1
|
Lewis AG, Carmichael L, Wang RY, Gibney PA. Characterizing a panel of amino acid auxotrophs under auxotrophic starvation conditions. Yeast 2024; 41:5-18. [PMID: 37997284 DOI: 10.1002/yea.3910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Auxotrophic strains starving for their cognate nutrient, termed auxotrophic starvation, are characterized by a shorter lifespan, higher glucose wasting phenotype, and inability to accomplish cell cycle arrest when compared to a "natural starvation," where a cell is starving for natural environmental growth-limiting nutrients such as phosphate. Since evidence of this physiological response is limited to only a subset of auxotrophs, we evaluated a panel of auxotrophic mutants to determine whether these responses are characteristic of a broader range of amino acid auxotrophs. Based on the starvation survival kinetics, the panel of strains was grouped into three categories-short-lived strains, strains with survival similar to a prototrophic wild type strain, and long-lived strains. Among the short-lived strains, we observed that the tyrosine, asparagine, threonine, and aspartic acid auxotrophs rapidly decline in viability, with all strains unable to arrest cell cycle progression. The three basic amino acid auxotrophs had a survival similar to a prototrophic strain starving in minimal media. The leucine, tryptophan, methionine, and cysteine auxotrophs displayed the longest lifespan. We also demonstrate how the phenomenon of glucose wasting is limited to only a subset of the tested auxotrophs, namely the asparagine, leucine, and lysine auxotrophs. Furthermore, we observed pleiotropic phenotypes associated with a subgroup of auxotrophs, highlighting the importance of considering unintended phenotypic effects when using auxotrophic strains especially in chronological aging experiments.
Collapse
Affiliation(s)
- Alisha G Lewis
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Laurin Carmichael
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Rebecca Y Wang
- Calico Life Sciences LLC, South San Francisco, California, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Zhao Y, Coelho C, Hughes AL, Lazar-Stefanita L, Yang S, Brooks AN, Walker RSK, Zhang W, Lauer S, Hernandez C, Cai J, Mitchell LA, Agmon N, Shen Y, Sall J, Fanfani V, Jalan A, Rivera J, Liang FX, Bader JS, Stracquadanio G, Steinmetz LM, Cai Y, Boeke JD. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell 2023; 186:5220-5236.e16. [PMID: 37944511 DOI: 10.1016/j.cell.2023.09.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/03/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Camila Coelho
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sandy Yang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Roy S K Walker
- School of Engineering, Institute for Bioengineering, the University of Edinburgh, Edinburgh EH9 3BF
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Stephanie Lauer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Cindy Hernandez
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jitong Cai
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Yue Shen
- BGI, Shenzhen, Beishan, Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI, Shenzhen, Shenzhen 518120, China
| | - Joseph Sall
- Microscopy Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Viola Fanfani
- School of Biological Sciences, the University of Edinburgh, Edinburgh EH9 3BF
| | - Anavi Jalan
- Department of Biology, New York University, New York, NY, USA
| | - Jordan Rivera
- Department of Biology, New York University, New York, NY, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Department of Genetics and Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Yizhi Cai
- Manchester Institute of Biotechnology, the University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York, NY 11201, USA.
| |
Collapse
|
3
|
Jang J, Chang JH. Molecular Structure of Phosphoserine Aminotransferase from Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24065139. [PMID: 36982214 PMCID: PMC10049462 DOI: 10.3390/ijms24065139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Phosphoserine aminotransferase (PSAT) is a pyridoxal 5′-phosphate-dependent enzyme involved in the second step of the phosphorylated pathway of serine biosynthesis. PSAT catalyzes the transamination of 3-phosphohydroxypyruvate to 3-phosphoserine using L-glutamate as the amino donor. Although structural studies of PSAT have been performed from archaea and humans, no structural information is available from fungi. Therefore, to elucidate the structural features of fungal PSAT, we determined the crystal structure of Saccharomyces cerevisiae PSAT (ScPSAT) at a resolution of 2.8 Å. The results demonstrated that the ScPSAT protein was dimeric in its crystal structure. Moreover, the gate-keeping loop of ScPSAT exhibited a conformation similar to that of other species. Several distinct structural features in the halide-binding and active sites of ScPSAT were compared with its homologs. Overall, this study contributes to our current understanding of PSAT by identifying the structural features of fungal PSAT for the first time.
Collapse
Affiliation(s)
- Jiyeon Jang
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Correspondence: ; Tel.: +82-53-950-5913; Fax: +82-53-950-6809
| |
Collapse
|
4
|
Mani C, Tripathi K, Luan S, Clark DW, Andrews JF, Vindigni A, Thomas G, Palle K. The multifunctional protein PACS-1 is required for HDAC2- and HDAC3-dependent chromatin maturation and genomic stability. Oncogene 2020; 39:2583-2596. [PMID: 31988453 PMCID: PMC7085454 DOI: 10.1038/s41388-020-1167-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
Abstract
Phosphofurin acidic cluster sorting protein-1 (PACS-1) is a multifunctional membrane traffic regulator that plays important roles in organ homeostasis and disease. In this study, we elucidate a novel nuclear function for PACS-1 in maintaining chromosomal integrity. PACS-1 progressively accumulates in the nucleus during cell cycle progression, where it interacts with class I histone deacetylases 2 and 3 (HDAC2 and HDAC3) to regulate chromatin dynamics by maintaining the acetylation status of histones. PACS-1 knockdown results in the proteasome-mediated degradation of HDAC2 and HDAC3, compromised chromatin maturation, as indicated by elevated levels of histones H3K9 and H4K16 acetylation, and, consequently, increased replication stress-induced DNA damage and genomic instability.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Shan Luan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15239, USA.,University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - David W Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Joel F Andrews
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15239, USA.,University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA. .,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA. .,Department of Surgery, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.
| |
Collapse
|
5
|
Saccharomyces arboricola and Its Hybrids’ Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of interspecific hybrids during the industrial fermentation process has been well established, positioning the frontier of advancement in brewing to capitalize on the potential of Saccharomyces hybridization. Interspecific yeast hybrids used in modern monoculture inoculations benefit from a wide range of volatile metabolites that broaden the organoleptic complexity. This is the first report of sake brewing by Saccharomyces arboricola and its hybrids. S. arboricola x S. cerevisiae direct-mating generated cryotolerant interspecific hybrids which increased yields of ethanol and ethyl hexanoate compared to parental strains, important flavor attributes of fine Japanese ginjo sake rice wine. Hierarchical clustering heatmapping with principal component analysis for metabolic profiling was used in finding low levels of endogenous amino/organic acids clustered S. arboricola apart from the S. cerevisiae industrial strains. In sake fermentations, hybrid strains showed a mosaic profile of parental strains, while metabolic analysis suggested S. arboricola had a lower amino acid net uptake than S. cerevisiae. Additionally, this research found an increase in ethanolic fermentation from pyruvate and increased sulfur metabolism. Together, these results suggest S. arboricola is poised for in-depth metabolomic exploration in sake fermentation.
Collapse
|
6
|
Paczia N, Becker-Kettern J, Conrotte JF, Cifuente JO, Guerin ME, Linster CL. 3-Phosphoglycerate Transhydrogenation Instead of Dehydrogenation Alleviates the Redox State Dependency of Yeast de Novo l-Serine Synthesis. Biochemistry 2019; 58:259-275. [PMID: 30668112 DOI: 10.1021/acs.biochem.8b00990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic mechanism of 3-phosphoglycerate to 3-phosphohydroxypyruvate oxidation, which forms the first step of the main conserved de novo serine synthesis pathway, has been revisited recently in certain microorganisms. While this step is classically considered to be catalyzed by an NAD-dependent dehydrogenase (e.g., PHGDH in mammals), evidence has shown that in Pseudomonas, Escherichia coli, and Saccharomyces cerevisiae, the PHGDH homologues act as transhydrogenases. As such, they use α-ketoglutarate, rather than NAD+, as the final electron acceptor, thereby producing D-2-hydroxyglutarate in addition to 3-phosphohydroxypyruvate during 3-phosphoglycerate oxidation. Here, we provide a detailed biochemical and sequence-structure relationship characterization of the yeast PHGDH homologues, encoded by the paralogous SER3 and SER33 genes, in comparison to the human and other PHGDH enzymes. Using in vitro assays with purified recombinant enzymes as well as in vivo growth phenotyping and metabolome analyses of yeast strains engineered to depend on either Ser3, Ser33, or human PHGDH for serine synthesis, we confirmed that both yeast enzymes act as transhydrogenases, while the human enzyme is a dehydrogenase. In addition, we show that the yeast paralogs differ from the human enzyme in their sensitivity to inhibition by serine as well as hydrated NADH derivatives. Importantly, our in vivo data support the idea that a 3PGA transhydrogenase instead of dehydrogenase activity confers a growth advantage under conditions where the NAD+:NADH ratio is low. The results will help to elucidate why different species evolved different reaction mechanisms to carry out a widely conserved metabolic step in central carbon metabolism.
Collapse
Affiliation(s)
- Nicole Paczia
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| | - Julia Becker-Kettern
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| | - Javier O Cifuente
- Structural Biology Unit , CIC bioGUNE Technological Park of Bizkaia , 48160 Derio , Vizcaya , Spain
| | - Marcelo E Guerin
- Structural Biology Unit , CIC bioGUNE Technological Park of Bizkaia , 48160 Derio , Vizcaya , Spain.,IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Spain
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| |
Collapse
|
7
|
Offley SR, Schmidt MC. Protein phosphatases of Saccharomyces cerevisiae. Curr Genet 2018; 65:41-55. [PMID: 30225534 DOI: 10.1007/s00294-018-0884-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/27/2018] [Accepted: 09/08/2018] [Indexed: 10/28/2022]
Abstract
The phosphorylation status of a protein is highly regulated and is determined by the opposing activities of protein kinases and protein phosphatases within the cell. While much is known about the protein kinases found in Saccharomyces cerevisiae, the protein phosphatases are much less characterized. Of the 127 protein kinases in yeast, over 90% are in the same evolutionary lineage. In contrast, protein phosphatases are fewer in number (only 43 have been identified in yeast) and comprise multiple, distinct evolutionary lineages. Here we review the protein phosphatase families of yeast with regard to structure, catalytic mechanism, regulation, and signal transduction participation.
Collapse
Affiliation(s)
- Sarah R Offley
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Martin C Schmidt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
8
|
Natural Variation in SER1 and ENA6 Underlie Condition-Specific Growth Defects in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018; 8:239-251. [PMID: 29138237 PMCID: PMC5765352 DOI: 10.1534/g3.117.300392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite their ubiquitous use in laboratory strains, naturally occurring loss-of-function mutations in genes encoding core metabolic enzymes are relatively rare in wild isolates of Saccharomyces cerevisiae. Here, we identify a naturally occurring serine auxotrophy in a sake brewing strain from Japan. Through a cross with a honey wine (white tecc) brewing strain from Ethiopia, we map the minimal medium growth defect to SER1, which encodes 3-phosphoserine aminotransferase and is orthologous to the human disease gene, PSAT1. To investigate the impact of this polymorphism under conditions of abundant external nutrients, we examine growth in rich medium alone or with additional stresses, including the drugs caffeine and rapamycin and relatively high concentrations of copper, salt, and ethanol. Consistent with studies that found widespread effects of different auxotrophies on RNA expression patterns in rich media, we find that the SER1 loss-of-function allele dominates the quantitative trait locus (QTL) landscape under many of these conditions, with a notable exacerbation of the effect in the presence of rapamycin and caffeine. We also identify a major-effect QTL associated with growth on salt that maps to the gene encoding the sodium exporter, ENA6. We demonstrate that the salt phenotype is largely driven by variation in the ENA6 promoter, which harbors a deletion that removes binding sites for the Mig1 and Nrg1 transcriptional repressors. Thus, our results identify natural variation associated with both coding and regulatory regions of the genome that underlie strong growth phenotypes.
Collapse
|
9
|
Wulfert S, Krueger S. Phosphoserine Aminotransferase1 Is Part of the Phosphorylated Pathways for Serine Biosynthesis and Essential for Light and Sugar-Dependent Growth Promotion. FRONTIERS IN PLANT SCIENCE 2018; 9:1712. [PMID: 30515188 PMCID: PMC6256069 DOI: 10.3389/fpls.2018.01712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 05/22/2023]
Abstract
The phosphorylated pathway of serine biosynthesis represents an important pathway in plants. The pathway consist of three reactions catalyzed by the phosphoglycerate dehydrogenase, the phosphoserine aminotransferase and the phosphoserine phosphatase, and the genes encoding for all enzymes of the pathway have been identified. Previously, the importance of the phosphoglycerate dehydrogenase and phosphoserine phosphatase for plant metabolism and development has been shown, but due to the lack of T-DNA insertion mutants, a physiological characterization of the phosphoserine aminotransferase is still missing. Hence, we generated silencing lines specifically down-regulated in the expression of the major PSAT1 gene. The morphological characterization of the obtained PSAT1-silenced lines revealed a strong inhibition of shoot and root growth. In addition, these lines are hypersensitive to the inhibition of the photorespiratory serine biosynthesis, when growing the plants at elevated CO2. Metabolic analysis of PSAT1-silenced lines, showed a strong accumulation of certain amino acids, most likely due to an enhanced ammonium assimilation. Furthermore, phenotypic analysis under low and high-light conditions and in the presence of sucrose revealed, that the phosphorylated pathway of serine biosynthesis is essential for light and sugar-dependent growth promotion in plants.
Collapse
|
10
|
Li S, Swanson SK, Gogol M, Florens L, Washburn MP, Workman JL, Suganuma T. Serine and SAM Responsive Complex SESAME Regulates Histone Modification Crosstalk by Sensing Cellular Metabolism. Mol Cell 2015; 60:408-21. [PMID: 26527276 DOI: 10.1016/j.molcel.2015.09.024] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 08/14/2015] [Accepted: 09/25/2015] [Indexed: 12/30/2022]
Abstract
Pyruvate kinase M2 (PKM2) is a key enzyme for glycolysis and catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate, which supplies cellular energy. PKM2 also phosphorylates histone H3 threonine 11 (H3T11); however, it is largely unknown how PKM2 links cellular metabolism to chromatin regulation. Here, we show that the yeast PKM2 homolog, Pyk1, is a part of a novel protein complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex), which contains serine metabolic enzymes, SAM (S-adenosylmethionine) synthetases, and an acetyl-CoA synthetase. SESAME interacts with the Set1 H3K4 methyltransferase complex, which requires SAM synthesized from SESAME, and recruits SESAME to target genes, resulting in phosphorylation of H3T11. SESAME regulates the crosstalk between H3K4 methylation and H3T11 phosphorylation by sensing glycolysis and glucose-derived serine metabolism. This leads to auto-regulation of PYK1 expression. Thus, our study provides insights into the mechanism of regulating gene expression, responding to cellular metabolism via chromatin modifications.
Collapse
Affiliation(s)
- Shanshan Li
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA
| | - Selene K Swanson
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA
| | - Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA.
| |
Collapse
|
11
|
Paulo JA, O'Connell JD, Gaun A, Gygi SP. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:4063-74. [PMID: 26399295 PMCID: PMC4710237 DOI: 10.1091/mbc.e15-07-0499] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022] Open
Abstract
A mass spectrometry–based tandem mass tag 9-plex strategy was used to determine alterations in relative protein abundance due to three carbon sources—glucose, galactose, and raffinose. More than 4700 proteins were quantified across all nine samples; 1003 demonstrated statistically significant differences in abundance in at least one condition. The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry–based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid–related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | | - Aleksandr Gaun
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
12
|
Kuznetsova E, Nocek B, Brown G, Makarova KS, Flick R, Wolf YI, Khusnutdinova A, Evdokimova E, Jin K, Tan K, Hanson AD, Hasnain G, Zallot R, de Crécy-Lagard V, Babu M, Savchenko A, Joachimiak A, Edwards AM, Koonin EV, Yakunin AF. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS. J Biol Chem 2015; 290:18678-98. [PMID: 26071590 DOI: 10.1074/jbc.m115.657916] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/15/2022] Open
Abstract
The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members.
Collapse
Affiliation(s)
- Ekaterina Kuznetsova
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Boguslaw Nocek
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Greg Brown
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Kira S Makarova
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Robert Flick
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Yuri I Wolf
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Anna Khusnutdinova
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elena Evdokimova
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Ke Jin
- the Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada, and
| | - Kemin Tan
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrew D Hanson
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Ghulam Hasnain
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Rémi Zallot
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Valérie de Crécy-Lagard
- the Horticultural Sciences Department, Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Mohan Babu
- the Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada, and
| | - Alexei Savchenko
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Andrzej Joachimiak
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Aled M Edwards
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada, the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Eugene V Koonin
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Alexander F Yakunin
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada,
| |
Collapse
|
13
|
Benstein RM, Ludewig K, Wulfert S, Wittek S, Gigolashvili T, Frerigmann H, Gierth M, Flügge UI, Krueger S. Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. THE PLANT CELL 2013; 25:5011-29. [PMID: 24368794 PMCID: PMC3904002 DOI: 10.1105/tpc.113.118992] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/26/2013] [Accepted: 12/06/2013] [Indexed: 05/17/2023]
Abstract
In plants, two independent serine biosynthetic pathways, the photorespiratory and glycolytic phosphoserine (PS) pathways, have been postulated. Although the photorespiratory pathway is well characterized, little information is available on the function of the PS pathway in plants. Here, we present a detailed characterization of phosphoglycerate dehydrogenases (PGDHs) as components of the PS pathway in Arabidopsis thaliana. All PGDHs localize to plastids and possess similar kinetic properties, but they differ with respect to their sensitivity to serine feedback inhibition. Furthermore, analysis of pgdh1 and phosphoserine phosphatase mutants revealed an embryo-lethal phenotype and PGDH1-silenced lines were inhibited in growth. Metabolic analyses of PGDH1-silenced lines grown under ambient and high CO2 conditions indicate a direct link between PS biosynthesis and ammonium assimilation. In addition, we obtained several lines of evidence for an interconnection between PS and tryptophan biosynthesis, because the expression of PGDH1 and phosphoserine aminotransferase1 is regulated by MYB51 and MYB34, two activators of tryptophan biosynthesis. Moreover, the concentration of tryptophan-derived glucosinolates and auxin were reduced in PGDH1-silenced plants. In essence, our results provide evidence for a vital function of PS biosynthesis for plant development and metabolism.
Collapse
|
14
|
Harsch MJ, Gardner RC. Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts. Appl Microbiol Biotechnol 2012; 97:223-35. [PMID: 22684328 DOI: 10.1007/s00253-012-4198-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 11/27/2022]
Abstract
Two volatile thiols, 3-mercaptohexan-1-ol (3MH), and 3-mercaptohexyl-acetate (3MHA), reminiscent of grapefruit and passion fruit respectively, are critical varietal aroma compounds in Sauvignon Blanc (SB) wines. These aromatic thiols are not present in the grape juice but are synthesized and released by the yeast during alcoholic fermentation. Single deletion mutants of 67 candidate genes in a laboratory strain of Saccharomyces cerevisiae were screened using gas chromatography mass spectrometry for their thiol production after fermentation of SB grape juice. None of the deletions abolished production of the two volatile thiols. However, deletion of 17 genes caused increases or decreases in production by as much as twofold. These 17 genes, mostly related to sulfur and nitrogen metabolism in yeast, may act by altering the regulation of the pathway(s) of thiol production or altering substrate supply. Deleting subsets of these genes in a wine yeast strain gave similar results to the laboratory strain for sulfur pathway genes but showed strain differences for genes involved in nitrogen metabolism. The addition of two nitrogen sources, urea and di-ammonium phosphate, as well as two sulfur compounds, cysteine and S-ethyl-L-cysteine, increased 3MH and 3MHA concentrations in the final wines. Collectively these results suggest that sulfur and nitrogen metabolism are important in regulating the synthesis of 3MH and 3MHA during yeast fermentation of grape juice.
Collapse
Affiliation(s)
- Michael J Harsch
- School of Biological Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| | | |
Collapse
|
15
|
High-level production of tetraacetyl phytosphingosine (TAPS) by combined genetic engineering of sphingoid base biosynthesis and L-serine availability in the non-conventional yeast Pichia ciferrii. Metab Eng 2012; 14:172-84. [DOI: 10.1016/j.ymben.2011.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 11/20/2022]
|
16
|
Guo Y, Au WC, Shakoury-Elizeh M, Protchenko O, Basrai M, Prinz WA, Philpott CC. Phosphatidylserine is involved in the ferrichrome-induced plasma membrane trafficking of Arn1 in Saccharomyces cerevisiae. J Biol Chem 2010; 285:39564-73. [PMID: 20923770 DOI: 10.1074/jbc.m110.177055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arn1 is an integral membrane protein that mediates the uptake of ferrichrome, an important nutritional source of iron, in Saccharomyces cerevisiae. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network to the vacuolar lumen for degradation. In the presence of low levels of ferrichrome, the siderophore binds to a receptor domain on Arn1, triggering the redistribution of Arn1 to the plasma membrane. When extracellular ferrichrome levels are high, Arn1 cycles between the plasma membrane and intracellular vesicles. To further understand the mechanisms of trafficking of Arn1p, we screened 4580 viable yeast deletion mutants for mislocalization of Arn1-GFP using synthetic genetic array technology. We identified over 100 genes required for trans-Golgi network-to-vacuole trafficking of Arn1-GFP and only two genes, SER1 and SER2, required for the ferrichrome-induced plasma membrane trafficking of Arn1-GFP. SER1 and SER2 encode two enzymes of the major serine biosynthetic pathway, and the Arn1 trafficking defect in the ser1Δ strain was corrected with supplemental serine or glycine. Plasma membrane trafficking of Hxt3, a structurally related glucose transporter, was unaffected by SER1 deletion. Serine is required for the synthesis of multiple cellular components, including purines, sphingolipids, and phospholipids, but of these only phosphatidylserine corrected the Arn1 trafficking defects of the ser1Δ strain. Strains with defects in phospholipid synthesis also exhibited alterations in Arn1p trafficking, indicating that the intracellular trafficking of some transporters is dependent on the phospholipid composition of the cellular membranes.
Collapse
Affiliation(s)
- Yan Guo
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1800, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1Delta) mutants. EUKARYOTIC CELL 2010; 9:717-28. [PMID: 20305002 DOI: 10.1128/ec.00044-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In addition to threonine auxotrophy, mutation of the Saccharomyces cerevisiae threonine biosynthetic genes THR1 (encoding homoserine kinase) and THR4 (encoding threonine synthase) results in a plethora of other phenotypes. We investigated the basis for these other phenotypes and found that they are dependent on the toxic biosynthetic intermediate homoserine. Moreover, homoserine is also toxic for Candida albicans thr1Delta mutants. Since increasing levels of threonine, but not other amino acids, overcome the homoserine toxicity of thr1Delta mutants, homoserine may act as a toxic threonine analog. Homoserine-mediated lethality of thr1Delta mutants is blocked by cycloheximide, consistent with a role for protein synthesis in this lethality. We identified various proteasome and ubiquitin pathway components that either when mutated or present in high copy numbers suppressed the thr1Delta mutant homoserine toxicity. Since the doa4Delta and proteasome mutants identified have reduced ubiquitin- and/or proteasome-mediated proteolysis, the degradation of a particular protein or subset of proteins likely contributes to homoserine toxicity.
Collapse
|
18
|
Alvarez-Vasquez F, Sims KJ, Voit EO, Hannun YA. Coordination of the dynamics of yeast sphingolipid metabolism during the diauxic shift. Theor Biol Med Model 2007; 4:42. [PMID: 17974024 PMCID: PMC2203994 DOI: 10.1186/1742-4682-4-42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 10/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diauxic shift in yeast requires cells to coordinate a complicated response that involves numerous genes and metabolic processes. It is unknown whether responses of this type are mediated in vivo through changes in a few "key" genes and enzymes, which are mathematically characterized by high sensitivities, or whether they are based on many small changes in genes and enzymes that are not particularly sensitive. In contrast to global assessments of changes in gene or protein interaction networks, we study here control aspects of the diauxic shift by performing a detailed analysis of one specific pathway-sphingolipid metabolism-which is known to have signaling functions and is associated with a wide variety of stress responses. RESULTS The approach uses two components: publicly available sets of expression data of sphingolipid genes and a recently developed Generalized Mass Action (GMA) mathematical model of the sphingolipid pathway. In one line of exploration, we analyze the sensitivity of the model with respect to enzyme activities, and thus gene expression. Complementary to this approach, we convert the gene expression data into changes in enzyme activities and then predict metabolic consequences by means of the mathematical model. It was found that most of the sensitivities in the model are low in magnitude, but that some stand out as relatively high. This information was then deployed to test whether the cell uses a few of the very sensitive pathway steps to mount a response or whether the control is distributed throughout the pathway. Pilot experiments confirm qualitatively and in part quantitatively the predictions of a group of metabolite simulations. CONCLUSION The results indicate that yeast coordinates sphingolipid mediated changes during the diauxic shift through an array of small changes in many genes and enzymes, rather than relying on a strategy involving a few select genes with high sensitivity. This study also highlights a novel approach in coupling data mining with mathematical modeling in order to evaluate specific metabolic pathways.
Collapse
Affiliation(s)
- Fernando Alvarez-Vasquez
- Dept. of Biostatistics, Bioinformatics and Epidemiology. Medical University of South Carolina, Charleston, SC. USA.
| | | | | | | |
Collapse
|
19
|
Meyer P, Liger D, Leulliot N, Quevillon-Cheruel S, Zhou CZ, Borel F, Ferrer JL, Poupon A, Janin J, van Tilbeurgh H. Crystal structure and confirmation of the alanine:glyoxylate aminotransferase activity of the YFL030w yeast protein. Biochimie 2005; 87:1041-7. [PMID: 16226833 DOI: 10.1016/j.biochi.2005.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 02/18/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
We have determined the three-dimensional crystal structure of the protein encoded by the open reading frame YFL030w from Saccharomyces cerevisiae to a resolution of 2.6 A using single wavelength anomalous diffraction. YFL030w is a 385 amino-acid protein with sequence similarity to the aminotransferase family. The structure of the protein reveals a homodimer adopting the fold-type I of pyridoxal 5'-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure. The protein shows close structural resemblance with the human alanine:glyoxylate aminotransferase (EC 2.6.1.44), an enzyme involved in the hereditary kidney stone disease primary hyperoxaluria type 1. In this paper we show that YFL030w codes for an alanine:glyoxylate aminotransferase, highly specific for its amino donor and acceptor substrates.
Collapse
Affiliation(s)
- Philippe Meyer
- Laboratoire d'Enzymologie et Biochimie Structurales (CNRS-UPR 9063) Bât. 34, 1, avenue de la Terrasse, 91198 Gif sur Yvette cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Barnett JA, Entian KD. A history of research on yeasts 9: regulation of sugar metabolism. Yeast 2005; 22:835-94. [PMID: 16134093 DOI: 10.1002/yea.1249] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- James A Barnett
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | |
Collapse
|
21
|
Alvarez-Vasquez F, Sims KJ, Hannun YA, Voit EO. Integration of kinetic information on yeast sphingolipid metabolism in dynamical pathway models. J Theor Biol 2004; 226:265-91. [PMID: 14643642 DOI: 10.1016/j.jtbi.2003.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For the first time, kinetic information from the literature was collected and used to construct integrative dynamical mathematical models of sphingolipid metabolism. One model was designed primarily with kinetic equations in the tradition of Michaelis and Menten whereas the other two models were designed as alternative power-law models within the framework of Biochemical Systems Theory. Each model contains about 50 variables, about a quarter of which are dependent (state) variables, while the others are independent inputs and enzyme activities that are considered constant. The models account for known regulatory signals that exert control over the pathway. Standard mathematical testing, repeated revisiting of the literature, and numerous rounds of amendments and refinements resulted in models that are stable and rather insensitive to perturbations in inputs or parameter values. The models also appear to be compatible with the modest amount of experimental experience that lends itself to direct comparisons. Even though the three models are based on different mathematical representations, they show dynamic responses to a variety of perturbations and changes in conditions that are essentially equivalent for small perturbations and similar for large perturbations. The kinetic information used for model construction and the models themselves can serve as a starting point for future analyses and refinements.
Collapse
Affiliation(s)
- Fernando Alvarez-Vasquez
- Department of Biometry and Epidemiology, Medical University of South Carolina, 303K Cannon place, 135 Cannon St, Charleston, SC 29425-2503, USA
| | | | | | | |
Collapse
|
22
|
Albers E, Laizé V, Blomberg A, Hohmann S, Gustafsson L. Ser3p (Yer081wp) and Ser33p (Yil074cp) are phosphoglycerate dehydrogenases in Saccharomyces cerevisiae. J Biol Chem 2003; 278:10264-72. [PMID: 12525494 DOI: 10.1074/jbc.m211692200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two genes YER081W and YIL074C, renamed SER3 and SER33, respectively, which encode phosphoglycerate dehydrogenases in Saccharomyces cerevisiae were identified. These dehydrogenases catalyze the first reaction of serine and glycine biosynthesis from the glycolytic metabolite 3-phosphoglycerate. Unlike either single mutant, the ser3Delta ser33Delta double mutant lacks detectable phosphoglycerate dehydrogenase activity and is auxotrophic for serine or glycine for growth on glucose media. However, the requirement for the SER-dependent "phosphoglycerate pathway" is conditional since the "glyoxylate" route of serine/glycine biosynthesis is glucose-repressed. Thus, in cells grown on ethanol both expression and activity of all SER-encoded proteins are low, including the remaining enzymes of the phosphoglycerate pathway, Ser1p and Ser2p. Moreover the available nitrogen source regulates the expression of SER genes. However, for only SER33, and not SER3, expression was regulated in relation to the available nitrogen source in a coordinated fashion with SER1 and SER2. Based on these mRNA data together with data on enzyme activities, Ser33p is likely to be the main isoenzyme of the phosphoglycerate pathway during growth on glucose. Moreover, since phosphoglycerate dehydrogenase activity requires NAD(+) as cofactor, deletion of SER3 and SER33 markedly affected redox metabolism as shown by substrate and product analysis.
Collapse
Affiliation(s)
- Eva Albers
- Department of Molecular Biotechnology, Chalmers University of Technology, Box 462, SE-405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Mellema S, Eichenberger W, Rawyler A, Suter M, Tadege M, Kuhlemeier C. The ethanolic fermentation pathway supports respiration and lipid biosynthesis in tobacco pollen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:329-36. [PMID: 12000680 DOI: 10.1046/j.1365-313x.2002.01293.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rapid pollen tube growth requires a high rate of sugar metabolism to meet energetic and biosynthetic demands. Previous work on pollen sugar metabolism showed that tobacco pollen carry out efficient ethanolic fermentation concomitantly with a high rate of respiration (Bucher et al., 1995). Here we show that the products of fermentation, acetaldehyde and ethanol, are further metabolised in a pathway that bypasses mitochondrial PDH. The enzymes involved in this pathway are pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthetase. Radiolabelling experiments show that during tobacco pollen tube growth label of 14C-ethanol is incorporated into CO2 as well as into lipids and other higher molecular weight compounds. A role for the glyoxylate cycle appears unlikely since activity of malate synthase, a key enzyme of the glyoxylate cycle, could not be detected.
Collapse
Affiliation(s)
- Stefan Mellema
- Institute of Plant Sciences, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J Mol Biol 2001; 314:1053-66. [PMID: 11743722 DOI: 10.1006/jmbi.2000.5219] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complexity of biological systems provides for a great diversity of relationships between genes. The current analysis of whole-genome expression data focuses on relationships based on global correlation over a whole time-course, identifying clusters of genes whose expression levels simultaneously rise and fall. There are, of course, other potential relationships between genes, which are missed by such global clustering. These include activation, where one expects a time-delay between related expression profiles, and inhibition, where one expects an inverted relationship. Here, we propose a new method, which we call local clustering, for identifying these time-delayed and inverted relationships. It is related to conventional gene-expression clustering in a fashion analogous to the way local sequence alignment (the Smith-Waterman algorithm) is derived from global alignment (Needleman-Wunsch). An integral part of our method is the use of random score distributions to assess the statistical significance of each cluster. We applied our method to the yeast cell-cycle expression dataset and were able to detect a considerable number of additional biological relationships between genes, beyond those resulting from conventional correlation. We related these new relationships between genes to their similarity in function (as determined from the MIPS scheme) or their having known protein-protein interactions (as determined from the large-scale two-hybrid experiment); we found that genes strongly related by local clustering were considerably more likely than random to have a known interaction or a similar cellular role. This suggests that local clustering may be useful in functional annotation of uncharacterized genes. We examined many of the new relationships in detail. Some of them were already well-documented examples of inhibition or activation, which provide corroboration for our results. For instance, we found an inverted expression profile relationship between genes YME1 and YNT20, where the latter has been experimentally documented as a bypass suppressor of the former. We also found new relationships involving uncharacterized yeast genes and were able to suggest functions for many of them. In particular, we found a time-delayed expression relationship between J0544 (which has not yet been functionally characterized) and four genes associated with the mitochondria. This suggests that J0544 may be involved in the control or activation of mitochondrial genes. We have also looked at other, less extensive datasets than the yeast cell-cycle and found further interesting relationships. Our clustering program and a detailed website of clustering results is available at http://www.bioinfo.mbb.yale.edu/expression/cluster (or http://www.genecensus.org/expression/cluster).
Collapse
Affiliation(s)
- J Qian
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, PO Box 208114, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
25
|
Bianchi MM, Ngo S, Vandenbol M, Sartori G, Morlupi A, Ricci C, Stefani S, Morlino GB, Hilger F, Carignani G, Slonimski PP, Frontali L. Large-scale phenotypic analysis reveals identical contributions to cell functions of known and unknown yeast genes. Yeast 2001; 18:1397-412. [PMID: 11746602 DOI: 10.1002/yea.784] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sequencing of the yeast genome has shown that about one-third of the yeast ORFs code for unknown proteins. Many other have similarity to known genes, but still the cellular functions of the gene products are unknown. The aim of the B1 Consortium of the EUROFAN project was to perform a qualitative phenotypic analysis on yeast strains deleted for functionally orphan genes. To this end we set up a simple approach to detect growth defects of a relatively large number of strains in the presence of osmolytes, ethanol, high temperature, inhibitory compounds or drugs affecting protein biosynthesis, phosphorylation level or nucleic acids biosynthesis. We have now developed this procedure to a semi-quantitative level, we have included new inhibitors, such as hygromycin B, benomyl, metals and additional drugs interfering with synthesis of nucleic acids, and we have performed phenotypic analysis on the deleted strains of 564 genes poorly characterized in respect to their cellular functions. About 30% of the deleted strains showed at least one phenotype: many of them were pleiotropic. For many gene deletions, the linkage between the deletion marker and the observed phenotype(s) was studied by tetrad analysis and their co-segregation was demonstrated. Co-segregation was found in about two-thirds of the analysed strains showing phenotype(s).
Collapse
Affiliation(s)
- M M Bianchi
- Department of Cell and Developmental Biology, University of Rome La Sapienza, I-00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
In this study we demonstrate that ade9 plays an indirect role in purine biosynthesis as a non-functional allele of SER1 in Saccharomyces cerevisiae. The SER1 locus, encoding 3-phosphoserine aminotransferase required for serine biosynthesis, is located on chromosome XV and resides approximately where ade9 had previously been mapped genetically. A minimal functional construct of SER1 is necessary and sufficient to complement both the adenine- and serine-requiring phenotypes of ade9 strains. In addition, adequate exogenous serine levels mask the adenine phenotype of ade9. A disruption of SER1 behaves in the same manner phenotypically as the original ade9 strain. Therefore, ade9 can be more accurately described as an allele of SER1.
Collapse
Affiliation(s)
- P S Buc
- Department of Biology, Georgetown University, Washington, DC 20057-1229, USA
| | | |
Collapse
|
27
|
Nagarajan L, Storms RK. Molecular characterization of GCV3, the Saccharomyces cerevisiae gene coding for the glycine cleavage system hydrogen carrier protein. J Biol Chem 1997; 272:4444-50. [PMID: 9020168 DOI: 10.1074/jbc.272.7.4444] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
YAL044, a gene on the left arm of Saccharomyces cerevisiae chromosome one, is shown to code for the H-protein subunit of the multienzyme glycine cleavage system. The gene designation has therefore been changed to GCV3, reflecting its role in the glycine cleavage system. GCV3 encodes a 177-residue protein with a putative mitochondrial targeting signal at its amino terminus. Targeted gene replacement shows that GCV3 is not required for growth on minimal medium; however, it is essential when glycine serves as the sole nitrogen source. Studies of GCV3 expression revealed that it is highly regulated. Supplementation of minimal medium with glycine, the glycine cleavage system's substrate, induced expression at least 30-fold. In contrast, and consistent with the cleavage of glycine providing activated single-carbon units, the addition of the metabolic end products that require activated single-carbon units repressed expression about 10-fold. Finally, like many amino acid biosynthetic genes, GCV3 is subject to regulation by the general amino acid control system.
Collapse
Affiliation(s)
- L Nagarajan
- Department of Chemistry and Biochemistry and the Department of Biology, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | | |
Collapse
|
28
|
Melcher K, Rose M, Künzler M, Braus GH, Entian KD. Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: regulation by general control and serine repression. Curr Genet 1995; 27:501-8. [PMID: 7553933 DOI: 10.1007/bf00314439] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although serine and glycine are ubiquitous amino acids the genetic and biochemical regulation of their synthesis has not been studied in detail. The SER1 gene encodes 3-phosphoserine aminotransferase which catalyzes the formation of phosphoserine from 3-phosphohydroxy-pyruvate, which is obtained by oxidation of 3-phosphoglycerate, an intermediate of glycolysis. Saccharomyces cerevisiae cells provided with fermentable carbon sources mainly use this pathway (glycolytic pathway) to synthesize serine and glycine. We report the isolation of the SER1 gene by complementation and the disruption of the chromosomal locus. Sequence analysis revealed an open reading frame encoding a protein with a predicted molecular weight of 43,401 Da. A previously described mammalian progesterone-induced protein shares 47% similarity with SER1 over the entire protein, indicating a common function for both proteins. We demonstrate that SER1 transcription is regulated by the general control of amino-acid biosynthesis mediated by GCN4. Additionally, DNaseI protection experiments proved the binding of GCN4 protein to the SER1 promoter in vitro and three GCN4 recognition elements (GCREs) were identified. Furthermore, there is evidence for an additional regulation by serine end product repression.
Collapse
Affiliation(s)
- K Melcher
- Institute for Microbiology, University of Frankfurt, Germany
| | | | | | | | | |
Collapse
|
29
|
Marshall PA, Krimkevich YI, Lark RH, Dyer JM, Veenhuis M, Goodman JM. Pmp27 promotes peroxisomal proliferation. J Cell Biol 1995; 129:345-55. [PMID: 7721939 PMCID: PMC2199913 DOI: 10.1083/jcb.129.2.345] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Peroxisomes perform many essential functions in eukaryotic cells. The weight of evidence indicates that these organelles divide by budding from preexisting peroxisomes. This process is not understood at the molecular level. Peroxisomal proliferation can be induced in Saccharomyces cerevisiae by oleate. This growth substrate is metabolized by peroxisomal enzymes. We have identified a protein, Pmp27, that promotes peroxisomal proliferation. This protein, previously termed Pmp24, was purified from peroxisomal membranes, and the corresponding gene, PMP27, was isolated and sequenced. Pmp27 shares sequence similarity with the Pmp30 family in Candida boidinii. Pmp27 is a hydrophobic peroxisomal membrane protein but it can be extracted by high pH, suggesting that it does not fully span the bilayer. Its expression is regulated by oleate. The function of Pmp27 was probed by observing the phenotype of strains in which the protein was eliminated by gene disruption or overproduced by expression from a multicopy plasmid. The strain containing the disruption (3B) was able to grow on all carbon sources tested, including oleate, although growth on oleate, glycerol, and acetate was slower than wild type. Strain 3B contained peroxisomes with all of the enzymes of beta-oxidation. However, in addition to the presence of a few modestly sized peroxisomes seen in a typical thin section of a cell growing on oleate-containing medium, cells of strain 3B also contained one or two very large peroxisomes. In contrast, cells in a strain in which Pmp27 was overexpressed contained an increased number of normal-sized peroxisomes. We suggest that Pmp27 promotes peroxisomal proliferation by participating in peroxisomal elongation or fission.
Collapse
Affiliation(s)
- P A Marshall
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235-9041, USA
| | | | | | | | | | | |
Collapse
|
30
|
Hedges D, Proft M, Entian KD. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:1915-22. [PMID: 7891685 PMCID: PMC230417 DOI: 10.1128/mcb.15.4.1915] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The expression of gluconeogenic fructose-1,6-bisphosphatase (encoded by the FBP1 gene) depends on the carbon source. Analysis of the FBP1 promoter revealed two upstream activating elements, UAS1FBP1 and UAS2FBP1, which confer carbon source-dependent regulation on a heterologous reporter gene. On glucose media neither element was activated, whereas after transfer to ethanol a 100-fold derepression was observed. This gene activation depended on the previously identified derepression genes CAT1 (SNF1) (encoding a protein kinase) and CAT3 (SNF4) (probably encoding a subunit of Cat1p [Snf1p]). Screening for mutations specifically involved in UAS1FBP1 derepression revealed the new recessive derepression mutation cat8. The cat8 mutants also failed to derepress UAS2FBP1, and these mutants were unable to grow on nonfermentable carbon sources. The CAT8 gene encodes a zinc cluster protein related to Saccharomyces cerevisiae Gal4p. Deletion of CAT8 caused a defect in glucose derepression which affected all key gluconeogenic enzymes. Derepression of glucose-repressible invertase and maltase was still normally regulated. A CAT8-lacZ promoter fusion revealed that the CAT8 gene itself is repressed by Cat4p (Mig1p). These results suggest that gluconeogenic genes are derepressed upon binding of Cat8p, whose synthesis depends on the release of Cat4p (Mig1p) from the CAT8 promoter. However, gluconeogenic promoters are still glucose repressed in cat4 mutants, which indicates that in addition to its transcription, the Cat8p protein needs further activation. The observation that multicopy expression of CAT8 reverses the inability of cat1 and cat3 mutants to grow on ethanol indicates that Cat8p might be the substrate of the Cat1p/Cat3p protein kinase.
Collapse
Affiliation(s)
- D Hedges
- Institut für Mikrobiologie der Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | | | | |
Collapse
|
31
|
A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 8196607 DOI: 10.1128/mcb.14.6.3613] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of yeast genes encoding gluconeogenic enzymes depends strictly on the carbon source available in the growth medium. We have characterized the control region of the isocitrate lyase gene ICL1, which is derepressed more than 200-fold after transfer of cells from fermentative to nonfermentative growth conditions. Deletion analysis of the ICL1 promoter led to the identification of an upstream activating sequence element, UASICL1 (5' CATTCATCCG 3'), necessary and sufficient for conferring carbon source-dependent regulation on a heterologous reporter gene. Similar sequence motifs were also found in the upstream regions of coregulated genes involved in gluconeogenesis. This carbon source-responsive element (CSRE) interacts with a protein factor, designated Ang1 (activator of nonfermentative growth), detectable only in extracts derived from derepressed cells. Gene activation mediated by the CSRE requires the positively acting derepression genes CAT1 (= SNF1 and CCR1) and CAT3 (= SNF4). In the respective mutants, Ang1-CSRE interaction was no longer observed under repressing or derepressing conditions. Since binding of Ang1 factor to the CSRE could be competed for by an upstream sequence derived from the fructose-1,6-bisphosphatase gene FBP1, we propose that the CSRE functions as a UAS element common to genes of the gluconeogenic pathway.
Collapse
|
32
|
Schöler A, Schüller HJ. A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:3613-22. [PMID: 8196607 PMCID: PMC358729 DOI: 10.1128/mcb.14.6.3613-3622.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The expression of yeast genes encoding gluconeogenic enzymes depends strictly on the carbon source available in the growth medium. We have characterized the control region of the isocitrate lyase gene ICL1, which is derepressed more than 200-fold after transfer of cells from fermentative to nonfermentative growth conditions. Deletion analysis of the ICL1 promoter led to the identification of an upstream activating sequence element, UASICL1 (5' CATTCATCCG 3'), necessary and sufficient for conferring carbon source-dependent regulation on a heterologous reporter gene. Similar sequence motifs were also found in the upstream regions of coregulated genes involved in gluconeogenesis. This carbon source-responsive element (CSRE) interacts with a protein factor, designated Ang1 (activator of nonfermentative growth), detectable only in extracts derived from derepressed cells. Gene activation mediated by the CSRE requires the positively acting derepression genes CAT1 (= SNF1 and CCR1) and CAT3 (= SNF4). In the respective mutants, Ang1-CSRE interaction was no longer observed under repressing or derepressing conditions. Since binding of Ang1 factor to the CSRE could be competed for by an upstream sequence derived from the fructose-1,6-bisphosphatase gene FBP1, we propose that the CSRE functions as a UAS element common to genes of the gluconeogenic pathway.
Collapse
Affiliation(s)
- A Schöler
- Institut für Mikrobiologie, Biochemie und Genetik, Universität Erlangen/Nürnberg, Germany
| | | |
Collapse
|
33
|
Niederacher D, Schüller HJ, Grzesitza D, Gütlich H, Hauser HP, Wagner T, Entian KD. Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase. Curr Genet 1992; 22:363-70. [PMID: 1330335 DOI: 10.1007/bf00352437] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fructose-1,6-bisphosphatase is a key enzyme in gluconeogenesis and the FBP1 gene is not transcribed during growth with glucose. Genetic analysis indicated a positive regulation of FBP1 expression after exhaustion of glucose. By linker-deletion analysis, two upstream activation sites (UAS1 and UAS2) were localized and the respective UAS-binding factors (DAP I and DAP II for derepression activating protein) were identified by gel retardation. UAS1 and UAS2 span about 30 bp each, and are separated by approximately 30 bp. Both UAS sites act synergistically. Although UAS1 showed some similarities to the DNA-binding consensus for the general yeast activator Rap1, competition experiments and DEAE-chromatography proved that DAP I and Rap1 correspond to different proteins. Gel retardation by DAP I depended on carbon sources and did not occur in cells growing logarithmically with glucose, whereas a strong retardation signal was obtained with ethanol-grown cells. The present results suggest that DAP I and DAP II are the final regulatory elements for glucose derepression.
Collapse
Affiliation(s)
- D Niederacher
- Institut für Mikrobiologie, J. W. Goethe-Universität, Frankfurt/M., Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|