1
|
Bossé JT, Li Y, Leanse LG, Zhou L, Chaudhuri RR, Peters SE, Wang J, Maglennon GA, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. Rationally designed mariner vectors for functional genomic analysis of Actinobacillus pleuropneumoniae and other Pasteurellaceae species by transposon-directed insertion-site sequencing (TraDIS). ANIMAL DISEASES 2021; 1:29. [PMID: 34870287 PMCID: PMC8616859 DOI: 10.1186/s44149-021-00026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Comprehensive identification of conditionally essential genes requires efficient tools for generating high-density transposon libraries that, ideally, can be analysed using next-generation sequencing methods such as Transposon Directed Insertion-site Sequencing (TraDIS). The Himar1 (mariner) transposon is ideal for generating near-saturating mutant libraries, especially in AT-rich chromosomes, as the requirement for integration is a TA dinucleotide, and this transposon has been used for mutagenesis of a wide variety of bacteria. However, plasmids for mariner delivery do not necessarily work well in all bacteria. In particular, there are limited tools for functional genomic analysis of Pasteurellaceae species of major veterinary importance, such as swine and cattle pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, respectively. Here, we developed plasmids, pTsodCPC9 and pTlacPC9 (differing only in the promoter driving expression of the transposase gene), that allow delivery of mariner into both these pathogens, but which should also be applicable to a wider range of bacteria. Using the pTlacPC9 vector, we have generated, for the first time, saturating mariner mutant libraries in both A. pleuropneumoniae and P. multocida that showed a near random distribution of insertions around the respective chromosomes as detected by TraDIS. A preliminary screen of 5000 mutants each identified 8 and 14 genes, respectively, that are required for growth under anaerobic conditions. Future high-throughput screening of the generated libraries will facilitate identification of mutants required for growth under different conditions, including in vivo, highlighting key virulence factors and pathways that can be exploited for development of novel therapeutics and vaccines.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK
| | - Leon G Leanse
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK.,Present Address: Wellman Center for Photomedicine, Harvard Medical School, Boston, USA
| | - Liqing Zhou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK.,Present Address: The Applied Diagnostic Research and Evaluation Unit, St George's University of London, London, UK
| | - Roy R Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Present Address: Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Sarah E Peters
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jinhong Wang
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Gareth A Maglennon
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, UK
| | - Matthew T G Holden
- The Wellcome Trust Sanger Institute, Cambridge, UK.,Present Address: School of Medicine, University of St Andrews, St Andrews, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Present Address: The University of Melbourne, Parkville, Victoria Australia
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, UK
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, UK
| | | |
Collapse
|
2
|
Theodosiou E, Breisch M, Julsing MK, Falcioni F, Bühler B, Schmid A. An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli. Biotechnol Bioeng 2017; 114:1511-1520. [PMID: 28266022 DOI: 10.1002/bit.26281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 01/24/2023]
Abstract
Amino acid hydroxylases depend directly on the cellular TCA cycle via their cosubstrate α-ketoglutarate (α-KG) and are highly useful for the selective biocatalytic oxyfunctionalization of amino acids. This study evaluates TCA cycle engineering strategies to force and increase α-KG flux through proline-4-hydroxylase (P4H). The genes sucA (α-KG dehydrogenase E1 subunit) and sucC (succinyl-CoA synthetase β subunit) were alternately deleted together with aceA (isocitrate lyase) in proline degradation-deficient Escherichia coli strains (ΔputA) expressing the p4h gene. Whereas, the ΔsucCΔaceAΔputA strain grew in minimal medium in the absence of P4H, relying on the activity of fumarate reductase, growth of the ΔsucAΔaceAΔputA strictly depended on P4H activity, thus coupling growth to proline hydroxylation. P4H restored growth, even when proline was not externally added. However, the reduced succinyl-CoA pool caused a 27% decrease of the average cell size compared to the wildtype strain. Medium supplementation partially restored the morphology and, in some cases, enhanced proline hydroxylation activity. The specific proline hydroxylation rate doubled when putP, encoding the Na+ /l-proline transporter, was overexpressed in the ΔsucAΔaceAΔputA strain. This is in contrast to wildtype and ΔputA single-knock out strains, in which α-KG availability obviously limited proline hydroxylation. Such α-KG limitation was relieved in the ΔsucAΔaceAΔputA strain. Furthermore, the ΔsucAΔaceAΔputA strain was used to demonstrate an agar plate-based method for the identification and selection of active α-KG dependent hydroxylases. This together with the possibility to waive selection pressure and overcome α-KG limitation in respective hydroxylation processes based on living cells emphasizes the potential of TCA cycle engineering for the productive application of α-KG dependent hydroxylases. Biotechnol. Bioeng. 2017;114: 1511-1520. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Marina Breisch
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Mattijs K Julsing
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Francesco Falcioni
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig 04318, Germany
| |
Collapse
|
3
|
Abstract
The tricarboxylic acid (TCA) cycle plays two essential roles in metabolism. First, under aerobic conditions the cycle is responsible for the total oxidation of acetyl-CoA that is derived mainly from the pyruvate produced by glycolysis. Second, TCA cycle intermediates are required in the biosynthesis of several amino acids. Although the TCA cycle has long been considered a "housekeeping" pathway in Escherichia coli and Salmonella enterica, the pathway is highly regulated at the transcriptional level. Much of this control is exerted in response to respiratory conditions. The TCA cycle gene-protein relationship and mutant phenotypes have been well studied, although a few loose ends remain. The realization that a "shadow" TCA cycle exists that proceeds through methylcitrate has cleared up prior ambiguities. The glyoxylate bypass has long been known to be essential for growth on carbon sources such as acetate or fatty acids because this pathway allowsnet conversion of acetyl-CoA to metabolic intermediates. Strains lacking this pathway fail to grow on these carbon sources, since acetate carbon entering the TCA cycle is quantitatively lost as CO2 resulting in the lack of a means to replenish the dicarboxylic acids consumed in amino acid biosynthesis. The TCA cycle gene-protein relationship and mutant phenotypes have been well studied, although the identity of the small molecule ligand that modulates transcriptional control of the glyoxylate cycle genes by binding to the IclR repressor remains unknown. The activity of the cycle is also exerted at the enzyme level by the reversible phosphorylation of the TCA cycle enzyme isocitrate dehydrogenase catalyzed by a specific kinase/phosphatase to allow isocitratelyase to compete for isocitrate and cleave this intermediate to glyoxylate and succinate.
Collapse
|
4
|
Brutinel ED, Gralnick JA. Anomalies of the anaerobic tricarboxylic acid cycle inShewanella oneidensisrevealed by Tn-seq. Mol Microbiol 2012; 86:273-83. [DOI: 10.1111/j.1365-2958.2012.08196.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Evan D. Brutinel
- BioTechnology Institute and Department of Microbiology; University of Minnesota-Twin Cities; St Paul; MN; 55108; USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute and Department of Microbiology; University of Minnesota-Twin Cities; St Paul; MN; 55108; USA
| |
Collapse
|
5
|
Nogales J, Macchi R, Franchi F, Barzaghi D, Fernández C, García JL, Bertoni G, Díaz E. Characterization of the last step of the aerobic phenylacetic acid degradation pathway. MICROBIOLOGY-SGM 2007; 153:357-365. [PMID: 17259607 DOI: 10.1099/mic.0.2006/002444-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phenylacetic acid (PA) degradation in bacteria involves an aerobic hybrid pathway encoded by the paa gene cluster. It is shown here that succinyl-CoA is one of the final products of this pathway in Pseudomonas putida and Escherichia coli. Moreover, in vivo and in vitro studies revealed that the paaE gene encodes the beta-ketoadipyl-CoA thiolase that catalyses the last step of the PA catabolic pathway, i.e. the thiolytic cleavage of beta-ketoadipyl-CoA to succinyl-CoA and acetyl-CoA. Succinyl-CoA is suggested as a common final product of aerobic hybrid pathways devoted to the catabolism of aromatic compounds.
Collapse
Affiliation(s)
- Juan Nogales
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Raffaella Macchi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Federico Franchi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Dagania Barzaghi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Cristina Fernández
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José L García
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Giovanni Bertoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Eduardo Díaz
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
6
|
Veit A, Polen T, Wendisch VF. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl Microbiol Biotechnol 2006; 74:406-21. [PMID: 17273855 DOI: 10.1007/s00253-006-0680-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/13/2006] [Accepted: 09/13/2006] [Indexed: 11/25/2022]
Abstract
During aerobic growth on glucose, Escherichia coli produces acetate in the so-called overflow metabolism. DNA microarray analysis was used to determine the global gene expression patterns of chemostat cultivations of E. coli MG1655 that were characterized by different acetate formation rates during aerobic growth on glucose. A correlation analysis identified that expression of ten genes (sdhCDAB, sucB, sucC, acnB, lpdA, fumC and mdh) encoding the TCA cycle enzymes succinate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, aconitase, fumarase and malate dehydrogenase, respectively, and of the acs-yjcH-actP operon for acetate utilization correlated negatively with acetate formation. Relieving transcriptional control of the sdhCDAB-b0725-sucABCD operon by chromosomal promoter exchange mutagenesis yielded a strain with increased specific activities of the TCA cycle enzymes succinate dehydrogenase, alpha-ketoglutarate dehydrogenase and succinyl-CoA synthetase, which are encoded by this operon. The resulting strain produced less acetate and directed more carbon towards carbon dioxide formation than the parent strain MG1655 while maintaining high growth and glucose consumption rates.
Collapse
Affiliation(s)
- Andrea Veit
- Institute of Biotechnology 1, Research Center Juelich, 52428 Juelich, Germany
| | | | | |
Collapse
|
7
|
Li M, Ho PY, Yao S, Shimizu K. Effect of sucA or sucC gene knockout on the metabolism in Escherichia coli based on gene expressions, enzyme activities, intracellular metabolite concentrations and metabolic fluxes by 13C-labeling experiments. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Baughn AD, Malamy MH. The essential role of fumarate reductase in haem-dependent growth stimulation of Bacteroides fragilis. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1551-1558. [PMID: 12777495 DOI: 10.1099/mic.0.26247-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Haem is required for optimal growth of the bacterial anaerobe Bacteroides fragilis. Previous studies have shown that growth in the presence of haem is coincident with increased yields of ATP from glucose, expression of b-type cytochromes and expression of fumarate reductase activity. This paper describes the identification of the genes that encode the cytochrome, iron-sulfur cluster protein and flavoprotein of the B. fragilis fumarate reductase. These genes, frdC, frdA and frdB, respectively, are organized in an operon. Nonpolar, in-frame deletions of frdC and frdB were constructed in the B. fragilis chromosome. These mutant strains had no detectable fumarate reductase or succinate dehydrogenase activity. In addition, the frd mutant strains showed a threefold increase in generation time, relative to the wild-type strain. Growth of these mutant strains was fully restored to the wild-type rate by the introduction of a B. fragilis replicon containing the entire frd operon. Growth of the frd mutant strains was partially restored by supplementing the growth medium with succinate, indicating that the frd gene products function as a fumarate reductase. During growth on glucose, the frd mutant strains showed a threefold decrease in cell mass yield, relative to the wild-type strain. These data indicate that fumarate reductase is important for both energy metabolism and succinate biosynthesis in B. fragilis.
Collapse
Affiliation(s)
- Anthony D Baughn
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Michael H Malamy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
9
|
Dailey FE, Berg HC. Change in direction of flagellar rotation in Escherichia coli mediated by acetate kinase. J Bacteriol 1993; 175:3236-9. [PMID: 8098330 PMCID: PMC204652 DOI: 10.1128/jb.175.10.3236-3239.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Strains of Escherichia coli lacking all cytoplasmic chemotaxis proteins except CheY swim smoothly under most conditions. However, they tumble when exposed to acetate. Acetate coenzyme A synthetase (EC 6.2.1.1) was thought to be essential for this response. New evidence suggests that the tumbling is mediated instead by acetate kinase (EC 2.7.2.1), which might phosphorylate CheY via acetyl phosphate. In strains that were wild type for chemotaxis, neither acetate coenzyme A synthetase, acetate kinase, nor phosphotransacetylase (EC 2.3.1.8) (and thus acetyl phosphate) was required for responses to aspartate, serine, or sugars sensed by the phosphotransferase system. Thus, acetate-induced tumbling does not appear to play an essential role in chemotaxis in wild-type cells.
Collapse
Affiliation(s)
- F E Dailey
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
10
|
White S, Tuttle FE, Blankenhorn D, Dosch DC, Slonczewski JL. pH dependence and gene structure of inaA in Escherichia coli. J Bacteriol 1992; 174:1537-43. [PMID: 1537798 PMCID: PMC206549 DOI: 10.1128/jb.174.5.1537-1543.1992] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The weak-acid-inducible locus inaA in Escherichia coli was mapped to 48.6 min by P1 cotransduction of inaA Mud lac fusions and linked Tn10 insertions. The inaA1::lac fusion tested negative for phenotypes characteristic of mutations in the nearby locus ubiG. Sequence analysis of a fragment amplified by polymerase chain reaction located the inaA1::lac fusion joint within an open reading frame 311 nucleotides downstream of nrdB, transcribed in the opposite direction, encoding a 168-amino-acid polypeptide. Constitutive mutant strains identified on lactose MacConkey revealed a novel regulatory locus unlinked to inaA, which mapped at 34 min (designated inaR). Expression of inaA1::lac increased slightly with external acidification; the presence of benzoate, a membrane-permeant weak acid, greatly increased the acid effect. The expression at various combinations of benzoate and external pH correlated with the decrease in intracellular pH. The uncouplers salicylate and dinitrophenol also caused acid-dependent induction of inaA, but substantial induction was seen at external pH values higher than the internal pH; this effect cannot be caused by internal acidification. Nondissociating analogs of benzoate and salicylate, benzyl alcohol and salicyl alcohol, did not induce inaA. Expression of inaA was inversely related to growth temperature over the range of 30 to 45 degrees C. The inaA1::lac fusion was transferred to a strain defective for K+ uptake (kdpABC trkA trkD) in which pH homeostasis was shown to depend on the external K+ concentration. In this construct, inaA1::lac retained pH-dependent induction by benzoate but was not induced at low K+ concentrations. Induction of inaA appears to involve several factors in addition to internal pH. inaR may be related to the nearby locus marA/soxQ, which is inducible by acidic benzyl derivatives.
Collapse
Affiliation(s)
- S White
- Department of Biology, Kenyon College, Gambier, Ohio 43022
| | | | | | | | | |
Collapse
|
11
|
Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J Bacteriol 1990; 172:1656-9. [PMID: 2407729 PMCID: PMC208645 DOI: 10.1128/jb.172.3.1656-1659.1990] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli SASX41B carries the hemA mutation and requires delta-aminolevulinic acid for growth. Strain SASX41B was transformed to prototrophy with pYA1, a plasmid vector carrying a 5.8-kilobase insert of genomic DNA from the green sulfur bacterium Chlorobium vibrioforme. Cell extracts prepared from transformed cells are able to catalyze transfer of label from [1-14C]glutamate or [3,4-3H]glutamyl-tRNA to delta-aminolevullinic acid at rates much higher than extracts of wild-type cells can, whereas extracts prepared from untransformed strain SASX41B cells lack both activities. By comparing the relative abilities of glutamyl-tRNAs derived from several heterologous cell types to function as substrates for the dehydrogenase reaction in extracts of HB101 and SASX41B cells transformed by pYA1, it was determined that the expressed dehydrogenase in the transformed cells resembled that of C. vibrioforme and not that of E. coli. Thus it can be concluded that plasmid pYA1 contains inserted DNA that codes for a structural component of C. vibrioforme glutamyl-tRNA dehydrogenase which confers glutamyl-tRNA substrate specificity.
Collapse
|
12
|
|