1
|
Canals R, Chaudhuri RR, Steiner RE, Owen SV, Quinones-Olvera N, Gordon MA, Baym M, Ibba M, Hinton JCD. The fitness landscape of the African Salmonella Typhimurium ST313 strain D23580 reveals unique properties of the pBT1 plasmid. PLoS Pathog 2019; 15:e1007948. [PMID: 31560731 PMCID: PMC6785131 DOI: 10.1371/journal.ppat.1007948] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/09/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These findings were consistent with the essentiality analyses of other S. Typhimurium ST19 and S. Typhi strains. The global mutagenesis approach also identified 60 sRNAs and 413 intergenic regions required for growth in at least one in vitro growth condition. By infecting murine macrophages with the transposon library, we identified 68 genes that were required for intra-macrophage replication but did not impact fitness in vitro. None of these genes were unique to S. Typhimurium D23580, consistent with a high conservation of gene function between S. Typhimurium ST313 and ST19 and suggesting that novel virulence factors are not involved in the interaction of strain D23580 with murine macrophages. We discovered that transposon insertions rarely occurred in many pBT1 plasmid-encoded genes (36), compared with genes carried by the pSLT-BT virulence plasmid and other bacterial plasmids. The key essential protein encoded by pBT1 is a cysteinyl-tRNA synthetase, and our enzymological analysis revealed that the plasmid-encoded CysRSpBT1 had a lower ability to charge tRNA than the chromosomally-encoded CysRSchr enzyme. The presence of aminoacyl-tRNA synthetases in plasmids from a range of Gram-negative and Gram-positive bacteria suggests that plasmid-encoded essential genes are more common than had been appreciated.
Collapse
Affiliation(s)
- Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Roy R Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Rebecca E Steiner
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Siân V Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melita A Gordon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi, Central Africa
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jay C D Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Hall RN, Meers J, Mitter N, Fowler EV, Mahony TJ. The Meleagrid herpesvirus 1 genome is partially resistant to transposition. Avian Dis 2013; 57:380-6. [PMID: 23901750 DOI: 10.1637/10339-082912-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed.
Collapse
Affiliation(s)
- Robyn N Hall
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | | | | | | | | |
Collapse
|
3
|
Claeys Bouuaert C, Chalmers R. Hsmar1 transposition is sensitive to the topology of the transposon donor and the target. PLoS One 2013; 8:e53690. [PMID: 23341977 PMCID: PMC3544897 DOI: 10.1371/journal.pone.0053690] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/04/2012] [Indexed: 01/08/2023] Open
Abstract
Hsmar1 is a member of the Tc1-mariner superfamily of DNA transposons. These elements mobilize within the genome of their host by a cut-and-paste mechanism. We have exploited the in vitro reaction provided by Hsmar1 to investigate the effect of DNA supercoiling on transposon integration. We found that the topology of both the transposon and the target affect integration. Relaxed transposons have an integration defect that can be partially restored in the presence of elevated levels of negatively supercoiled target DNA. Negatively supercoiled DNA is a better target than nicked or positively supercoiled DNA, suggesting that underwinding of the DNA helix promotes target interactions. Like other Tc1-mariner elements, Hsmar1 integrates into 5′-TA dinucleotides. The direct vicinity of the target TA provides little sequence specificity for target interactions. However, transposition within a plasmid substrate was not random and some TA dinucleotides were targeted preferentially. The distribution of intramolecular target sites was not affected by DNA topology.
Collapse
|
4
|
In vitro mutagenesis of Bacillus subtilis by using a modified Tn7 transposon with an outward-facing inducible promoter. Appl Environ Microbiol 2008; 74:3419-25. [PMID: 18408063 DOI: 10.1128/aem.00476-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A Tn7 donor plasmid, pTn7SX, was constructed for use with the model gram-positive bacterium Bacillus subtilis. This new mini-Tn7, mTn7SX, contains a spectinomycin resistance cassette and an outward-facing, xylose-inducible promoter, thereby allowing for the regulated expression of genes downstream of the transposon. We demonstrate that mTn7SX inserts are obtained at a high frequency and occur randomly throughout the B. subtilis genome. The utility of this system was demonstrated by the selection of mutants with increased resistance to the antibiotic fosfomycin or duramycin.
Collapse
|
5
|
TrwC-mediated site-specific recombination is controlled by host factors altering local DNA topology. J Bacteriol 2007; 189:9037-43. [PMID: 17921309 DOI: 10.1128/jb.01152-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
R388 conjugative relaxase TrwC acts as a site-specific recombinase, promoting recombination between two cognate oriTs on double-stranded DNA substrates. The relaxosome component TrwA is also required for efficient recombination. In this work we present data on the in vivo control of this reaction by host proteins that affect local DNA topology. In the absence of TrwA, binding of integration host factor (IHF) to the oriT keeps the recombination levels low, probably by keeping the relaxosome complex, formed at recombination locus 1, in a "closed" conformation. In an IHF-deficient (IHF-) background, the formation of a transcript elongation complex at this locus still hampers recombination. A mutation abating the promoter sequence at locus 1, or repression of transcription by exposure to rifampin, lifts the inhibition imposed on recombination in an IHF- background. We also observe an increase in conjugation efficiency under these conditions. Relieving the inhibition imposed by these host factors allows efficient levels of recombination between short oriT loci in the absence of TrwA. The presence of TrwA counteracts these inhibitory effects. TrwA would then activate both recombination and conjugation by switching the conformation of the relaxosome to an "open" form that exposes single-stranded DNA at the nic site, promoting the initial TrwC nicking reaction.
Collapse
|
6
|
Manna D, Porwollik S, McClelland M, Tan R, Higgins NP. Microarray analysis of Mu transposition in Salmonella enterica, serovar Typhimurium: transposon exclusion by high-density DNA binding proteins. Mol Microbiol 2007; 66:315-28. [PMID: 17850262 DOI: 10.1111/j.1365-2958.2007.05915.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All organisms contain transposons with the potential to disrupt and rearrange genes. Despite the presence of these destabilizing sequences, some genomes show remarkable stability over evolutionary time. Do bacteria defend the genome against disruption by transposons? Phage Mu replicates by transposition and virtually all genes are potential insertion targets. To test whether bacteria limit Mu transposition to specific parts of the chromosome, DNA arrays of Salmonella enterica were used to quantitatively measure target site preference and compare the data with Escherichia coli. Essential genes were as susceptible to transposon disruption as non-essential ones in both organisms, but the correlation of transposition hot spots among homologous genes was poor. Genes in highly transcribed operons were insulated from transposon mutagenesis in both organisms. A 10 kb cold spot on the pSLT plasmid was near parS, a site to which the ParB protein binds and spreads along DNA. Deleting ParB erased the plasmid cold spot, and an ectopic parS site placed in the Salmonella chromosome created a new cold spot in the presence of ParB. Our data show that competition between cellular proteins and transposition proteins on plasmids and the chromosome is a dominant factor controlling the genetic footprint of transposons in living cells.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL-35294, USA
| | | | | | | | | |
Collapse
|
7
|
Kivistik PA, Kivisaar M, Hõrak R. Target site selection of Pseudomonas putida transposon Tn4652. J Bacteriol 2007; 189:3918-21. [PMID: 17351034 PMCID: PMC1913344 DOI: 10.1128/jb.01863-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the target preferences of a Tn3 family transposon Tn4652. Alignment of 93 different insertion sites revealed a consensus sequence which resembles that of Tn3, indicating that despite a low similarity between Tn4652 and Tn3 transposases, their target site recognition is conserved.
Collapse
Affiliation(s)
- Paula Ann Kivistik
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, 51010 Tartu, Estonia
| | | | | |
Collapse
|
8
|
Aubert D, Naas T, Héritier C, Poirel L, Nordmann P. Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of beta-lactam resistance genes. J Bacteriol 2006; 188:6506-14. [PMID: 16952941 PMCID: PMC1595497 DOI: 10.1128/jb.00375-06] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS1999 and a point mutant derivative, IS1999.2, have been described inserted upstream of emerging antibiotic resistance genes bla(VEB-1) and bla(OXA-48). 5' Rapid amplification of cDNA ends experiments revealed that expression of these beta-lactamase genes was driven by the outward-directed promoter, P(out), located in the IS1999 elements. These findings led us to study IS1999-mediated gene mobilization. Thus, the transposition properties of IS1999 and of IS1999-based composite transposons, made of two copies of IS1999 in different orientations, were investigated. IS1999 or IS1999-based composite transposons were capable of transposing onto the conjugative plasmid pOX38-Gen. Sequence analysis of the insertion sites revealed that IS1999 inserted preferentially into DNA targets containing the consensus sequence NGCNNNGCN. Transposition was more efficient when at least one left inverted repeat end was located at an outside end of the transposon. The transposition frequency of IS1999.2 was 10-fold lower than that of IS1999, and transposition frequencies of the putative natural transposon, Tn1999, were below detection limits of our transposition assay. This reduced transposition frequency of IS1999.2-based elements may result from a lower transcription of the transposase gene, as revealed by reverse transcription-PCR analyses.
Collapse
Affiliation(s)
- Daniel Aubert
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre Cedex, France.
| | | | | | | | | |
Collapse
|
9
|
Manna D, Breier AM, Higgins NP. Microarray analysis of transposition targets in Escherichia coli: the impact of transcription. Proc Natl Acad Sci U S A 2004; 101:9780-5. [PMID: 15210965 PMCID: PMC470751 DOI: 10.1073/pnas.0400745101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Indexed: 11/18/2022] Open
Abstract
Transposable elements have influenced the genetic and physical composition of all modern organisms. Defining how different transposons select target sites is critical for understanding the biochemical mechanism of this type of recombination and the impact of mobile genes on chromosome structure and function. Phage Mu replicates in Gram-negative bacteria using an extremely efficient transposition reaction. Replicated copies are excised from the chromosome and packaged into virus particles. Each viral genome plus several hundred base pairs of host DNA covalently attached to the prophage right end is packed into a virion. To study Mu transposition preferences, we used DNA microarray technology to measure the abundance of >4,000 Escherichia coli genes in purified Mu phage DNA. Insertion hot- and cold-spot genes were found throughout the genome, reflecting >1,000-fold variation in utilization frequency. A moderate preference was observed for genes near the origin compared to terminus of replication. Large biases were found at hot and cold spots, which often include several consecutive genes. Efficient transcription of genes had a strong negative influence on transposition. Our results indicate that local chromosome structure is more important than DNA sequence in determining Mu target-site selection.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
10
|
Abstract
The bacterial transposon Tn7 inserts at high frequency into a specific site called attTn7, which is present in the chromosomes of many bacteria. We show here that transcription of a nearby gene, glmS, decreases the frequency of Tn7 insertion into attTn7, thus providing a link between Tn7 transposition and host cell metabolism.
Collapse
Affiliation(s)
- R T DeBoy
- The Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
11
|
Paolozzi L, Fabozzi G, Ghelardini P. Mu DNA reintegration upon excision: evidence for a possible involvement of nucleoid folding. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 3):591-598. [PMID: 10746762 DOI: 10.1099/00221287-146-3-591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutations induced by the integration of a Mugem2ts prophage can revert at frequencies around 1x10(-6). In these revertant clones, the prophage excised from its original localization is not lost but reintegrated elsewhere in the host genome. One of the most intriguing aspects of this process is that the prophage reintegration is not randomly distributed: there is a strong correlation between the original site of insertion (the donor site) and the target site of the phage DNA migration (the receptor site). In this paper, it is shown that in the excision-reintegration process mediated by Mugem2ts, the position of the initial prophage site strongly influences the location of the reintegration site. In addition, for each donor site, the receptor site is a discrete DNA region within which the excised Mu DNA can reintegrate and the two sites implicated in phage DNA migration must be located on the same DNA molecule. These data suggest the involvement of nucleoid folding in the excision-reintegration process.
Collapse
Affiliation(s)
- L Paolozzi
- Dipartimento di Biologia, Università 'Tor Vergata' Roma, Italy1
| | - G Fabozzi
- Dipartimento di Biologia, Università 'Tor Vergata' Roma, Italy1
| | - P Ghelardini
- Dipartimento di Biologia, Università 'Tor Vergata' Roma, Italy1
| |
Collapse
|
12
|
Manna D, Higgins NP. Phage Mu transposition immunity reflects supercoil domain structure of the chromosome. Mol Microbiol 1999; 32:595-606. [PMID: 10320581 DOI: 10.1046/j.1365-2958.1999.01377.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transposition immunity is the negative influence that the presence of one transposon sequence has on the probability of a second identical element inserting in the same site or in sites nearby. A transposition-defective Mu derivative (MudJr1) produced transposition immunity in both directions from one insertion point in the Salmonella typhimurium chromosome. To control for the sequence preference of Mu transposition proteins, Tn10 elements were introduced as targets at various distances from an immunity-conferring MudJr1 element. Mu transposition into a Tn10 target was not detectable when the distance of separation from MudJr1 was 5 kb, and transposition was unencumbered when the separation was 25 kb. Between 5 kb and 25 kb, immunity decayed gradually with distance. Immunity decayed more sharply in a gyrase mutant than in a wild-type strain. We propose that Mu transposition immunity senses the domain structure of bacterial chromosomes.
Collapse
Affiliation(s)
- D Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
13
|
Abstract
Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
Collapse
Affiliation(s)
- J Mahillon
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
14
|
Abstract
Transposable elements are discrete mobile DNA segments that can insert into non-homologous target sites. Diverse patterns of target site selectivity are observed: Some elements display considerable target site selectivity and others display little obvious selectivity, although none appears to be truly "random." A variety of mechanisms for target site selection are used: Some elements use direct interactions between the recombinase and target DNA whereas other elements depend upon interactions with accessory proteins that communicate both with the target DNA and the recombinase. The study of target site selectivity is useful in probing recombination mechanisms, in studying genome structure and function, and also in providing tools for genome manipulation.
Collapse
Affiliation(s)
- N L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
15
|
Abstract
Most transposons display target site selectivity, inserting preferentially into sites that contain particular features. The bacterial transposon Tn7 possesses the unusual ability to recognize two different classes of target sites. Tn7 inserts into these classes of target sites through two transposition pathways mediated by different combinations of the five Tn7-encoded transposition proteins. In one transposition pathway, Tn7 inserts into a unique site in the bacterial chromosome, attTn7, through specific recognition of sequences in attTn7; the other transposition pathway ignores the attTn7 target. Here we examine targets of the non-attTn7 pathway and find that Tn7 preferentially inserts into bacterial plasmids that can conjugate between cells. Furthermore, Tn7 appears to recognize preferred targets through the conjugation process, as we show that Tn7 inserts poorly into plasmids containing mutations that block plasmid transfer. We propose that Tn7 recognizes preferred targets through features of the conjugation process, a distinctive target specificity that offers Tn7 the ability to spread efficiently through bacterial populations.
Collapse
Affiliation(s)
- C A Wolkow
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
16
|
Blumenthal RM, Borst DW, Matthews RG. Experimental analysis of global gene regulation in Escherichia coli. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:1-86. [PMID: 8787606 DOI: 10.1016/s0079-6603(08)60189-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R M Blumenthal
- Department of Microbiology, Medical College of Ohio, Toledo 43699, USA
| | | | | |
Collapse
|
17
|
Kleckner N, Chalmers RM, Kwon D, Sakai J, Bolland S. Tn10 and IS10 transposition and chromosome rearrangements: mechanism and regulation in vivo and in vitro. Curr Top Microbiol Immunol 1996; 204:49-82. [PMID: 8556869 DOI: 10.1007/978-3-642-79795-8_3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N Kleckner
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
18
|
Hallet B, Rezsöhazy R, Mahillon J, Delcour J. IS231A insertion specificity: consensus sequence and DNA bending at the target site. Mol Microbiol 1994; 14:131-9. [PMID: 7830551 DOI: 10.1111/j.1365-2958.1994.tb01273.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In its natural host, Bacillus thuringiensis, the insertion sequence IS231A is preferentially inserted into the terminal inverted repeats of the transposon Tn4430. Using a novel transposition assay, we demonstrate that the Tn4430 ends behave as insertion hot spots for IS231A in Escherichia coli. Sequence analysis reveals that IS231A insertion sites match the 5'-GGG(N)5CCC-3' consensus. However, this consensus is not the only determinant of IS231A insertion specificity. Although both Tn4430 ends have identical sequences, one is strongly preferred to the other and the orientation of insertion into this end is not random. We demonstrate that this preference is determined by the flanking regions of the site. These regions display a conserved periodic organization of their sequence which, by conferring anisotropic flexibility, would induce the DNA to bend in a roughly 'S'-shaped structure centered on the target consensus. DNA conformation analysis by polyacrylamide gel electrophoresis indeed shows that the preferred target site of IS231A is flanked by DNA segments curved in opposite directions. We present a model in which DNA bendability and curvature would contribute to the positioning of IS231A transposase on the target DNA.
Collapse
Affiliation(s)
- B Hallet
- Unité de Génétique, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | | | | | | |
Collapse
|
19
|
Wang X, Higgins NP. 'Muprints' of the lac operon demonstrate physiological control over the randomness of in vivo transposition. Mol Microbiol 1994; 12:665-77. [PMID: 7934890 DOI: 10.1111/j.1365-2958.1994.tb01054.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A method called Muprinting has been developed that uses PCR to generate a detailed picture of the bacteriophage Mu transposition sites in chosen domains of the bacterial chromosome. Muprinting experiments in Escherichia coli show that the frequency of phage integration changes dramatically near two repressor binding sites in the lac operon. When the lac operon was repressed, hotspots for Mu transposition were found near the O1 and O2 operators that are proposed to make a repression loop. When cells were grown in lactose, Mu transposition near these operators was greatly diminished. Striking changes in transposition frequencies were limited to the control region and were not found in a region of the lacZ gene lying beyond the O2 operator. Muprints of the bgl operon showed a different pattern; hotspots for Mu transposition detected in sequences upstream of the bglC promoter when the operon was silenced changed when the operon became activated by mutation. By targeting transposition to the regulatory regions around non-expressed genes, Mu may demonstrate a self-restraint mechanism that allows the virus to move through its host genome without disrupting the functions that contribute to a healthy cell physiology.
Collapse
Affiliation(s)
- X Wang
- Department of Biochemistry, University of Alabama at Birmingham 35294
| | | |
Collapse
|
20
|
van Luenen HG, Plasterk RH. Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans. Nucleic Acids Res 1994; 22:262-9. [PMID: 8127662 PMCID: PMC523575 DOI: 10.1093/nar/22.3.262] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have investigated the target choice of the related transposable elements Tc1 and Tc3 of the nematode C. elegans. The exact locations of 204 independent Tc1 insertions and 166 Tc3 insertions in an 1 kbp region of the genome were determined. There was no phenotypic selection for the insertions. All insertions were into the sequence TA. Both elements have a strong preference for certain positions in the 1 kbp region. Hot sites for integration are not clustered or regularly spaced. The orientation of the integrated transposon has no effect on the distribution pattern. We tested several explanations for the target site preference. If simple structural features of the DNA (e.g. bends) would mark hot sites, we would expect the patterns of the two related transposons Tc1 and Tc3 to be similar; however we found them to be completely different. Furthermore we found that the sequence at the donor site has no effect on the choice of the new insertion site, because the insertion pattern of a transposon that jumps from a transgenic donor site is identical to the insertion pattern of transposons jumping from endogenous genomic donor sites. The most likely explanation for the target choice is therefore that the primary sequence of the target site is recognized by the transposase. However, alignment of the Tc1 and Tc3 integration sites does not reveal a strong consensus sequence for either transposon.
Collapse
Affiliation(s)
- H G van Luenen
- The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam
| | | |
Collapse
|
21
|
Abstract
The retroposon sequences, their mechanisms of transposition and the occurrence of insertional mutation in the mammalian genome are reviewed. Insertional mutations fall into two broad categories: those due to the disruption of a gene following the physical integration of a foreign DNA sequence result in loss of gene product and would be expected to be associated with a recessive mutation. A second class of insertional mutation is well documented in which upon integration the promoter/enhancer activities inherent in the retroposon genome exert their influence on neighboring genes. This promoter/enhancer activity of integrated retroposons may have effects over relatively long distances and thus limit the possibilities of establishing an association between retroposon integration and mutation. It is emphasized that a systematic search for insertional mutations in the mammalian genome involves an extensive two-dimensional array of possible retroposon sequences and mutant alleles. Present results represent only a small portion of the total array. Future studies promise to be fruitful in efforts to isolate genes through insertional tagging, to characterize the mechanisms of retroposon transposition, as well as to study the stability of the mammalian genome.
Collapse
Affiliation(s)
- J Favor
- GSF-Institut für Säugetiergenetik, Neuherberg, Germany
| | | |
Collapse
|
22
|
Bender J, Kleckner N. Tn10 insertion specificity is strongly dependent upon sequences immediately adjacent to the target-site consensus sequence. Proc Natl Acad Sci U S A 1992; 89:7996-8000. [PMID: 1325639 PMCID: PMC49842 DOI: 10.1073/pnas.89.17.7996] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transposon Tn10 inserts preferentially into particular "hotspots" that have been shown by sequence analysis to contain the symmetrical consensus sequence 5'-GCTNAGC-3'. This consensus is necessary but not sufficient to determine insertion specificity. We have mutagenized a known hotspot to identify other determinants for insertion into this site. This genetic dissection of the sequence context of a protein binding site shows that a second major determinant for Tn10 insertion specificity is contributed by the 6-9 base pairs that flank each end of the consensus sequence. Variations in these context base pairs can confer variations of at least 1000-fold in insertion frequency. There is no discernible consensus sequence for the context determinant, suggesting that sequence-specific protein-DNA contacts are not playing a major role. Taken together with previous work, the observations presented suggest a model for the interaction of transposase with the insertion site: symmetrically disposed subunits bind with specific contacts to the major groove of consensus-sequence base pairs, while flanking sequences influence the interaction through effects on DNA helix structure. We also show that the determinants important for insertion into a site are not important for transposition out of that site.
Collapse
Affiliation(s)
- J Bender
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
23
|
Mollet B, Delley M. Spontaneous deletion formation within the beta-galactosidase gene of Lactobacillus bulgaricus. J Bacteriol 1990; 172:5670-6. [PMID: 2120187 PMCID: PMC526881 DOI: 10.1128/jb.172.10.5670-5676.1990] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To investigate the genetic stability of the dairy organism Lactobacillus bulgaricus, we have analyzed 107 spontaneous mutations of the beta-galactosidase gene of this organism. Ten of these mutations were DNA rearrangements giving rise to different deletions, located predominantly within a small hot spot area. The DNA sequences of the different deletion junctions have been determined. The analysis showed that the deletions can be divided into two classes, depending on the presence of short direct-repeat sequences at the deletion endpoints and on the length of the deleted sequences. Possible mechanisms of these deletion formations and the involvement of inverted-repeat sequences that may enhance slipped DNA mispairing are discussed.
Collapse
Affiliation(s)
- B Mollet
- Nestlé Research Centre, Nestec Ltd., Lausanne, Switzerland
| | | |
Collapse
|
24
|
Wiater LA, Grindley ND. Integration host factor increases the transpositional immunity conferred by gamma delta ends. J Bacteriol 1990; 172:4951-8. [PMID: 2168370 PMCID: PMC213150 DOI: 10.1128/jb.172.9.4951-4958.1990] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ends of the bacterial transposon gamma delta contain adjacent binding sites for gamma delta transposase and integration host factor (IHF). IHF+ and IHF- strains were used in conjunction with gamma delta transposon ends containing or lacking the site for IHF binding to determine the role that IHF plays in various gamma delta-mediated transposition events. IHF was not essential for the transposition of gamma delta and seemed to decrease its frequency of transposition about threefold. IHF played no role in determining the distribution of gamma delta inserts into a target replicon, nor did it significantly alter the frequency of simple transpositions. The only clear role discerned for IHF and the terminal IHF-binding sites was in transposition immunity. IHF stimulated the immunity of those plasmids that contain an end of gamma delta, provided the end included the terminal IHF-binding site. For both ends, the degree of stimulation of immunity was similar to the stimulation of binding of transposase by IHF.
Collapse
Affiliation(s)
- L A Wiater
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | | |
Collapse
|
25
|
Morawetz C, Hagen U. Effect of irradiation and mutagenic chemicals on the generation of ADH2- and ADH4-constitutive mutants in yeast: the inducibility of Ty transposition by UV and ethyl methanesulfonate. Mutat Res 1990; 229:69-77. [PMID: 2156159 DOI: 10.1016/0027-5107(90)90009-s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A strain defective in fermentation due to a deletion in the ADH1 gene was used to generate revertants which are constitutive mutants of the genes ADH2 and ADH4. By analyzing the DNA of the mutants we determined the frequency of Ty insertions into the promoter region of these genes. We found an increase in transposition after UV irradiation and treatment with ethyl methanesulfonate (EMS). Chemical inhibition of DNA synthesis and translation decreased the induced mutant yield and the transposition frequency, whereas inhibition of transcription had no effect. Differences in transposition frequencies between different strains and between the 2 loci lead to the conclusion that not only the transposable element itself but also the insertion sites determine the frequency of Ty transposition to a given locus.
Collapse
Affiliation(s)
- C Morawetz
- Gesellschaft für Strahlen- und Umweltforschung, Institut für Strahlenbiologie, Neuherberg, F.R.G
| | | |
Collapse
|
26
|
Casadesus J, Roth JR. Absence of insertions among spontaneous mutants of Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:210-6. [PMID: 2546038 DOI: 10.1007/bf00334358] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While insertion sequences (IS) in Escherichia coli transpose frequently to generate spontaneous insertion mutants, such mutations are rare in Salmonella typhimurium: the only documented insertion mutation is a hisD mutation caused by the Salmonella-specific IS element IS200. To obtain more examples of IS200 insertion mutations and to seek additional types of IS elements in Salmonella, we selected and characterized 422 independent, spontaneous His- mutants and some 2100 additional mutants that are not necessarily independent. None of the mutants showed the absolute polar effect characteristic of insertion mutations or the reversion properties characteristic of insertions (low spontaneous reversion frequency and no reversion induction by chemical mutagens). A few mutants, showing a high spontaneous reversion frequency, were screened physically. No insertion mutations were found. Thus insertion mutations appear to be rare in S. typhimurium, in strong contrast to E. coli and despite the possession in Salmonella of at least one type of insertion element (IS200). These results suggest that in Salmonella transposition of the endogenous elements has been controlled. The transposition ability of the elements may have been reduced or favored target sites removed from the host genome.
Collapse
Affiliation(s)
- J Casadesus
- Department of Biology, University of Utah, Salt Lake City 84112
| | | |
Collapse
|