1
|
Abstract
Transgenic plants are generated in nature by Agrobacterium tumefaciens, a pathogen that produces disease through the transfer of some of its own DNA into susceptible plants. The genes are carried on a plasmid. Much has been learned about how the plasmid is transferred, how the plasmid-borne genes are organized, regulated, and expressed, and how the bacteria's pathogenic effects are produced. The A. tumefaciens plasmid has been manipulated for use as a general vector for the transfer of specific segments of foreign DNA of interest (from plants and other sources) into plants; the activities of various genes and their regulation by enhancer and silencer sequences have been assessed. Future uses of the vector (or others like it that have different host ranges) by the agriculture industry are expected to aid in moving into vulnerable plants specific genes that will protect them from such killers as nonselective herbicides, insects, and viruses.
Collapse
|
2
|
Santos E, Remy S, Thiry E, Windelinckx S, Swennen R, Sági L. Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress. BMC PLANT BIOLOGY 2009; 9:77. [PMID: 19552803 PMCID: PMC2709630 DOI: 10.1186/1471-2229-9-77] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 06/24/2009] [Indexed: 05/10/2023]
Abstract
BACKGROUND Next-generation transgenic plants will require a more precise regulation of transgene expression, preferably under the control of native promoters. A genome-wide T-DNA tagging strategy was therefore performed for the identification and characterization of novel banana promoters. Embryogenic cell suspensions of a plantain-type banana were transformed with a promoterless, codon-optimized luciferase (luc+) gene and low temperature-responsive luciferase activation was monitored in real time. RESULTS Around 16,000 transgenic cell colonies were screened for baseline luciferase activity at room temperature 2 months after transformation. After discarding positive colonies, cultures were re-screened in real-time at 26 degrees C followed by a gradual decrease to 8 degrees C. The baseline activation frequency was 0.98%, while the frequency of low temperature-responsive luciferase activity was 0.61% in the same population of cell cultures. Transgenic colonies with luciferase activity responsive to low temperature were regenerated to plantlets and luciferase expression patterns monitored during different regeneration stages. Twenty four banana DNA sequences flanking the right T-DNA borders in seven independent lines were cloned via PCR walking. RT-PCR analysis in one line containing five inserts allowed the identification of the sequence that had activated luciferase expression under low temperature stress in a developmentally regulated manner. This activating sequence was fused to the uidA reporter gene and back-transformed into a commercial dessert banana cultivar, in which its original expression pattern was confirmed. CONCLUSION This promoter tagging and real-time screening platform proved valuable for the identification of novel promoters and genes in banana and for monitoring expression patterns throughout in vitro development and low temperature treatment. Combination of PCR walking techniques was efficient for the isolation of candidate promoters even in a multicopy T-DNA line. Qualitative and quantitative GUS expression analyses of one tagged promoter in a commercial cultivar demonstrated a reproducible promoter activity pattern during in vitro culture. Thus, this promoter could be used during in vitro selection and generation of commercial transgenic plants.
Collapse
Affiliation(s)
- Efrén Santos
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
- Current address: Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, Km. 30.5 vía Perimetral, Apartado 09-01-5863, Guayaquil, Ecuador
| | - Serge Remy
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
| | - Els Thiry
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
| | - Saskia Windelinckx
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
| | - László Sági
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
|
4
|
Chen SY, Wang AM, Li W, Wang ZY, Cai XL. Establishing a gene trap system mediated by T-DNA(GUS) in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:742-751. [PMID: 18713415 DOI: 10.1111/j.1744-7909.2007.00611.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two plasmids, p13GUS and p13GUS2, were constructed to create a gene trap system containing the promoterless beta-glucuronidase (GUS) reporter gene in the T-DNA region. Transformation of these two plasmids into the rice variety Zhonghua 11 (Oryza sativa ssp. japonica cv.), mediated by Agrobacterium tumefaciens, resulted in 942 independent transgenic lines. Histochemical GUS assays revealed that 31 T(0) plants had various patterns of the reporter gene expression, including expression in only one tissue, and simultaneously in two or more tissues. Hygromycin-resistant (hyg(r)) homozygotes were screened and the copy number of the T-DNA inserts was determined in the GUS-positive transgenic plants. The flanking sequences of the T-DNA were isolated by inverse-polymerase chain reaction and the insert positions on the rice genome of T-DNA were determined by a basic local alignment search tool in the GUS-positive transgenic plants transformed with plasmid p13GUS. Moreover, calli induced from the seeds of the T(1) generation of 911 GUS-negative transgenic lines were subjected to stress and hormone treatments. Histochemical GUS assays were carried out on the calli before and after treatment. The results revealed that calli from 21 lines displayed differential GUS expression after treatment. All of these data demonstrated that this trap system is suitable for identifying rice genes, including those that are sensitive to induction.
Collapse
Affiliation(s)
- Shi-Yan Chen
- State Key Laboratory of Plant Chinese Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
5
|
Anuradha TS, Jami SK, Datla RS, Kirti PB. Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector. J Biosci 2007; 31:235-46. [PMID: 16809856 DOI: 10.1007/bf02703916] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have generated putative promoter tagged transgenic lines in Arachis hypogaea cv JL-24 using cotyledonary node (CN) as an explant and a promoterless gus::nptII bifunctional fusion gene mediated by Agrobacterium transformation. MS medium fortified with 6-benzylaminopurine (BAP) at 4mg/l in combination with 0.1 mg/l alpha -napthaleneacetic acid (NAA) was the most effective out of the various BAP and NAA combinations tested in multiple shoot bud formation. Parameters enhancing genetic transformation viz. seedling age, Agrobacterium genetic background and co-cultivation periods were studied by using the binary vector p35SGUSINT. Genetic transformation with CN explants from 6-day-old seedlings co-cultivated with Agrobacterium GV2260 strain for 3 days resulted in high kanamycin resistant shoot induction percentage (45%); approximately 31% transformation frequency was achieved with p35S GUSINT in beta-glucuronidase (GUS) assays. Among the in vivo GUS fusions studied with promoterless gus::nptII construct, GUS-positive sectors occupied 38% of the total transient GUS percentage. We have generated over 141 putative T 0 plants by using the promoterless construct and transferred them to the field. Among these, 82 plants survived well in the green house and 5 plants corresponding to 3.54% showed stable integration of the fusion gene as evidenced by GUS, polymerase chain reaction (PCR) and Southern blot analyses. Twenty-four plants were positive for GUS showing either tissue-specific expression or blue spots in at least one plant part. The progeny of 15 T 0 plants indicated Mendelian inheritance pattern of segregation for single-copy integration. The tissue-specific GUS expression patterns were more or less similar in both T 0 and corresponding T 1 progeny plants. We present the differential patterns of GUS expression identified in the putative promoter-tagged transgenic lines in the present communication.
Collapse
Affiliation(s)
- T Swathi Anuradha
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046,India
| | | | | | | |
Collapse
|
6
|
|
7
|
Collier R, Fuchs B, Walter N, Kevin Lutke W, Taylor CG. Ex vitro composite plants: an inexpensive, rapid method for root biology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:449-57. [PMID: 16045479 DOI: 10.1111/j.1365-313x.2005.02454.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant transformation technology is frequently the rate-limiting step in gene function analysis in non-model plants. An important tool for root biologists is the Agrobacterium rhizogenes-derived composite plant, which has made possible genetic analyses in a wide variety of transformation recalcitrant dicotyledonous plants. The novel, rapid and inexpensive ex vitro method for producing composite plants described in this report represents a significant advance over existing composite plant induction protocols, which rely on expensive and time-consuming in vitro conditions. The utility of the new system is validated by expression and RNAi silencing of GFP in transgenic roots of composite plants, and is bolstered further by experimental disruption, via RNAi silencing, of endogenous plant resistance to the plant parasitic nematode Meloidogyne incognita in transgenic roots of Lycopersicon esculentum cv. Motelle composite plants. Critical parameters of the method are described and discussed herein.
Collapse
Affiliation(s)
- Ray Collier
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
8
|
Miki B, McHugh S. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 2004; 107:193-232. [PMID: 14736458 DOI: 10.1016/j.jbiotec.2003.10.011] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Approximately fifty marker genes used for transgenic and transplastomic plant research or crop development have been assessed for efficiency, biosafety, scientific applications and commercialization. Selectable marker genes can be divided into several categories depending on whether they confer positive or negative selection and whether selection is conditional or non-conditional on the presence of external substrates. Positive selectable marker genes are defined as those that promote the growth of transformed tissue whereas negative selectable marker genes result in the death of the transformed tissue. The positive selectable marker genes that are conditional on the use of toxic agents, such as antibiotics, herbicides or drugs were the first to be developed and exploited. More recent developments include positive selectable marker genes that are conditional on non-toxic agents that may be substrates for growth or that induce growth and differentiation of the transformed tissues. Newer strategies include positive selectable marker genes which are not conditional on external substrates but which alter the physiological processes that govern plant development. A valuable companion to the selectable marker genes are the reporter genes, which do not provide a cell with a selective advantage, but which can be used to monitor transgenic events and manually separate transgenic material from non-transformed material. They fall into two categories depending on whether they are conditional or non-conditional on the presence of external substrates. Some reporter genes can be adapted to function as selectable marker genes through the development of novel substrates. Despite the large number of marker genes that exist for plants, only a few marker genes are used for most plant research and crop development. As the production of transgenic plants is labor intensive, expensive and difficult for most species, practical issues govern the choice of selectable marker genes that are used. Many of the genes have specific limitations or have not been sufficiently tested to merit their widespread use. For research, a variety of selection systems are essential as no single selectable marker gene was found to be sufficient for all circumstances. Although, no adverse biosafety effects have been reported for the marker genes that have been adopted for widespread use, biosafety concerns should help direct which markers will be chosen for future crop development. Common sense dictates that marker genes conferring resistance to significant therapeutic antibiotics should not be used. An area of research that is growing rapidly but is still in its infancy is the development of strategies for eliminating selectable marker genes to generate marker-free plants. Among the several technologies described, two have emerged with significant potential. The simplest is the co-transformation of genes of interest with selectable marker genes followed by the segregation of the separate genes through conventional genetics. The more complicated strategy is the use of site-specific recombinases, under the control of inducible promoters, to excise the marker genes and excision machinery from the transgenic plant after selection has been achieved. In this review each of the genes and processes will be examined to assess the alternatives that exist for producing transgenic plants.
Collapse
Affiliation(s)
- Brian Miki
- Research Branch, Agriculture and Agri-Food Canada, Room 2091, KW Neatby Bldg., CEF, 960 Carling Avenue, Ottawa, Ont., Canada K1A 0C6.
| | | |
Collapse
|
9
|
Walden R, Reiss B, Koncz C, Schell J. The impact of Ti-plasmid-derived gene vectors on the study of the mechanism of action of phytohormones. ANNUAL REVIEW OF PHYTOPATHOLOGY 1997; 35:45-66. [PMID: 15012514 DOI: 10.1146/annurev.phyto.35.1.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The molecular basis of tumor formation on dicotyledonous plants by Agrobacterium relies on the transfer to the plant cell of a unique segment of bacterial DNA, the T-DNA. The T-DNA contains genes that are active in the plant cell and encode hormone biosynthetic enzymes, or proteins that deregulate the cell's response to phytohormones. Study of this process has yielded not only knowledge of how alterations in phytohormone homeostasis can affect plant cell growth, but also has provided the essential tools to study phytohormone signaling in transgenic plants. Furthermore, T-DNA insertion into the plant genome forms the basis of gene tagging, a versatile method for isolating genes involved in phytohormone signal transduction and action.
Collapse
Affiliation(s)
- R Walden
- Max-Planck-Institut für Zuchtungsforschung, Cologne, Germany.
| | | | | | | |
Collapse
|
10
|
Ott RW, Hansen LK. Repeated sequences from the Arabidopsis thaliana genome function as enhancers in transgenic tobacco. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:563-71. [PMID: 8914517 DOI: 10.1007/bf02172402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sixteen segments of Arabidopsis thaliana DNA that function as enhancers in transgenic tobacco plants were isolated using the pROA97 enhancer cloning vehicle and library transformation of Nicotiana tabacum. The sequences were compared for AT content, homology, repeated motifs, and expression pattern in transgenic N. tabacum. The sequences were average with respect to the AT content of A. thaliana DNA. They could be placed into seven homology groups. Five of the sequences are single-copy sequences. The remaining eleven sequences represent two homology groups. Homology Group I contains seven sequences with minor differences. Homology Group II contains four sequences with minor differences. Two repeated motifs were identified (5'-CCTCT-3' and 5'-AAGGAT-3'). Both repeated motifs are found in other plant enhancers, and in the promoter region of the cauliflower mosaic virus 35S gene. In the 35S gene TATA region, the motifs can form two alternative stem-loop structures. The TATATAA sequence is located in the loop region of both stem-loop structures.
Collapse
Affiliation(s)
- R W Ott
- Department of Biology, Boise State University, Idaho 83725, USA
| | | |
Collapse
|
11
|
Topping JF, Lindsey K. Insertional mutagenesis and promoter trapping in plants for the isolation of genes and the study of development. Transgenic Res 1995. [DOI: 10.1007/bf01972526] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
|
13
|
Márton L, Hrouda M, Pécsváradi A, Czakó M. T-DNA-insert-independent mutations induced in transformed plant cells during Agrobacterium co-cultivation. Transgenic Res 1994; 3:317-25. [PMID: 7951334 DOI: 10.1007/bf01973592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transformation frequencies were determined for 1n, 2n, and 4n Nicotiana plumbaginifolia protoplast cultures in Agrobacterium-mediated gene transfer experiments. An unexpected large drop (50%) in plating efficiencies was observed in the non-selected (control) 1n populations after transformation treatment with virulent strains. This effect was not observed in the 2n or 4n cultures or in the 1n cultures when treated with avirulent bacteria. The mortality was disproportionally high and could not be explained by the low (0.1-0.5%) transformation efficiency in the 1n population, indicating mutagenesis of the cell populations independently from the T-DNA insertions. Mutagenesis was also indicated in gene tagging experiments where nitrate reductase-deficient (NR-) mutants were selected from haploid Nicotiana plumbaginifolia protoplasts, as well as from leaf disc cultures or protoplasts of diploid plants that were heterozygotic for a mutation either in the NR apoenzyme gene (nia/wt) or one of the molybdenum-containing cofactor genes (cnxA/wt), after Agrobacterium co-cultivation. The chlorate-resistant isolates were tested for the T-DNA-specific kanamycin resistance trait only after NR-deficiency had been established. Thirty-nine independent NR-deficient mutants were analysed further by Southern blot hybridization. There was no indication of integrated T-DNA sequences in the mutated NR genes, despite the fact that NR-deficient cells were found more frequently in cell populations which became transformed during the treatment than in the populations which did not.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Márton
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
14
|
Mandal A, Lång V, Orczyk W, Palva ET. Improved efficiency for T-DNA-mediated transformation and plasmid rescue inArabidopsis thaliana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 86:621-628. [PMID: 24193712 DOI: 10.1007/bf00838718] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/1992] [Accepted: 12/09/1992] [Indexed: 06/02/2023]
Abstract
A vector was constructed for the isolation of gene fusions to thelacZ reporter gene following T-DNA integration into the genome ofArabidopsis thaliana. To facilitate the generation of taggedA. thaliana plants, we established a modified method for high-frequency transformation ofA. thaliana byAgrobacterium tumefaciens. The main modification required was to inhibit the methylation of T-DNA in the transformed calli. Apparently, cytosine residues of thenos-nptII gene used as a selectable marker were methylated, and the expression of this gene was suppressed. Treatment of the calli with the cytosine methylation inhibitor 5-azacytidine led to a dramatic increase (from 3% to 96%) in the regeneration of transformed (kanamycin-resistant) shoots. A total of 150 transgenic plants were isolated, and in 17 of these expression of thelacZ reporter was detected byin situ staining. The T-DNA insert together with flanking plant DNA sequences was cloned intoEscherichia coli by plasmid rescue from some of the T3 transformants that harbored one copy of the integrated T-DNA. Comparison of the rescued DNA with the corresponding DNA of the transgenic plant showed that most of the rescued plasmids had undergone rearrangements. These rearrangements could be totally avoided if anmcrAB (modified cytosine restriction) mutant ofE. coli was used as the recipient in plasmid rescue.
Collapse
Affiliation(s)
- A Mandal
- Department of Molecular Genetics, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Box 7003, S-750 07, Uppsala, Sweden
| | | | | | | |
Collapse
|
15
|
Farman ML, Oliver RP. Transformation frequencies are enhanced and vector DNA is targeted during retransformation of Leptosphaeria maculans, a fungal plant pathogen. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:243-7. [PMID: 1736094 DOI: 10.1007/bf00279797] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Leptosphaeria maculans, a fungal pathogen of Brassica spp., was successfully transformed with the vector pAN8-1, encoding phleomycin resistance. Protoplasts of a vigorous Phleor transformant were then retransformed using the partially homologous vector, pAN7-1 which encodes hygromycin B resistance. Retransformation of this strain to hygromycin resistance occurred at frequencies that were consistently twofold higher than with the original recipient strain. Linearised pAN7-1 DNA transformed phleomycin-resistant protoplasts at higher frequencies still. All the transformants that were tested retained a phleomycin-resistant phenotype (20/20). Molecular analysis of five transformants generated with circular pAN7-1 DNA indicated that in four cases the pAN7-1 vector had integrated into pAN8-1 sequences. These results suggest that transformation frequencies in L. maculans are limited by the ability of vector DNA to integrate into the genome. Hence, construction of strains with target sites for integration may prove to be a generally useful method for improving transformation frequencies of poorly characterised filamentous fungi, particularly when using heterologous vectors. This would greatly facilitate the identification of genes by transfer of gene libraries and the standardisation of chromosomal location effects in studies of expression of nested promoter deletions.
Collapse
Affiliation(s)
- M L Farman
- Norwich Molecular Plant Pathology Group, School of Biological Sciences, University of East Anglia, UK
| | | |
Collapse
|
16
|
Ingelbrecht I, Breyne P, Vancompernolle K, Jacobs A, Van Montagu M, Depicker A. Transcriptional interference in transgenic plants. Gene 1991; 109:239-42. [PMID: 1662656 DOI: 10.1016/0378-1119(91)90614-h] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
When a promoterless marker gene is transformed into the plant genome using the Agrobacterium vector system, on average 30% of the T-DNA inserts produce gene fusions. This suggests that the T-DNA is preferentially integrated into transcribed regions. Here, we proposed that this transcriptional activity is responsible for some of the variation in expression frequently observed among independent transformants. Using hybrid gene constructions, we show that transcriptional readthrough into a downstream gene with opposite orientation substantially reduces expression of this gene both in transient expression and in transgenic plants. Furthermore, a poly(A) signal/terminator can block readthrough and restore the expression of the gene. Finally, enzymatic analysis of calli suggests that less variation in neomycin phosphotransferase II synthesis is observed when the gene is separated from plant DNA by promoter and terminator elements.
Collapse
Affiliation(s)
- I Ingelbrecht
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Fobert PR, Miki BL, Iyer VN. Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions. PLANT MOLECULAR BIOLOGY 1991; 17:837-51. [PMID: 1655114 DOI: 10.1007/bf00037065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A binary vector, pPRF120, was designed to detect T-DNA insertions within transcriptionally active areas of the plant genome. Linked to the right-border repeat, the vector contains a promoterless beta-glucuronidase (GUS) gene which can, upon integration into chromosomes, be activated by cis-acting regulatory elements. The vector also incorporates a chimeric marker gene conferring resistance to kanamycin to ensure recovery of gene fusions regardless of the extent of their tissue-specific or developmentally regulated expression, and to permit analysis of the frequency of plants which express the promoterless reporter. Approximately 1000 transgenic tobacco plants harboring pPRF120 were regenerated. Analysis of 52 individuals indicated that more than 80% contain single, intact copies of the T-DNA, regardless of their ability to express the promoterless GUS gene. Screening of leaf tissue from the 1000 pPRF120 transformants revealed that ca. 5% of the plants contained GUS activity. Fluorogenic and histological GUS assays were used to visualize and quantify tissue- and cell-specific gene expression. The potential usefulness of pPRF120 in comparison to other vectors designed to generate in vivo gene fusions is discussed.
Collapse
Affiliation(s)
- P R Fobert
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
18
|
|
19
|
Van Lijsebettens M, Vanderhaeghen R, Van Montagu M. Insertional mutagenesis in Arabidopsis thaliana: isolation of a T-DNA-linked mutation that alters leaf morphology. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1991; 81:277-284. [PMID: 24221214 DOI: 10.1007/bf00215734] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/1990] [Accepted: 07/19/1990] [Indexed: 06/02/2023]
Abstract
We investigated the potential of the Agrobacterium tumefaciens T-DNA as an insertional mutagen in Arabidopsis thaliana. Arabidopsis lines transformed with different T-DNA vectors were generated using a leaf disc infection procedure adapted for efficient selection on either kanamycin or hygromycin medium. A standardized screening procedure was developed for the detection of recessive mutations in T2 populations of regenerated and/or transformed lines. Recessive mutations originating from the tissue culture procedure occurred at a low frequency - between 2% and 5%. Within 110 transformed lines that contained a total of about 150 T-DNA inserts, one recessive mutation, named pfl, cosegregated with a specific T-DNA copy. This pfl mutation mainly affected the morphology of the first seedling leaves under normal growth conditions and was mapped to chromosome 1. No recombination between the pfl locus and the kanamycin resistance marker on the T-DNA was detected when screening F2 and F3 populations of a mutant crossed to the wild type. The maximal genetic distance between the pfl locus and the kanamycin resistance gene, determined as 0.4±0.4 cMorgan, strongly suggests that the pfl mutation is induced by the insertion of the T-DNA. Our finding of one T-DNA-linked recessive mutation in 110 transgenic lines indicates that T-DNA can be used for mutagenization of the Arabidopsis genome under tissue culture conditions.
Collapse
Affiliation(s)
- M Van Lijsebettens
- Laboratorium voor Genetica, Rijksuniversiteit Gent, K. L. Ledeganckstraat35, B-9000, Gent, Belgium
| | | | | |
Collapse
|
20
|
Herman L, Jacobs A, Van Montagu M, Depicker A. Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:248-56. [PMID: 2177527 DOI: 10.1007/bf00271558] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During Agrobacterium tumefaciens infection, the T-DNA flanked by 24 bp imperfect direct repeats is transferred and stably integrated into the plant chromosome at random positions. Here we measured the frequency with which a promoterless reporter gene is activated after insertion into the Nicotiana tabacum SR1 genome. When adjacent to the right or left T-DNA border sequences, at least 35% of the transformants express the marker gene, suggesting preferential T-DNA insertion (greater than 70%) in transcriptionally active regions of the plant genome. When the promoterless neomycin phosphotransferase II (nptII) gene is located internally in the T-DNA, the activation frequency drops to 1% since gene activation requires T-DNA truncation. These truncation events in the nptII upstream region occur independently of the nature of the upstream sequence and of the T-DNA length. Deletion of the right border region prevents the detection of activated marker genes. Therefore, T-DNA truncation probably occurs after synthesis of a normal T-DNA intermediate during the transfer and/or integration process. In the absence of border regions, expression of the nptII selectable marker directed by the nopaline synthase promoter was detected in 1 out of 10(5) regenerated calli, suggesting the possibility that any DNA sequence from the Ti plasmid can be transformed into the plant genome, albeit at a low frequency.
Collapse
Affiliation(s)
- L Herman
- Laboratorium voor Genetica, Rijksuniversiteit Gent, Belgium
| | | | | | | |
Collapse
|
21
|
Gheysen G, Herman L, Breyne P, Gielen J, Van Montagu M, Depicker A. Cloning and sequence analysis of truncated T-DNA inserts from Nicotiana tabacum. Gene 1990; 94:155-63. [PMID: 1701747 DOI: 10.1016/0378-1119(90)90382-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transgenic plants produced by Agrobacterium-mediated transformation usually have one or a few stable and intact T-DNA insertions. However, in a significant number of the transformants Southern blot analysis has revealed the occurrence of aberrant T-DNA insertions missing one or both ends. During the study of this phenomenon, we obtained KmR Nicotiana tabacum clones after cocultivation with an Agrobacterium strain containing a promoterless nptII gene located internally in the T-DNA. Expression of this nptII gene requires a break in the T-DNA region upstream from the nptII-coding sequence and insertion of the truncated T-DNA in a transcriptionally active plant DNA region. The most conspicuous result from Southern analyses on four such KmR plant clones is that they contain several T-DNAs truncated at other positions besides the upstream region of the nptII sequence. Four truncated T-DNA insertions have been cloned. Two insertions contain the nptII gene fused to plant expression signals and are missing the right part of the T-DNA. Another is missing the left T-DNA part and the last T-DNA is lacking both ends. Sequence analysis of the T-DNA::plant junctions has shown that the T-DNA breakpoints are randomly distributed and do not show obvious homologies to one another or to the border consensus sequence. S1-type mapping of the most strongly expressed plant genome::nptII fusion revealed a specific transcription start point and putative TATA and CAAT boxes in the upstream plant DNA region; the steady-state nptII mRNA in these plants is about 20 times more abundant than in transgenic Pnos-nptII plants.
Collapse
Affiliation(s)
- G Gheysen
- Laboratorium voor Genetica, Rijksuniversiteit Gent, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Walden R, Schell J. Techniques in plant molecular biology--progress and problems. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:563-76. [PMID: 2209611 DOI: 10.1111/j.1432-1033.1990.tb19262.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Progress in plant molecular biology has been dependent on efficient methods of introducing foreign DNA into plant cells. Gene transfer into plant cells can be achieved by either direct uptake of DNA or the natural process of gene transfer carried out by the soil bacterium Agrobacterium. Versatile gene-transfer vectors have been developed for use with Agrobacterium and more recently vectors based on the genomes of plant viruses have become available. Using this technology the expression of foreign DNA, the functional analysis of plant DNA sequences, the investigation of the mechanism of viral DNA replication and cell to cell spread, as well as the study of transposition, can be carried out. In addition, the versatility of the gene-transfer vectors is such that they may be used to isolate genes not amenable to isolation using conventional protocols. This review concentrates on these aspects of plant molecular biology and discusses the limitations of the experimental systems that are currently available.
Collapse
Affiliation(s)
- R Walden
- Max-Planck-Institut für Züchtungsforschung, Köln, Federal Republic of Germany
| | | |
Collapse
|
23
|
Ott RW, Chua NH. Enhancer sequences from Arabidopsis thaliana obtained by library transformation of Nicotiana tabacum. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:169-79. [PMID: 2250645 DOI: 10.1007/bf00265050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this paper we report on the use of a bidirectional enhancer cloning vehicle to isolate and characterize new enhancer sequences from Arabidopsis thaliana. A library of A. thaliana genomic Sau3A segments was constructed in Escherichia coli in the binary plasmid enhancer cloning vehicle pROA97. The T-DNA based vector carries abbreviated TATA regions from the cauliflower mosaic virus 35S transcription unit upstream of two genes. The library was transferred via triparental mating into Agrobacterium tumefaciens. The neomycin phosphotransferase II gene was used for selection of kanamycin-resistant transformed tobacco callus cells. Approximately 1100 transgenic plants were regenerated and assayed for expression of the E. coli beta-glucuronidase (GUS) gene in leaves, stems, roots, or seeds. Plasmids carrying putative enhancer sequences were rescued from the genomes of transgenic plants and the cloned sequences were assayed for enhancer function in genetic selection experiments. Plants were regenerated from the kanamycin-resistant calli obtained in the secondary transformation experiments. Histochemical analysis of GUS activity in the leaf, stem, and root tissues of transgenic plants showed a variety of expression patterns. The DNA sequences are presented of five Arabidopsis segments which confer enhancer function.
Collapse
Affiliation(s)
- R W Ott
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY 10021-6399
| | | |
Collapse
|
24
|
|
25
|
|
26
|
|
27
|
Soller M, Beckmann JS. Cloning quantitative trait loci by insertional mutagenesis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1987; 74:369-378. [PMID: 24241675 DOI: 10.1007/bf00274720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/1986] [Accepted: 03/20/1987] [Indexed: 06/02/2023]
Abstract
This study explores the theoretical potential of "insertional mutagenesis" (i.e., mutagenesis as a result of integration of novel DNA sequences into the germ line), as a means of cloning quantitative trait loci (QTL). The approach presented is based on a direct search for mutagenic effects of a quantitative nature, and makes no assumptions as to the nature of the loci affecting quantitative trait value. Since there are a very large number of potential insertion sites in the genome but only a limited number of target sites that can affect any particular trait, large numbers of inserts will have to be generated and screened. The effects of allelic variants at any single QTL on phenotype value are expected to be small relative to sampling variation. Thus two of three stages of replicate testing will be required for each insert in order to bring overall Type I error down to negligible proportions and yet maintain good statistical power for inserts with true effects on the quantitative traits under consideration. The overall effort involved will depend on the spectrum of mutagenic effects produced by insertional mutagenesis. This spectrum is presently unknown, but using reasonable estimates, about 10,000 inserts would have to be tested, at reasonable replicate numbers (n ≧ 30) and Type I error (α=0.01) in the first testing stage, to provide a high likelihood of detecting at least one insert with a true effect on a given quantitative trait of interest. Total offspring numbers required per true quantitative mutagenic effect detected decrease strongly with increased number of traits scored and increased number of inserts per initial transformed parent. In fact, it would appear that successful implementation of experiments of this sort will require the introduction of multiple independent inserts in the original parent individuals, by means of repeated transformation, or use of transposable elements as inserts. When biologically feasible, selfing would appear to be the method of choice for insert replication, and in all cases the experiments must be carried out in inbred lines to reduce error variation due to genetic segregation, and avoid confounding mutational effects of the insert with effects due to linkage with nearby segregating QTL. The special qualifications of Arabidopsis thaliana for studies of this sort are emphasized, and problems raised by somaclonal variation are discussed.
Collapse
Affiliation(s)
- M Soller
- Department of Genetics, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | | |
Collapse
|
28
|
|