphere. Though partly constrained by phylogeny, CCM activity is related to environmental conditions. CCMs are absent or down-regulated when their increased energy costs, lower CO2 affinity, or altered mineral requirements outweigh their benefits. Aquatic CCMs are most widespread in environments with low CO2, high HCO3-, high pH, and high light. Freshwater species are generally less effective at inorganic carbon removal than marine species, but have a greater range of ability to remove carbon, matching the environmental variability in carbon availability. The diversity of CCMs in seagrasses and marine phytoplankton, and detailed mechanistic studies on larger aquatic photoautotrophs are understudied. Strengthening the links between ecology and CCMs will increase our understanding of the mechanisms underlying ecological success and will place mechanistic studies in a clearer ecological context.
Collapse
Affiliation(s)
- Stephen C Maberly
- Lake Ecosystems Group, Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR 3479, 31 Chemin J. Aiguier, 13 402 Marseille, Cedex 20, France
| |
Collapse
|
6
|
Klavsen SK, Madsen TV. Seasonal variation in crassulacean acid metabolism by the aquatic isoetid Littorella uniflora. PHOTOSYNTHESIS RESEARCH 2012; 112:163-173. [PMID: 22766959 DOI: 10.1007/s11120-012-9759-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
Abstract
The seasonal temperature acclimation in crassulacean acid metabolism (CAM) and photosynthetic performance were investigated in the aquatic isoetid, Littorella uniflora. Plants were collected monthly from January to September, and CAM capacity and photosynthesis rates were measured at 5, 10, 15, and 20 °C. Seasonal acclimation was observed for CAM (Q(10) range: 0.6-1.8), and CAM was optimised close to ambient temperature throughout the season. Thus, in winter acclimated L. uniflora, the short-term response to raised temperature resulted in a decline in CAM capacity. Even though the ambient CAM increased from winter to spring/summer, CAM was present in cold acclimated plants, thus indicating an ecophysiological role for CAM even in winter. Similar to CAM, seasonal acclimation was observed in the light and carbon-saturated photosynthesis (Q(10) values ranged from 1.4 to 2.3), and the photosynthetic capacity was generally higher during the winter at all temperatures, indicating compensatory investments in the photosynthetic apparatus. Thus, L. uniflora displayed seasonal temperature acclimation with respect to both CAM and photosynthesis. The estimated in situ contribution of CAM to the carbon budget in L. uniflora was independent of season and varied from 23 to 46 %. A positive correlation between photosynthetic capacity and CAM capacity (both measured in the lab at temperature close to ambient temperature) was found, and the ratio of CAM activity to photosynthetic capacity was higher in summer compared with winter plants. Overall, the results from the present study support the suggested role of CAM as a carbon conserving mechanism of importance for survival in a carbon-limited habitat.
Collapse
Affiliation(s)
- Signe Koch Klavsen
- Plant Biology, Department of Biological Sciences, Aarhus University, Ole Worms allé 1135, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
7
|
Klavsen SK, Madsen TV, Maberly SC. Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review. PHOTOSYNTHESIS RESEARCH 2011; 109:269-279. [PMID: 21308411 DOI: 10.1007/s11120-011-9630-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/24/2011] [Indexed: 05/30/2023]
Abstract
Inorganic carbon can be in short supply in freshwater relative to that needed by freshwater plants for photosynthesis because of a large external transport limitation coupled with frequent depleted concentrations of CO(2) and elevated concentrations of O(2). Freshwater plants have evolved a host of avoidance, exploitation and amelioration strategies to cope with the low and variable supply of inorganic carbon in water. Avoidance strategies rely on the spatial variation in CO(2) concentrations within and among lakes. Exploitation strategies involve anatomical and morphological features that take advantage of sources of CO(2) outside of the water column such as the atmosphere or sediment. Amelioration strategies involve carbon-concentrating mechanisms based on uptake of bicarbonate, which is widespread, C(4)-fixation, which is infrequent, and crassulacean acid metabolism (CAM), which is of intermediate frequency. CAM enables aquatic plants to take up inorganic carbon in the night. Furthermore, daytime inorganic carbon uptake is generally not inhibited and therefore CAM is considered to be a carbon-conserving mechanism. CAM in aquatic plants is a plastic mechanism regulated by environmental variables and is generally downregulated when inorganic carbon does not limit photosynthesis. CAM is regulated in the long term (acclimation during growth), but is also affected by environmental conditions in the short term (response on a daily basis). In aquatic plants, CAM appears to be an ecologically important mechanism for increasing inorganic carbon uptake, because the in situ contribution from CAM to the C-budget generally is high (18-55%).
Collapse
|
8
|
Wanke D. The ABA-mediated switch between submersed and emersed life-styles in aquatic macrophytes. JOURNAL OF PLANT RESEARCH 2011; 124:467-75. [PMID: 21674229 DOI: 10.1007/s10265-011-0434-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/10/2011] [Indexed: 05/07/2023]
Abstract
Hydrophytes comprise aquatic macrophytes from various taxa that are able to sustain and to complete their lifecycle in a flooded environment. Their ancestors, however, underwent adaptive processes to withstand drought on land and became partially or completely independent of water for sexual reproduction. Interestingly, the step backwards into the high-density aquatic medium happened independently several times in numerous plant taxa. For flowering plants, this submersed life-style is especially difficult as they need to erect their floral organs above the water surface to be pollinated. Moreover, fresh-water plants evolved the adaptive mechanism of heterophylly, which enabled them to switch between a submersed and an emersed leaf morphology. The plant hormone abscisic acid (ABA) is a key factor of heterophylly induction in aquatic plants and is a major switch between a submersed and emersed life. The mechanisms of ABA signal perception and transduction appear to be conserved throughout the evolution of basal plants to angiosperms and from terrestrial to aquatic plants. This review summarizes the interplay of environmental factors that act through ABA to orchestrate adaptation of plants to their aquatic environment.
Collapse
Affiliation(s)
- Dierk Wanke
- ZMBP-Plant Physiology, Tübingen University, Auf der Morgenstelle 1, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
PIERCE S, VIANELLI A, CERABOLINI B. From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies. Funct Ecol 2005. [DOI: 10.1111/j.1365-2435.2005.01028.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Mommer L, Visser EJW. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. ANNALS OF BOTANY 2005; 96:581-9. [PMID: 16024559 PMCID: PMC4247027 DOI: 10.1093/aob/mci212] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/20/2005] [Accepted: 02/14/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND Flooding causes substantial stress for terrestrial plants, particularly if the floodwater completely submerges the shoot. The main problems during submergence are shortage of oxygen due to the slow diffusion rates of gases in water, and depletion of carbohydrates, which is the substrate for respiration. These two factors together lead to loss of biomass and eventually death of the submerged plants. Although conditions under water are unfavourable with respect to light and carbon dioxide supply, photosynthesis may provide both oxygen and carbohydrates, resulting in continuation of aerobic respiration. SCOPE This review focuses on evidence in the literature that photosynthesis contributes to survival of terrestrial plants during complete submergence. Furthermore, we discuss relevant morphological and physiological responses of the shoot of terrestrial plant species that enable the positive effects of light on underwater plant performance. CONCLUSIONS Light increases the survival of terrestrial plants under water, indicating that photosynthesis commonly occurs under these submerged conditions. Such underwater photosynthesis increases both internal oxygen concentrations and carbohydrate contents, compared with plants submerged in the dark, and thereby alleviates the adverse effects of flooding. Additionally, several terrestrial species show high plasticity with respect to their leaf development. In a number of species, leaf morphology changes in response to submergence, probably to facilitate underwater gas exchange. Such increased gas exchange may result in higher assimilation rates, and lower carbon dioxide compensation points under water, which is particularly important at the low carbon dioxide concentrations observed in the field. As a result of higher internal carbon dioxide concentrations in submergence-acclimated plants, underwater photorespiration rates are expected to be lower than in non-acclimated plants. Furthermore, the regulatory mechanisms that induce the switch from terrestrial to submergence-acclimated leaves may be controlled by the same pathways as described for heterophyllous aquatic plants.
Collapse
Affiliation(s)
- Liesje Mommer
- Department of Experimental Plant Ecology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | |
Collapse
|
11
|
|
12
|
|
13
|
The impact of NO inf3sup- loading on the freshwater macrophyte Littorella uniflora: N utilization strategy in a slow-growing species from oligotrophic habitats. Oecologia 1994; 100:368-378. [PMID: 28306924 DOI: 10.1007/bf00317857] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1994] [Accepted: 08/20/1994] [Indexed: 10/26/2022]
Abstract
The decline and disappearance of Littorella uniflora from oligotrophic waters which have become eutrophic has been associated with shading or reduced CO2 supply. However NO inf3sup- concentrations can reach very high levels (100-2000 mmol m-3 compared with <1-3 in oligotrophic habitats). To investigate the impact of NO inf3sup- loading alone, plants were grown under three NO inf3sup- regimes (very low, near-natural and high). The interactive effects of NO inf3sup- and photon flux density (low and high regimes) on N assimilation and accumulation, CO2 concentrating mechanisms, C3 photosynthesis and growth were also examined. The results were unexpected. Increased NO inf3sup- supply had very little effect on photosynthetic capacity, crassulacean acid metabolism (CAM) or lacunal CO2 concentrations ([CO2]i), although there was considerable plasticity with respect to light regime. In contrast, increased NO inf3sup- supply resulted in a marked accumulation of NO inf3sup- , free amino acids and soluble protein in shoots and roots (up to 25 mol m-3, 30 mol m-3 and 9 mg g-1 fresh weight respectively in roots), while fresh weight and relative growth rate were reduced. Total N content even under the very low NO inf3sup- regime (1.6-2.3%) was mid-range for aquatic and terrestrial species (and 3.1-4.3% under the high NO inf3sup- regime). These findings, together with field data, suggest that L. uniflora is not growth limited by low NO inf3sup- supply in natural oligotophic habitats, due not to an efficient photosynthetic nitrogen use but to a slow growth rate, a low N requirement and to the use of storage to avoid N stress. However the increased NO inf3sup- concentrations in eutrophic environments seem likely have detrimental effects on the long-term survival of L. uniflora, possibly as a consequence of N accumulation.
Collapse
|