1
|
Lukashenko NP. Expanding genetic code: Amino acids 21 and 22, selenocysteine and pyrrolysine. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410080016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Watanabe K. Unique features of animal mitochondrial translation systems. The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:11-39. [PMID: 20075606 PMCID: PMC3417567 DOI: 10.2183/pjab.86.11] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/17/2009] [Indexed: 05/17/2023]
Abstract
In animal mitochondria, several codons are non-universal and their meanings differ depending on the species. In addition, the tRNA structures that decipher codons are sometimes unusually truncated. These features seem to be related to the shortening of mitochondrial (mt) genomes, which occurred during the evolution of mitochondria. These organelles probably originated from the endosymbiosis of an aerobic eubacterium into an ancestral eukaryote. It is plausible that these events brought about the various characteristic features of animal mt translation systems, such as genetic code variations, unusually truncated tRNA and rRNA structures, unilateral tRNA recognition mechanisms by aminoacyl-tRNA synthetases, elongation factors and ribosomes, and compensation for RNA deficits by enlarged proteins. In this article, we discuss molecular mechanisms for these phenomena. Finally, we describe human mt diseases that are caused by modification defects in mt tRNAs.
Collapse
Affiliation(s)
- Kimitsuna Watanabe
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, Japan.
| |
Collapse
|
3
|
|
4
|
Gray MW, Spencer DF. Wheat mitochondrial DNA encodes a eubacteria-like initiator methionine transfer RNA. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)81034-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Abstract
Comparative path lengths in amino acid biosynthesis and other molecular indicators of the timing of codon assignment were examined to reconstruct the main stages of code evolution. The codon tree obtained was rooted in the 4 N-fixing amino acids (Asp, Glu, Asn, Gln) and 16 triplets of the NAN set. This small, locally phased (commaless) code evidently arose from ambiguous translation on a poly(A) collector strand, in a surface reaction network. Copolymerisation of these amino acids yields polyanionic peptide chains, which could anchor uncharged amide residues to a positively charged mineral surface. From RNA virus structure and replication in vitro, the first genes seemed to be RNA segments spliced into tRNA. Expansion of the code reduced the risk of mutation to an unreadable codon. This step was conditional on initiation at the 5'-codon of a translated sequence. Incorporation of increasingly hydrophobic amino acids accompanied expansion. As codons of the NUN set were assigned most slowly, they received the most nonpolar amino acids. The origin of ferredoxin and Gln synthetase was traced to mid-expansion phase. Surface metabolism ceased by the end of code expansion, as cells bounded by a proteo-phospholipid membrane, with a protoATPase, had emerged. Incorporation of positively charged and aromatic amino acids followed. They entered the post-expansion code by codon capture. Synthesis of efficient enzymes with acid-base catalysis was then possible. Both types of aminoacyl-tRNA synthetases were attributed to this stage. tRNA sequence diversity and error rates in RNA replication indicate the code evolved within 20 million yr in the preIsuan era. These findings on the genetic code provide empirical evidence, from a contemporaneous source, that a surface reaction network, centred on C-fixing autocatalytic cycles, rapidly led to cellular life on Earth.
Collapse
Affiliation(s)
- B K Davis
- Research Foundation of Southern California Inc., La Jolla 92037, USA
| |
Collapse
|
6
|
Abstract
The genetic code, formerly thought to be frozen, is now known to be in a state of evolution. This was first shown in 1979 by Barrell et al. (G. Barrell, A. T. Bankier, and J. Drouin, Nature [London] 282:189-194, 1979), who found that the universal codons AUA (isoleucine) and UGA (stop) coded for methionine and tryptophan, respectively, in human mitochondria. Subsequent studies have shown that UGA codes for tryptophan in Mycoplasma spp. and in all nonplant mitochondria that have been examined. Universal stop codons UAA and UAG code for glutamine in ciliated protozoa (except Euplotes octacarinatus) and in a green alga, Acetabularia. E. octacarinatus uses UAA for stop and UGA for cysteine. Candida species, which are yeasts, use CUG (leucine) for serine. Other departures from the universal code, all in nonplant mitochondria, are CUN (leucine) for threonine (in yeasts), AAA (lysine) for asparagine (in platyhelminths and echinoderms), UAA (stop) for tyrosine (in planaria), and AGR (arginine) for serine (in several animal orders) and for stop (in vertebrates). We propose that the changes are typically preceded by loss of a codon from all coding sequences in an organism or organelle, often as a result of directional mutation pressure, accompanied by loss of the tRNA that translates the codon. The codon reappears later by conversion of another codon and emergence of a tRNA that translates the reappeared codon with a different assignment. Changes in release factors also contribute to these revised assignments. We also discuss the use of UGA (stop) as a selenocysteine codon and the early history of the code.
Collapse
Affiliation(s)
- S Osawa
- Department of Biology, Nagoya University, Japan
| | | | | | | |
Collapse
|
7
|
Hekele A, Beier H. Nucleotide sequence and functional characterization of a mitochondrial tRNA(Trp) from Tetrahymena thermophila. Nucleic Acids Res 1991; 19:1941. [PMID: 1709497 PMCID: PMC328127 DOI: 10.1093/nar/19.8.1941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- A Hekele
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, FRG
| | | |
Collapse
|
8
|
Sprinzl M, Dank N, Nock S, Schön A. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 1991; 19 Suppl:2127-71. [PMID: 2041802 PMCID: PMC331350 DOI: 10.1093/nar/19.suppl.2127] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- M Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, FRG
| | | | | | | |
Collapse
|
9
|
Abstract
The universal genetic code is used without changes in chloroplasts and in mitochondria of green plants. Non-plant mitochondria use codes that include changes from the universal code. Chloroplasts use 31 anticodons in translating the code; a number smaller than that used by bacteria, because chloroplasts have eliminated 10 CNN anticodons that are found in bacteria. Green plant mitochondria (mt) obtain some tRNAs from the cytosol, and genes for some other tRNAs have been acquired from chloroplast DNA. The code in non-plant mt differs from the universal code in the following usages found in various organisms: UGA for Trp, AUA for Met, AGR for Ser and stop, AAA for Asn, CUN for Thr, and possibly UAA for Tyr. CGN codons are not used by Torulopsis yeast mt. Non-plant mt, e.g. in vertebrates, may use a minimum of 22 anticodons for complete translation of mRNA sequences. The following possible causes are regarded as contributing to changes in the non-plant mt: directional mutation pressure, genomic economization, changes in charging specificity of tRNAs, loss of release factor RF2, changes in RF1, changes in anticodons, loss of lysidine-forming enzyme system, and disappearance of codons from coding sequences.
Collapse
Affiliation(s)
- T H Jukes
- Space Sciences Laboratory, University of California/Berkeley, Oakland 94608
| | | |
Collapse
|
10
|
Pritchard AE, Seilhamer JJ, Mahalingam R, Sable CL, Venuti SE, Cummings DJ. Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res 1990; 18:173-80. [PMID: 2308823 PMCID: PMC330218 DOI: 10.1093/nar/18.1.173] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nucleotide sequence for 40,469 bp of the linear Paramecium aurelia mitochondrial (mt) genome is presented with the locations of the known genes, presumed ORFs, and their transcripts. Many of the genes commonly encoded in mt DNA of other organisms have been identified in the Paramecium mt genome but several unusual genes have been found. Ribosomal protein genes rps14, rps12, and rpl2 are clustered in a region that also contains two other genes usually found in chloroplasts, but rpl14 is over 16 kbp away. The ATP synthase gene, atp9, is encoded in this mt genome, but the atp6, atp8, and COIII genes have not been identified. All of the identified genes are transcribed. Many mono- and poly- cistronic transcripts have been detected which cover most of the genome, including large regions where genes have yet to be identified. Based on sequence comparisons with known tRNAs, only those for phe, trp, and tyr are encoded in Paramecium mt DNA.
Collapse
Affiliation(s)
- A E Pritchard
- Department of Microbiology and Immunology, University of Colorado Health Sciences Center, Denver 80262. 80262
| | | | | | | | | | | |
Collapse
|
11
|
Chapter 7 Mitochondrial tRNAs; Stricture, Modified Nucleosides and Codon Reading Patterns. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0301-4770(08)61493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Pritchard AE, Venuti SE, Ghalambor MA, Sable CL, Cummings DJ. An unusual region of Paramecium mitochondrial DNA containing chloroplast-like genes. Gene 1989; 78:121-34. [PMID: 2670676 DOI: 10.1016/0378-1119(89)90320-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Based on DNA and amino acid comparisons with known genes and their products, a region of the Paramecium aurelia mitochondrial (mt) genome has been found to encode the following gene products: (1) photosystem II protein G (psbG); (2) a large open reading frame (ORF400) which is also found encoded in the chloroplast (cp) DNA of tobacco (as ORF393) and liverwort (as ORF392), and in the kinetoplast maxicircle DNA of Leishmania tarentolae (as ORFs 3 and 4); (3) ribosomal protein L2 (rpl2); (4) ribosomal protein S12 (rps12); (5) ribosomal protein S14 (rps14); and (6) NADH dehydrogenase subunit 2 (ndh2). All of these genes have been found in cp DNA, but the psbG gene has never been identified in a mt genome, and ribosomal protein genes have never been located in an animal or protozoan mitochondrion. The ndh2 gene has been found in both mitochondria and plastids. The Paramecium genes are among the most divergent of those sequenced to date. Two of the genes are encoded on the strand of DNA complementary to that encoding all other known Paramecium mt genes. No gene contains an identifiable intron. The rps12 and psbG genes are probably overlapping. It is not yet known whether these genes are transcribed or have functional gene products. The presence of these genes in the mt genome raises interesting questions concerning their evolutionary origin.
Collapse
Affiliation(s)
- A E Pritchard
- Department of Microbiology and Immunology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | | | |
Collapse
|
13
|
Abstract
A novel theoretical consideration of the origin and evolution of the genetic code is presented. Code development is viewed from the perspective of simultaneously evolving codons, anticodons and amino acids. Early code structure was determined primarily by thermodynamic stability considerations, requiring simplicity in primordial codes. More advanced coding stages could arise as biological systems became more complex and precise in their replication. To be consistent with these ideas, a model is described in which codons become permanently associated with amino acids only when a codon-anticodon pairing is strong enough to permit rapid translation. Hence all codons are essentially chain-termination or "stop" codons until tRNA adaptors evolve having the ability to bind tightly to them. This view, which draws support from several lines of evidence, differs from the prevalent thinking on code evolution which holds that codons specifying newer amino acids were derived from codons encoding older amino acids.
Collapse
Affiliation(s)
- N Lehman
- Space Sciences Laboratory, University of California, Berkeley, Oakland 94608
| | | |
Collapse
|
14
|
Ziaie Z, Suyama Y. The cytochrome oxidase subunit I gene of Tetrahymena: a 57 amino acid NH2-terminal extension and a 108 amino acid insert. Curr Genet 1987; 12:357-68. [PMID: 2833363 DOI: 10.1007/bf00405758] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gene sequence for cytochrome oxidase subunit I (COI) in the ciliate Tetrahymena mitochondrial DNA has been determined and shown to be coded by the same strand as codes the genes (in order) for 14S rRNA, tRNA(trp), tRNA(glu), 21S rRNA, tRNA(leu) and tRNA(met). The predicted protein has 698 amino acids, including an NH2-terminal 57 amino acid extension and a 108 amino acid insert originally found in Paramecium COI. These extension and insert segments are not highly hydrophobic but are relatively rich in lysine, arginine and serine. In analogy with the presequence of nuclear-encoded mitochondrial proteins, they might function as a transmembrane signal. The remaining polypeptide segments show a hydrophobicity characteristic of membrane spanning proteins. TCOI shows a 64% amino acid identity with Paramecium COI but less than a 38% amino acid conservation with human COI. The Tetrahymena mitochondrial code is analogous with the mammalian mitochondrial code; but differs from the Tetrahymena nuclear genetic code; TGA is exclusively translated as tryptophan; ATA is used as an initiation codon probably for methionine, and TAA as a stop codon; the arginine codons (CGN) are not used. The use of the leucine codon TTA in TCOI is contradictory to the codon recognition pattern previously obtained from the isolated tRNA(leu) isoacceptors recognizing only the CUN codons, but consistent with the tRNA(leu) (anticodon UAA) gene encoded in the genome. The reason for this inconsistency has not been resolved.
Collapse
Affiliation(s)
- Z Ziaie
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
15
|
Abstract
Some recent puzzling data on mitochondria put in question their place on the phylogenetic tree. A hypothesis, the archigenetic hypothesis, is presented, which generally agrees with Woese-Fox's concept of the common origin of eubacteria, archaebacteria, and eukaryotic hosts. However, for the first time, a case is made for the evolution of mitochondria from the ancient predecessors of pro- and eukaryotes (protobionts), not from eubacteria. Animal, fungal, and plant mitochondria are considered to be endosymbionts derived from independent free-living cells (mitobionts), which, having arisen at different developmental stages of protobionts, retained some of their ancient primitive features of the genetic code and the transcription-translation systems. The molecular-biological, bioenergetic, and paleontological aspects of this new concept of cellular evolution are discussed.
Collapse
Affiliation(s)
- R Mikelsaar
- Institute of General and Molecular Pathology, Tartu State University, Estonia, USSR
| |
Collapse
|
16
|
Ebringer L, Krajčovič J. Are chloroplasts and mitochondria the remnants of prokaryotic endosymbionts? Folia Microbiol (Praha) 1986. [DOI: 10.1007/bf02928005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Pritchard AE, Seilhamer JJ, Cummings DJ. Paramecium mitochondrial DNA sequences and RNA transcripts for cytochrome oxidase subunit I, URF1, and three ORFs adjacent to the replication origin. Gene X 1986; 44:243-53. [PMID: 3023187 DOI: 10.1016/0378-1119(86)90188-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A 2-kb region adjacent to the replication origin (ori) and a 3-kb region located between the small and large ribosomal RNAs of Paramecium mitochondrial (mt) DNA have been sequenced and the locations of their transcripts determined. The ori segment contains four transcripts, some of which are overlapping, which encode a known protein and two other open reading frames. The other segment encodes, on separate transcripts, the cytochrome c oxidase subunit one gene (COI) and the URF1 gene (ND1) common to most mt genomes. All these genes have the same orientation and do not contain introns. The COI gene is the most divergent of those known and has an internal 108 amino acid 'insert' not found in COI genes from other organisms. With these data it is possible to define a probable Paramecium mt genetic code. With the exception that TGA codes for tryptophan and the use of different start codons, Paramecium mtDNA appears to follow the universal code. GTA possibly can be used as a start codon.
Collapse
|
18
|
Mahalingam R, Seilhamer JJ, Pritchard AE, Cummings DJ. Identification of Paramecium mitochondrial proteins using antibodies raised against fused mitochondrial gene products. Gene 1986; 49:129-38. [PMID: 3032745 DOI: 10.1016/0378-1119(86)90392-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Paramecium aurelia mitochondrial (mt) DNA fragments carrying the coding regions for two proteins, P1 (in the region adjacent to the origin of replication) and COII (subunit II of cytochrome oxidase), were used to study mt gene expression. The sequence for the portion of mtDNA containing P1 has already been described [Pritchard et al., Gene 44 (1986) 243-253]. The complete nucleotide sequence of the portion containing the COII gene is presented here. An 18.5-kDa protein was produced in maxicells when a fragment containing a major portion of the sequence coding for P1 was used. This fragment and a fragment carrying the COII gene were cloned into the expression vector pTRPLE', and antibodies were raised against the resulting fusion proteins in an Escherichia coli lysate. Western blots of Paramecium mt extracts identified two proteins, one 21 kDa (COII) and the other 23.5 kDa (P1). The size of the P1 protein is in agreement with the size of the open reading frame in that region of mitochondrial DNA. Based on extensive amino acid homology to the Paramecium gene and limited homology to COII genes from other organisms, the COII gene in another ciliate, Tetrahymena pyriformis, was identified just upstream of the small subunit rDNA in previously published sequences (Schnare et al., 1986). The size of the COII gene and the homology with the COII gene from Tetrahymena suggest that ATC, ATT, GTG and GTC could be used as translational initiators in Paramecium mitochondria.
Collapse
|
19
|
Seilhamer JJ, Olsen GJ, Cummings DJ. Paramecium mitochondrial genes. I. Small subunit rRNA gene sequence and microevolution. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42971-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|