1
|
Georis I, Ronsmans A, Vierendeels F, Dubois E. Differing SAGA module requirements for NCR-sensitive gene transcription in yeast. Yeast 2024; 41:207-221. [PMID: 37357465 DOI: 10.1002/yea.3885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023] Open
Abstract
Nitrogen catabolite repression (NCR) is a means for yeast to adapt its transcriptome to changing nitrogen sources in its environment. In conditions of derepression (under poor nitrogen conditions, upon rapamycin treatment, or when glutamine production is inhibited), two transcriptional activators of the GATA family are recruited to NCR-sensitive promoters and activate transcription of NCR-sensitive genes. Earlier observations have involved the Spt-Ada-Gcn5 acetyltransferase (SAGA) chromatin remodeling complex in these transcriptional regulations. In this report, we provide an illustration of the varying NCR-sensitive responses and question whether differing SAGA recruitment could explain this diversity of responses.
Collapse
Affiliation(s)
| | | | | | - Evelyne Dubois
- Labiris, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Transcription-dependent spreading of the Dal80 yeast GATA factor across the body of highly expressed genes. PLoS Genet 2019; 15:e1007999. [PMID: 30818362 PMCID: PMC6413948 DOI: 10.1371/journal.pgen.1007999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/12/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
GATA transcription factors are highly conserved among eukaryotes and play roles in transcription of genes implicated in cancer progression and hematopoiesis. However, although their consensus binding sites have been well defined in vitro, the in vivo selectivity for recognition by GATA factors remains poorly characterized. Using ChIP-Seq, we identified the Dal80 GATA factor targets in yeast. Our data reveal Dal80 binding to a large set of promoters, sometimes independently of GATA sites, correlating with nitrogen- and/or Dal80-sensitive gene expression. Strikingly, Dal80 was also detected across the body of promoter-bound genes, correlating with high expression. Mechanistic single-gene experiments showed that Dal80 spreading across gene bodies requires active transcription. Consistently, Dal80 co-immunoprecipitated with the initiating and post-initiation forms of RNA Polymerase II. Our work suggests that GATA factors could play dual, synergistic roles during transcription initiation and post-initiation steps, promoting efficient remodeling of the gene expression program in response to environmental changes. GATA transcription factors are highly conserved among eukaryotes and play key roles in cancer progression and hematopoiesis. In budding yeast, four GATA transcription factors are involved in the response to the quality of nitrogen supply. Here, we have determined the whole genome binding profile of the Dal80 GATA factor, and revealed that it also associates with the body of promoter-bound genes. The observation that intragenic spreading correlates with high expression levels and exquisite Dal80 sensitivity suggests that GATA factors could play other, unexpected roles at post-initiation stages in eukaryotes.
Collapse
|
3
|
Yin H, He Y, Dong J, Lu J. Transcriptional profiling of amino acid supplementation and impact on aroma production in a lager yeast fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hua Yin
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi 214122 People's Republic of China
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266100 People's Republic of China
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266100 People's Republic of China
| | - Jianjun Dong
- School of Biotechnology; Jiangnan University; Wuxi 214122 People's Republic of China
- State Key Laboratory of Biological Fermentation Engineering of Beer; Tsingtao Brewery Co. Ltd; Qingdao 266100 People's Republic of China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi 214122 People's Republic of China
| |
Collapse
|
4
|
André B. Tribute to Marcelle Grenson (1925-1996), A Pioneer in the Study of Amino Acid Transport in Yeast. Int J Mol Sci 2018; 19:E1207. [PMID: 29659503 PMCID: PMC5979419 DOI: 10.3390/ijms19041207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 02/05/2023] Open
Abstract
The year 2016 marked the 20th anniversary of the death of Marcelle Grenson and the 50th anniversary of her first publication on yeast amino acid transport, the topic to which, as Professor at the Free University of Brussels (ULB), she devoted the major part of her scientific career. M. Grenson was the first scientist in Belgium to introduce and apply genetic analysis in yeast to dissect the molecular mechanisms that were underlying complex problems in biology. Today, M. Grenson is recognized for the pioneering character of her work on the diversity and regulation of amino acid transporters in yeast. The aim of this tribute is to review the major milestones of her forty years of scientific research that were conducted between 1950 and 1990.
Collapse
Affiliation(s)
- Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, 6041 Gosselies, Belgium.
| |
Collapse
|
5
|
Palavecino-Ruiz M, Bermudez-Moretti M, Correa-Garcia S. Unravelling the transcriptional regulation of Saccharomyces cerevisiae UGA genes: the dual role of transcription factor Leu3. MICROBIOLOGY-SGM 2017; 163:1692-1701. [PMID: 29058647 DOI: 10.1099/mic.0.000560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Yeast cells can use γ-aminobutyric acid (GABA), a non-protein amino acid, as a nitrogen source that is mainly imported by the permease Uga4 and catabolized by the enzymes GABA transaminase and succinate-semialdehyde dehydrogenase, encoded by the UGA1 and UGA2 genes, respectively. The three UGA genes are inducible by GABA and subject to nitrogen catabolite repression. Hence, their regulation occurs through two mechanisms, one dependent on the inducer and the other on nitrogen source quality. The aim of this work was to better understand the molecular mechanisms of transcription factors acting on different regulatory elements present in UGA promoters, such as Uga3, Dal81, Leu3 and the GATA factors, and to establish the mechanism of the concerted action between them. We found that Gat1 plays an important role in the induction of UGA4 transcription by GABA and that Gzf3 has an effect in cells grown in a poor nitrogen source such as proline and that this effect is positive on UGA4 expression. We also found that Gln3 and Dal80 affect the interaction of Uga3 and Dal81 on UGA promoters. Moreover, our results indicated that the repressing activity of Leu3 on UGA4 and UGA1 occurs through Dal80 since we demonstrated that Leu3 facilitates Dal80 interaction with DNA. However, when the expression of GATA factors is null or negligible, Leu3 functions as an activator.
Collapse
Affiliation(s)
- Marcos Palavecino-Ruiz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - Mariana Bermudez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| | - Susana Correa-Garcia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Buenos Aires, Argentina
| |
Collapse
|
6
|
Georis I, Isabelle G, Tate JJ, Vierendeels F, Cooper TG, Dubois E. Premature termination of GAT1 transcription explains paradoxical negative correlation between nitrogen-responsive mRNA, but constitutive low-level protein production. RNA Biol 2016; 12:824-37. [PMID: 26259534 PMCID: PMC4615157 DOI: 10.1080/15476286.2015.1058476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The first step in executing the genetic program of a cell is production of mRNA. In yeast, almost every gene is transcribed as multiple distinct isoforms, differing at their 5′ and/or 3′ termini. However, the implications and functional significance of the transcriptome-wide diversity of mRNA termini remains largely unexplored. In this paper, we show that the GAT1 gene, encoding a transcriptional activator of nitrogen-responsive catabolic genes, produces a variety of mRNAs differing in their 5′ and 3′ termini. Alternative transcription initiation leads to the constitutive, low level production of 2 full length proteins differing in their N-termini, whereas premature transcriptional termination generates a short, highly nitrogen catabolite repression- (NCR-) sensitive transcript that, as far as we can determine, is not translated under the growth conditions we used, but rather likely protects the cell from excess Gat1.
Collapse
Affiliation(s)
| | - Georis Isabelle
- a Yeast Physiology ; Institut de Recherches Microbiologiques J. M. Wiame ; Laboratoire de Microbiologie Université Libre de Bruxelles ; Brussels , Belgium
| | | | | | | | | |
Collapse
|
7
|
Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation. Antonie van Leeuwenhoek 2015; 107:1029-48. [DOI: 10.1007/s10482-015-0395-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/22/2015] [Indexed: 01/31/2023]
|
8
|
Georis I, Tate JJ, Cooper TG, Dubois E. Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine. J Biol Chem 2011; 286:44897-912. [PMID: 22039046 DOI: 10.1074/jbc.m111.290577] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nitrogen availability regulates the transcription of genes required to degrade non-preferentially utilized nitrogen sources by governing the localization and function of transcription activators, Gln3 and Gat1. TorC1 inhibitor, rapamycin (Rap), and glutamine synthetase inhibitor, methionine sulfoximine (Msx), elicit responses grossly similar to those of limiting nitrogen, implicating both glutamine synthesis and TorC1 in the regulation of Gln3 and Gat1. To better understand this regulation, we compared Msx- versus Rap-elicited Gln3 and Gat1 localization, their DNA binding, nitrogen catabolite repression-sensitive gene expression, and the TorC1 pathway phosphatase requirements for these responses. Using this information we queried whether Rap and Msx inhibit sequential steps in a single, linear cascade connecting glutamine availability to Gln3 and Gat1 control as currently accepted or alternatively inhibit steps in two distinct parallel pathways. We find that Rap most strongly elicits nuclear Gat1 localization and expression of genes whose transcription is most Gat1-dependent. Msx, on the other hand, elicits nuclear Gln3 but not Gat1 localization and expression of genes that are most Gln3-dependent. Importantly, Rap-elicited nuclear Gln3 localization is absolutely Sit4-dependent, but that elicited by Msx is not. PP2A, although not always required for nuclear GATA factor localization, is highly required for GATA factor binding to nitrogen-responsive promoters and subsequent transcription irrespective of the gene GATA factor specificities. Collectively, our data support the existence of two different nitrogen-responsive regulatory pathways, one inhibited by Msx and the other by rapamycin.
Collapse
Affiliation(s)
- Isabelle Georis
- Institut de Recherches Microbiologiques JM Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, B1070 Brussels, Belgium
| | | | | | | |
Collapse
|
9
|
Wong KH, Hynes MJ, Todd RB, Davis MA. Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy. MICROBIOLOGY-SGM 2009; 155:3868-3880. [PMID: 19628561 DOI: 10.1099/mic.0.031252-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Aspergillus nidulans transcription factor AreA is a key regulator of nitrogen metabolic gene expression. AreA contains a C-terminal GATA zinc finger DNA-binding domain and activates expression of genes necessary for nitrogen acquisition. Previous studies identified AreB as a potential negative regulator of nitrogen catabolism showing similarity with Penicillium chrysogenum NreB and Neurospora crassa ASD4. The areB gene encodes multiple products containing an N-terminal GATA zinc finger and a leucine zipper motif. We deleted the areB gene and now show that AreB negatively regulates AreA-dependent nitrogen catabolic gene expression under nitrogen-limiting or nitrogen-starvation conditions. AreB also acts pleiotropically, with functions in growth, conidial germination and asexual development, though not in sexual development. AreB overexpression results in severe growth inhibition, aberrant cell morphology and reduced AreA-dependent gene expression. Deletion of either the DNA-binding domain or the leucine zipper domain results in loss of both nitrogen and developmental phenotypes.
Collapse
Affiliation(s)
- Koon Ho Wong
- Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| | - Michael J Hynes
- Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Hall, Manhattan, KS 66506-5502 USA.,Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| | - Meryl A Davis
- Department of Genetics, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
10
|
Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. EUKARYOTIC CELL 2008; 7:917-25. [PMID: 18441120 DOI: 10.1128/ec.00076-08] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:3065-86. [PMID: 17308034 PMCID: PMC1899933 DOI: 10.1128/mcb.01084-06] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/24/2006] [Accepted: 01/16/2007] [Indexed: 11/20/2022] Open
Abstract
We compared the transcriptomes of Saccharomyces cerevisiae cells growing under steady-state conditions on 21 unique sources of nitrogen. We found 506 genes differentially regulated by nitrogen and estimated the activation degrees of all identified nitrogen-responding transcriptional controls according to the nitrogen source. One main group of nitrogenous compounds supports fast growth and a highly active nitrogen catabolite repression (NCR) control. Catabolism of these compounds typically yields carbon derivatives directly assimilable by a cell's metabolism. Another group of nitrogen compounds supports slower growth, is associated with excretion by cells of nonmetabolizable carbon compounds such as fusel oils, and is characterized by activation of the general control of amino acid biosynthesis (GAAC). Furthermore, NCR and GAAC appear interlinked, since expression of the GCN4 gene encoding the transcription factor that mediates GAAC is subject to NCR. We also observed that several transcriptional-regulation systems are active under a wider range of nitrogen supply conditions than anticipated. Other transcriptional-regulation systems acting on genes not involved in nitrogen metabolism, e.g., the pleiotropic-drug resistance and the unfolded-protein response systems, also respond to nitrogen. We have completed the lists of target genes of several nitrogen-sensitive regulons and have used sequence comparison tools to propose functions for about 20 orphan genes. Similar studies conducted for other nutrients should provide a more complete view of alternative metabolic pathways in yeast and contribute to the attribution of functions to many other orphan genes.
Collapse
Affiliation(s)
- Patrice Godard
- Physiologie Moléculaire de la Cellule, IBMM, Université Libre de Bruxelles, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
12
|
García-Salcedo R, Casamayor A, Ruiz A, González A, Prista C, Loureiro-Dias MC, Ramos J, Ariño J. Heterologous expression implicates a GATA factor in regulation of nitrogen metabolic genes and ion homeostasis in the halotolerant yeast Debaryomyces hansenii. EUKARYOTIC CELL 2006; 5:1388-98. [PMID: 16896222 PMCID: PMC1539131 DOI: 10.1128/ec.00154-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 06/08/2006] [Indexed: 11/20/2022]
Abstract
The yeast Debaryomyces hansenii has a remarkable capacity to proliferate in salty and alkaline environments such as seawater. A screen for D. hansenii genes able to confer increased tolerance to high pH when overexpressed in Saccharomyces cerevisiae yielded a single gene, named here DhGZF3, encoding a putative negative GATA transcription factor related to S. cerevisiae Dal80 and Gzf3. Overexpression of this gene in wild-type S. cerevisiae increased caffeine and rapamycin tolerance, blocked growth in low glucose concentrations and nonfermentable carbon sources, and resulted in lithium- and sodium-sensitive cells. Sensitivity to salt could be attributed to a reduced cation efflux, most likely because of a decrease in expression of the ENA1 Na(+)-ATPase gene. Overexpression of DhGZF3 did not affect cell growth in a gat1 mutant but was lethal in the absence of Gln3. These are positive factors that oppose both Gzf3 and Dal80. Genome-wide transcriptional profiling of wild-type cells overexpressing DhGZF3 shows decreased expression of a number of genes that are usually induced in poor nitrogen sources. In addition, the entire pathway leading to Lys biosynthesis was repressed, probably as a result of a decrease in the expression of the specific Lys14 transcription factor. In conclusion, our results demonstrate that DhGzf3 can play a role as a negative GATA transcription factor when expressed in S. cerevisiae and that it most probably represents the only member of this family in D. hansenii. These findings also point to the GATA transcription factors as relevant elements for alkaline-pH tolerance.
Collapse
Affiliation(s)
- Raúl García-Salcedo
- Departamento de Microbiología, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Saxena D, Kannan KB, Brandriss MC. Rapamycin treatment results in GATA factor-independent hyperphosphorylation of the proline utilization pathway activator in Saccharomyces cerevisiae. EUKARYOTIC CELL 2003; 2:552-9. [PMID: 12796300 PMCID: PMC161436 DOI: 10.1128/ec.2.3.552-559.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatment of Saccharomyces cerevisiae cells with the immunosuppressive drug rapamycin results in a variety of cellular changes in response to perceived nutrient deprivation. Among other effects, rapamycin treatment results in the nuclear localization of the global nitrogen activators Gln3p and Nil1p/Gat1p, which leads to expression of nitrogen assimilation genes. The proline utilization (Put) pathway genes were shown to be among the genes induced by rapamycin. Having previously shown that the Put pathway activator Put3p is differentially phosphorylated in response to the quality of the nitrogen source, we examined the phosphorylation status of Put3p after rapamycin treatment. Treatment with rapamycin resulted in the hyperphosphorylation of Put3p, which was independent of Gln3p, Nil1p, and Ure2p. The relative contributions of global nitrogen (Gln3p and Nil1p) and pathway-specific (Put3p) activators to rapamycin-induced expression of the target gene PUT1 were also examined. We found that Nil1p and Put3p, but not Gln3p, play major roles in rapamycin-induced PUT1 expression. Our findings show that perceived nitrogen deprivation triggered by rapamycin treatment and steady-state growth in nitrogen-derepressing conditions are associated with hyperphosphorylation of Put3p and increased PUT1 expression. Rapamycin treatment and nitrogen derepression may share some, but not all, regulatory elements, since Gln3p and Nil1p do not participate identically in both processes and are not required for hyperphosphorylation. A complex relationship exists among the global and pathway-specific regulators, depending on the nature and quality of the nitrogen source.
Collapse
Affiliation(s)
- Deepti Saxena
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark 07101-1709, USA
| | | | | |
Collapse
|
14
|
Riego L, Avendaño A, DeLuna A, Rodríguez E, González A. GDH1 expression is regulated by GLN3, GCN4, and HAP4 under respiratory growth. Biochem Biophys Res Commun 2002; 293:79-85. [PMID: 12054566 DOI: 10.1016/s0006-291x(02)00174-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the yeast Saccharomyces cerevisiae, two NADP(+)-dependent glutamate dehydrogenase isoenzymes encoded by GDH1 and GDH3 catalyze the synthesis of glutamate from ammonium and alpha-ketoglutarate. In this work we analyzed GDH1 transcriptional regulation, in order to deepen the studies in regard to its physiological role. Our results indicate that: (i) GDH1 expression is strictly controlled in ethanol-grown cultures, constituting a fine-tuning mechanism that modulates the abundance of Gdh1p monomers under this condition, (ii) GDH1 expression is controlled by transcriptional activators that have been considered as exclusive of either nitrogen (Gln3p and Gcn4p) or carbon metabolism (HAP complex), and (iii) chromatin remodeling complexes play a role in GDH1 expression; ADA2 and ADA3 up-regulated GDH1 expression on ethanol, while that on glucose was ADA3-dependent. SPT3 and SNF2 activated GDH1 expression on either carbon source whereas GCN5 played no role in any condition tested. The above described combinatorial control results in a refined mechanism that coordinates carbon and nitrogen utilization.
Collapse
Affiliation(s)
- Lina Riego
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, México
| | | | | | | | | |
Collapse
|
15
|
Forsberg H, Gilstring CF, Zargari A, Martínez P, Ljungdahl PO. The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids. Mol Microbiol 2001; 42:215-28. [PMID: 11679080 DOI: 10.1046/j.1365-2958.2001.02627.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In response to discrete environmental cues, Saccharomyces cerevisiae cells adjust patterns of gene expression and protein activity to optimize metabolism. Nutrient-sensing systems situated in the plasma membrane (PM) of yeast have only recently been discovered. Ssy1p is one of three identified components of the Ssy1p-Ptr3p-Ssy5 (SPS) sensor of extracellular amino acids. SPS sensor-initiated signals are known to modulate the expression of a number of amino acid and peptide transporter genes (i.e. AGP1, BAP2, BAP3, DIP5, GAP1, GNP1, TAT1, TAT2 and PTR2) and arginase (CAR1). To obtain a better understanding of how cells adjust metabolism in response to extracellular amino acids in the environment and to assess the consequences of loss of amino acid sensor function, we investigated the effects of leucine addition to wild-type and ssy1 null mutant cells using genome-wide transcription profile analysis. Our results indicate that the previously identified genes represent only a subset of the full spectrum of Ssy1p-dependent genes. The expression of several genes encoding enzymes in amino acid biosynthetic pathways, including the branched-chain, lysine and arginine, and the sulphur amino acid biosynthetic pathways, are modulated by Ssy1p. Additionally, the proper transcription of several nitrogen-regulated genes, including NIL1 and DAL80, encoding well-studied GATA transcription factors, is dependent upon Ssy1p. Finally, several genes were identified that require Ssy1p for wild-type expression independently of amino acid addition. These findings demonstrate that yeast cells require the SPS amino acid sensor component, Ssy1p, to adjust diverse cellular metabolic processes properly.
Collapse
Affiliation(s)
- H Forsberg
- Ludwig Institute for Cancer Research, Box 240, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
16
|
Conlon H, Zadra I, Haas H, Arst HN, Jones MG, Caddick MX. The Aspergillus nidulans GATA transcription factor gene areB encodes at least three proteins and features three classes of mutation. Mol Microbiol 2001; 40:361-75. [PMID: 11309119 DOI: 10.1046/j.1365-2958.2001.02399.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Aspergillus nidulans, the principal transcription factor regulating nitrogen metabolism, AREA, belongs to the GATA family of DNA-binding proteins. In seeking additional GATA factors, we have cloned areB, which was originally identified via a genetic screen for suppressors of areA loss-of-function mutations. Based on our analysis, areB is predicted to encode at least three distinct protein products. These arise from the use of two promoters, differential splicing and translation initiating at AUG and non-AUG start codons. All the putative products include a GATA domain and a putative Leu zipper. These regions show strong sequence similarity to regulatory proteins from Saccharomyces cerevisiae (Dal80p and Gzf3p), Penicillium chrysogenum (NREB) and Neurospora crassa (ASD4). We have characterized three classes of mutation in areB; the first are loss-of-function mutations that terminate the polypeptides within or before the GATA domain. The second class truncates the GATA factor either within or upstream of the putative Leu zipper but retains the GATA domain. The third class fuses novel gene sequences to areB with the potential to produce putative chimeric polypeptides. These novel gene fusions transform the putative negative-acting transcription factor into an activator that can partially replace areA.
Collapse
Affiliation(s)
- H Conlon
- Plant Science and Fungal Molecular Biology Research Group, School of Biological Sciences, Donnan Laboratories, The University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| | | | | | | | | | | |
Collapse
|
17
|
Garcia SC, Moretti MB, Batlle A. Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p. FEMS Microbiol Lett 2000; 184:219-24. [PMID: 10713424 DOI: 10.1111/j.1574-6968.2000.tb09017.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The first specific precursor of porphyrin biosynthesis is delta-aminolevulinic acid. delta-Aminolevulinic acid enters Saccharomyces cerevisiae cells through the gamma-aminobutyric acid specific permease Uga4p. It was described that this permease is inducible by gamma-aminobutyric acid and its regulation involves several specific and pleiotropic transcriptional factors. However, some studies showed that under certain growth conditions the synthesis of Uga4p was not dependent on the presence of gamma-aminobutyric acid. To study the effect of the trans-acting factors Uga43p, Uga3p, Uga35p, Ure2p and Gln3p on the expression of UGA4, we measured gamma-aminobutyric acid and delta-aminolevulinic acid uptake in yeast mutant cells, lacking one of these regulatory factors, grown under different conditions. Experiments analyzing the UGA4 promoter using a fusion construction UGA4::lacZ were also carried out. The results show that the constitutive expression of the UGA4 gene found in cells under certain growth conditions depends on the presence of Uga3p and Uga35p. In contrast, Gln3p and Ure2p do not seem to have any effect on this constitutive mechanism.
Collapse
Affiliation(s)
- S C Garcia
- Centro de Investigaciones sobre Porfirinas y Porfirias. CIPYP (CONICET, FCEyN, UBA), Ciudad Universitaria, Pabellón II, 2o Piso, 1428, Buenos Aires, Argentina
| | | | | |
Collapse
|
18
|
Huang HL, Brandriss MC. The regulator of the yeast proline utilization pathway is differentially phosphorylated in response to the quality of the nitrogen source. Mol Cell Biol 2000; 20:892-9. [PMID: 10629046 PMCID: PMC85206 DOI: 10.1128/mcb.20.3.892-899.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proline utilization pathway in Saccharomyces cerevisiae is regulated by the Put3p transcriptional activator in response to the presence of the inducer proline and the quality of the nitrogen source in the growth medium. Put3p is constitutively bound to the promoters of its target genes, PUT1 and PUT2, under all conditions studied but activates transcription to the maximum extent only in the absence of rich nitrogen sources and in the presence of proline (i.e., when proline serves as the sole source of nitrogen). Changes in target gene expression therefore occur through changes in the activity of the DNA-bound regulator. In this report, we demonstrate by phosphatase treatment of immunoprecipitates of extracts metabolically labeled with (32)P or (35)S that Put3p is a phosphoprotein. Examination of Put3p isolated from cells grown on a variety of nitrogen sources showed that it was differentially phosphorylated as a function of the quality of the nitrogen source: the poorer the nitrogen source, the slower the gel migration of the phosphoforms. The presence of the inducer does not detectably alter the phosphorylation profile. Activator-defective and activator-constitutive Put3p mutants have been analyzed. One activator-defective mutant appears to be phosphorylated in a pattern similar to that of the wild type, thus separating its ability to be phosphorylated from its ability to activate transcription. Three activator-constitutive mutant proteins from cells grown on an ammonia-containing medium have a phosphorylation profile similar to that of the wild-type protein in cells grown on proline. These results demonstrate a correlation between the phosphorylation status of Put3p and its ability to activate its target genes and suggest that there are two signals, proline induction and quality of nitrogen source, impinging on Put3p that act synergistically for maximum expression of the proline utilization pathway.
Collapse
Affiliation(s)
- H L Huang
- Department of Microbiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
19
|
ter Schure EG, van Riel NA, Verrips CT. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 2000; 24:67-83. [PMID: 10640599 DOI: 10.1111/j.1574-6976.2000.tb00533.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Saccharomyces cerevisiae is able to use a wide variety of nitrogen sources for growth. Not all nitrogen sources support growth equally well. In order to select the best out of a large diversity of available nitrogen sources, the yeast has developed molecular mechanisms. These mechanisms consist of a sensing mechanism and a regulatory mechanism which includes induction of needed systems, and repression of systems that are not beneficial. The first step in use of most nitrogen sources is its uptake via more or less specific permeases. Hence the first level of regulation is encountered at this level. The next step is the degradation of the nitrogen source to useful building blocks via the nitrogen metabolic pathways. These pathways can be divided into routes that lead to the degradation of the nitrogen source to ammonia and glutamate, and routes that lead to the synthesis of nitrogen containing compounds in which glutamate and glutamine are used as nitrogen donor. Glutamine is synthesized out of ammonia and glutamate. The expression of the specific degradation routes is also regulated depending on the availability of a particular nitrogen source. Ammonia plays a central role as intermediate between degradative and biosynthetic pathways. It not only functions as a metabolite in metabolic reactions but is also involved in regulation of metabolic pathways at several levels. This review describes the central role of ammonia in nitrogen metabolism. This role is illustrated at the level of enzyme activity, translation and transcription.
Collapse
Affiliation(s)
- E G ter Schure
- Unilever Research, Laboratorium Vlaardingen, Olivier van Noortlaan 120, 3133 AT, Vlaardingen, The Netherlands.
| | | | | |
Collapse
|
20
|
Rai R, Daugherty JR, Cunningham TS, Cooper TG. Overlapping positive and negative GATA factor binding sites mediate inducible DAL7 gene expression in Saccharomyces cerevisiae. J Biol Chem 1999; 274:28026-34. [PMID: 10488154 DOI: 10.1074/jbc.274.39.28026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allantoin pathway gene expression in Saccharomyces cerevisiae responds to two different environmental stimuli. The expression of these genes is induced in the presence of allantoin or its degradative metabolites and repressed when a good nitrogen source (e. g. asparagine or glutamine) is provided. Three types of cis-acting sites and trans-acting factors are required for allantoin pathway gene transcription as follows: (i) UAS(NTR) element associated with the transcriptional activators Gln3p and Gat1p, (ii) URS(GATA) element associated with the repressor Dal80p, and (iii) UIS(ALL) element associated with the Dal82 and Dal81 proteins required for inducer-dependent transcription. Most of the work leading to the above conclusions has employed inducer-independent allantoin pathway genes (e.g. DAL5 and DAL3). The purpose of this work is to extend our understanding of these elements and their roles to inducible allantoin pathway genes using the DAL7 (encoding malate synthase) as a model. We show that eight distinct cis-acting sites participate in the process as follows: a newly identified GC-rich element, two UAS(NTR), two UIS(ALL), and three URS(GATA) elements. The two GATA-containing UAS(NTR) elements are coincident with two of the three GATA sequences that make up the URS(GATA) elements. The remaining URS(GATA) GATA sequence, however, is not a UAS(NTR) element but appears to function only in repression. The data provide insights into how these cis- and trans-acting factors function together to accomplish the regulated expression of the DAL7 gene that is observed in vivo.
Collapse
Affiliation(s)
- R Rai
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
21
|
Abstract
In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Dal80, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence 5'GATAA 3'. Gln3 and Gat1 act positively on gene expression whereas Dal80 and Deh1 act negatively. Expression of nitrogen catabolite pathway genes known to be regulated by these four regulators are glutamine, glutamate, proline, urea, arginine. GABA, and allantonie. In addition, the expression of the genes encoding the general amino acid permease and the ammonium permease are also regulated by these four regulatory proteins. Another group of genes whose expression is also regulated by Gln3, Gat1, Dal80, and Deh1 are some proteases, CPS1, PRB1, LAP1, and PEP4, responsible for the degradation of proteins into amino acids thereby providing a nitrogen source to the cell. In this review, all known promoter sequences related to expression of nitrogen catabolite pathways are discussed as well as other regulatory proteins. Overview of metabolic pathways and promotors are presented.
Collapse
Affiliation(s)
- J Hofman-Bang
- Department of Biotechnology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
22
|
Klasson H, Fink GR, Ljungdahl PO. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol 1999; 19:5405-16. [PMID: 10409731 PMCID: PMC84383 DOI: 10.1128/mcb.19.8.5405] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/1999] [Accepted: 05/04/1999] [Indexed: 11/20/2022] Open
Abstract
Mutations in SSY1 and PTR3 were identified in a genetic selection for components required for the proper uptake and compartmentalization of histidine in Saccharomyces cerevisiae. Ssy1p is a unique member of the amino acid permease gene family, and Ptr3p is predicted to be a hydrophilic protein that lacks known functional homologs. Both Ssy1p and Ptr3p have previously been implicated in relaying signals regarding the presence of extracellular amino acids. We have found that ssy1 and ptr3 mutants belong to the same epistasis group; single and ssy1 ptr3 double-mutant strains exhibit indistinguishable phenotypes. Mutations in these genes cause the nitrogen-regulated general amino acid permease gene (GAP1) to be abnormally expressed and block the nonspecific induction of arginase (CAR1) and the peptide transporter (PTR2). ssy1 and ptr3 mutations manifest identical differential effects on the functional expression of multiple specific amino acid transporters. ssy1 and ptr3 mutants have increased vacuolar pools of histidine and arginine and exhibit altered cell growth morphologies accompanied by exaggerated invasive growth. Subcellular fractionation experiments reveal that both Ssy1p and Ptr3p are localized to the plasma membrane (PM). Ssy1p requires the endoplasmic reticulum protein Shr3p, the amino acid permease-specific packaging chaperonin, to reach the PM, whereas Ptr3p does not. These findings suggest that Ssy1p and Ptr3p function in the PM as components of a sensor of extracellular amino acids.
Collapse
Affiliation(s)
- H Klasson
- Ludwig Institute for Cancer Research, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
23
|
Iraqui I, Vissers S, André B, Urrestarazu A. Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:3360-71. [PMID: 10207060 PMCID: PMC84129 DOI: 10.1128/mcb.19.5.3360] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aromatic aminotransferase II, product of the ARO9 gene, catalyzes the first step of tryptophan, phenylalanine, and tyrosine catabolism in Saccharomyces cerevisiae. ARO9 expression is under the dual control of specific induction and nitrogen source regulation. We have here identified UASaro, a 36-bp upstream element necessary and sufficient to promote transcriptional induction of reporter gene expression in response to tryptophan, phenylalanine, or tyrosine. We then isolated mutants in which UASaro-mediated ARO9 transcription is partially or totally impaired. Mutations abolishing ARO9 induction affect a gene called ARO80 (YDR421w), coding for a Zn2Cys6 family transcription factor. A sequence highly similar to UASaro was found upstream from the YDR380w gene encoding a homolog of bacterial indolepyruvate decarboxylase. In yeast, this enzyme is postulated to catalyze the second step of tryptophan catabolism to tryptophol. We show that ARO9 and YDR380w (named ARO10) have similar patterns of transcriptional regulation and are both under the positive control of Aro80p. Nitrogen regulation of ARO9 expression seems not directly to involve the general factor Ure2p, Gln3p, Nil1p, Uga43p, or Gzf3p. ARO9 expression appears, rather, to be mainly regulated by inducer exclusion. Finally, we show that Gap1p, the general amino acid permease, and Wap1p (Ycl025p), a newly discovered inducible amino acid permease with broad specificity, are the main aromatic amino acid transporters for catabolic purposes.
Collapse
Affiliation(s)
- I Iraqui
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Université Libre de Bruxelles-Campus Plaine CP244, B-1050 Brussels, Belgium
| | | | | | | |
Collapse
|
24
|
Soussi-Boudekou S, André B. A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol Microbiol 1999; 31:753-62. [PMID: 10048020 DOI: 10.1046/j.1365-2958.1999.01187.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the transcription factors Gln3p and Nil1p of the GATA family play a determinant role in expression of genes that are subject to nitrogen catabolite repression. Here we report the isolation of a new yeast mutant, gan1-1, exhibiting dramatically decreased NAD-linked glutamate dehydrogenase (NAD-GDH) and glutamine synthetase (GS) activities. The GAN1 gene was cloned and found to encode a 488-amino-acid polypeptide bearing no typical DNA binding domain. Gan1p is required for full expression of GLN1, GDH2 and also other nitrogen utilization genes, including GAP1, PUT4, MEP2 and GDH1. The extent to which Gan1p is required, however, varies according to the gene and to the nitrogen source available. We show that Gan1p is in fact involved in Gln3p- and Nil1p-dependent transcription. In the case of Gln3p-dependent transcription, the degree to which Gan1p is required appears to be gene specific. The contribution of Gan1p to gene expression is also influenced by the nitrogen status of the cell. We found that GAN1 is identical to ADA1, which encodes a component of the ADA/GCN5 co-activator complex. Ada1/Gan1p thus represents the first reported case of an accessory protein (a co-activator) linking the GATA-binding proteins Gln3p and Nil1p, mediating nitrogen-regulated transcription, to the basal transcription machinery.
Collapse
Affiliation(s)
- S Soussi-Boudekou
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Université Libre de Bruxelles-Campus Plaine, Brussels, Belgium
| | | |
Collapse
|
25
|
Svetlov VV, Cooper TG. The Saccharomyces cerevisiae GATA factors Dal80p and Deh1p can form homo- and heterodimeric complexes. J Bacteriol 1998; 180:5682-8. [PMID: 9791119 PMCID: PMC107628 DOI: 10.1128/jb.180.21.5682-5688.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GATA family proteins Gln3p, Gat1p, Dal80p, and Deh1p mediate the regulation of nitrogen catabolite repression (NCR)-sensitive gene expression in Saccharomyces cerevisiae. Thus far, Gln3p, Dal80p, and Deh1p have been shown to bind to GATA sequences in NCR-sensitive promoters, in some cases to exactly the same GATA sequences. A minimal Gln3p binding site consists of a single GATA sequence, whereas a Dal80p binding site consists of two GATA sequences in specific orientation, 15 to 35 bp apart, suggesting that Dal80p may bind to DNA as a dimer. Additionally, both Dal80p and Deh1p are predicted to contain a leucine zipper motif near their C termini. Therefore, we tested whether they could form homo- and/or heterodimers in two-hybrid assays. We show that Dal80p-Dal80p, Dal80p-Dal80pLZ (leucine zipper), Dal80pLZ-Dal80pLZ, Dal80p-Deh1pLZ, Dal80pLZ-Deh1pLZ, and Deh1pLZ-Deh1pLZ complexes can form. Dal80p-Dal80p and Dal80pLZ-Dal80pLZ complexes yield 5- to 10-fold stronger signals than the other possible dimers. If Dal80p and Deh1p bind to DNA only after dimerization, then the difference in ability to form complexes could significantly affect their affinity for binding DNA and thus the degree of regulation exerted by each of the two factors.
Collapse
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
26
|
Valenzuela L, Ballario P, Aranda C, Filetici P, González A. Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae. J Bacteriol 1998; 180:3533-40. [PMID: 9657994 PMCID: PMC107319 DOI: 10.1128/jb.180.14.3533-3540.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Saccharomyces cerevisiae glutamate synthase (GOGAT) is an oligomeric enzyme composed of three 199-kDa identical subunits encoded by GLT1. In this work, we analyzed GLT1 transcriptional regulation. GLT1-lacZ fusions were prepared and GLT1 expression was determined in a GDH1 wild-type strain and in a gdh1 mutant derivative grown in the presence of various nitrogen sources. Null mutants impaired in GCN4, GLN3, GAT1/NIL1, or UGA43/DAL80 were transformed with a GLT1-lacZ fusion to determine whether the above-mentioned transcriptional factors had a role in GLT1 expression. A collection of increasingly larger 5' deletion derivatives of the GLT1 promoter was constructed to identify DNA sequences that could be involved in GLT1 transcriptional regulation. The effect of the lack of GCN4, GLN3, or GAT1/NIL1 was also tested in the pertinent 5' deletion derivatives. Our results indicate that (i) GLT1 expression is negatively modulated by glutamate-mediated repression and positively regulated by Gln3p- and Gcn4p-dependent transcriptional activation; (ii) two cis-acting elements, a CGGN15CCG palindrome and an imperfect poly(dA-dT), are present and could play a role in GLT1 transcriptional activation; and (iii) GLT1 expression is moderately regulated by GCN4 under amino acid deprivation. Our results suggest that in a wild-type strain grown on ammonium, GOGAT constitutes an ancillary pathway for glutamate biosynthesis.
Collapse
Affiliation(s)
- L Valenzuela
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | | | | |
Collapse
|
27
|
Andrianopoulos A, Kourambas S, Sharp JA, Davis MA, Hynes MJ. Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J Bacteriol 1998; 180:1973-7. [PMID: 9537404 PMCID: PMC107119 DOI: 10.1128/jb.180.7.1973-1977.1998] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gene nmrA of Aspergillus nidulans has been isolated and found to be a homolog of the Neurospora crassa gene nmr-1, involved in nitrogen metabolite repression. Deletion of nmrA results in partial derepression of activities subject to nitrogen repression similar to phenotypes observed for certain mutations in the positively acting areA gene.
Collapse
Affiliation(s)
- A Andrianopoulos
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
28
|
Svetlov V, Cooper TG. The minimal transactivation region of Saccharomyces cerevisiae Gln3p is localized to 13 amino acids. J Bacteriol 1997; 179:7644-52. [PMID: 9401021 PMCID: PMC179725 DOI: 10.1128/jb.179.24.7644-7652.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Regulated nitrogen catabolic gene transcription in Saccharomyces cerevisiae is mediated by four positive (Gln3p and Gat1p/Nil1p) and negative (Dal80p/Uga43p and Deh1p/Nil2p/GZF3p) regulators which function in opposition to one another. All four proteins contain GATA-type zinc finger domains, and three of them (Gln3p, Dal80p, and Deh1p) have been shown to bind to GATA sequences situated upstream of genes whose expression is sensitive to nitrogen catabolite repression (NCR). The positive regulators, Gln3p and Gat1p, are able to support transcriptional activation when tethered by LexAp to the promoter of a reporter gene whose upstream activation sequences have been replaced with one or more lexA operator sites. Existing data suggest that these four proteins regulate transcription by competing with one another for binding to the GATA sequences which mediate NCR-sensitive gene expression. We show that the minimal Gln3p domain mediating transcriptional activation consists of 13 amino acids with a predicted propensity to form an alpha-helix. Genetic analysis of this region (Gln3p residues 126 to 138, QQNGEIAQLWDFN) demonstrated that alanine may be substituted for the aromatic and acidic amino acids without destroying transcriptional activation potential. Similar substitution of alanine for the two hydrophobic amino acids, isoleucine and leucine, however, destroys activation, as does introduction of basic amino acids in place of the acidic residues or introduction of proline into the center of the sequence. A point mutation in the Gln3p activation region destroys its in vivo ability to support NCR-sensitive DAL5 expression. We find no convincing evidence that NCR regulates Gln3p function by modulating the functioning of its activation region.
Collapse
Affiliation(s)
- V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
29
|
Haas H, Angermayr K, Zadra I, Stöffler G. Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J Biol Chem 1997; 272:22576-82. [PMID: 9278412 DOI: 10.1074/jbc.272.36.22576] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate the mechanism of nitrogen metabolite repression in the biotechnologically important fungus Penicillium chrysogenum a polymerase chain reaction approach was employed to identify transcription factors involved in this regulatory circuit, leading to the isolation of a new gene (nreB) encoding a 298 amino acid protein. Despite a low overall amino acid sequence identity of approximately 30%, it shares several features with Dal80p/Uga43p and Gzf3p/Nil2p, both repressors in nitrogen metabolism in Saccharomyces cerevisiae. All three proteins contain an N-terminal GATA-type zinc finger motif, displaying 86% amino acid sequence identity, and a putative leucine zipper motif in the C terminus. Northern blot analysis revealed the presence of two nreB transcripts, 1.8 and 1.5 kilobases in length, that differ in polyadenylation sites. The steady state level of both transcripts is subject to nitrogen metabolite repression. The putative DNA binding domain of NREB, expressed as a fusion protein in Escherichia coli, binds in vitro to GATA sites of its own 5'-upstream region as well as in the promoter of the nitrate assimilation gene cluster. Consistent with a role in the regulation of nitrogen metabolism, overexpression of nreB leads to repression of nitrate assimilatory genes. Hence, the simple view of nitrogen regulation by four GATA factors in yeast, but only one key regulator in filamentous ascomycetes seems no longer valid.
Collapse
Affiliation(s)
- H Haas
- Department of Microbiology (Medical School), University of Innsbruck, Fritz-Pregl Str. 3, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
30
|
Coffman JA, Cooper TG. Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae. J Bacteriol 1997; 179:5609-13. [PMID: 9287023 PMCID: PMC179439 DOI: 10.1128/jb.179.17.5609-5613.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The expression of most nitrogen catabolic genes in Saccharomyces cerevisiae is regulated at the level of transcription in response to the quality of nitrogen source available. This regulation is accomplished through four GATA-family transcription factors: two positively acting factors capable of transcriptional activation (Gln3p and Gat1p) and two negatively acting factors capable of down-regulating Gln3p- and/or Gat1p-dependent transcription (Dal80p and Deh1p). Current understanding of nitrogen-responsive transcriptional regulation is the result of extensive analysis of genes required for the catabolism of small molecules, e.g., amino acids, allantoin, or ammonia. However, cells contain another, equally important source of nitrogen, intracellular protein, which undergoes rapid turnover during special circumstances such as entry into stationary phase, and during sporulation. Here we show that the expression of some (CPS1, PEP4, PRB1, and LAP4) but not all (PRC1) vacuolar protease genes is nitrogen catabolite repression sensitive and is regulated by the GATA-family proteins Gln3p, Gat1p, and Dal80p. These observations extend the global participation of GATA-family transcription factors to include not only well-studied genes associated with the catabolism of small nitrogenous compounds but also genes whose products are responsible for the turnover of intracellular macromolecules. They also point to the usefulness of considering control of the nitrogen-responsive GATA factors when studying the regulation of the protein turnover machinery.
Collapse
Affiliation(s)
- J A Coffman
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
31
|
Coffman JA, Rai R, Loprete DM, Cunningham T, Svetlov V, Cooper TG. Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J Bacteriol 1997; 179:3416-29. [PMID: 9171383 PMCID: PMC179131 DOI: 10.1128/jb.179.11.3416-3429.1997] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nitrogen catabolic gene expression in Saccharomyces cerevisiae has been reported to be regulated by three GATA family proteins, the positive regulators Gln3p and Gat1p/Nil1p and the negative regulator Dal80p/Uga43p. We show here that a fourth member of the yeast GATA family, the Dal80p homolog Deh1p, also negatively regulates expression of some, but not all, nitrogen catabolic genes, i.e., GAP1, DAL80, and UGA4 expression increases in a deh1 delta mutant. Consistent with Deh1p regulation of these genes is the observation that Deh1p forms specific DNA-protein complexes with GATAA-containing UGA4 and GAP1 promoter fragments in electrophoretic mobility shift assays. Deh1p function is demonstrable, however, only when a repressive nitrogen source such as glutamine is present; deh1 delta mutants exhibit no detectable phenotype with a poor nitrogen source such as proline. Our experiments also demonstrate that GATA factor gene expression is highly regulated by the GATA factors themselves in an interdependent manner. DAL80 expression is Gln3p and Gat1p dependent and Dal80p regulated. Moreover, Gln3p and Dal80p bind to DAL80 promoter fragments. In turn, GAT1 expression is Gln3p dependent and Dal80p regulated but is not autogenously regulated like DAL80. DEH1 expression is largely Gln3p independent, modestly Gat1p dependent, and most highly regulated by Dal80p. Paradoxically, the high-level DEH1 expression observed in a dal80::hisG disruption mutant is highly sensitive to nitrogen catabolite repression.
Collapse
Affiliation(s)
- J A Coffman
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- J Horák
- Department of Membrane Transport, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
33
|
Cunningham TS, Svetlov VV, Rai R, Smart W, Cooper TG. G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae. J Bacteriol 1996; 178:3470-9. [PMID: 8655543 PMCID: PMC178115 DOI: 10.1128/jb.178.12.3470-3479.1996] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When readily used nitrogen sources are available, the expression of genes encoding proteins needed to transport and metabolize poorly used nitrogen sources is repressed to low levels; this physiological response has been designated nitrogen catabolite repression (NCR). The cis-acting upstream activation sequence (UAS) element UAS(NTR) mediates Gln3p-dependent, NCR-sensitive transcription and consists of two separated dodecanucleotides, each containing the core sequence GATAA. Gln3p, produced in Escherichia coli and hence free of all other yeast proteins, specifically binds to wild-type UAS(NTR) sequences and DNA fragments derived from a variety of NCR-sensitive promoters (GDH2, CAR11 DAL3, PUT1, UGA4, and GLN1). A LexA-Gln3 fusion protein supported transcriptional activation when bound to one or more LexAp binding sites upstream of a minimal CYC1-derived promoter devoid of UAS elements. LexAp-Gln3p activation of transcription was largely independent of the nitrogen source used for growth. These data argue that Gln3p is capable of direct UAS(NTR) binding and participates in transcriptional activation of NCR-sensitive genes.
Collapse
Affiliation(s)
- T S Cunningham
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
34
|
Coffman JA, Rai R, Cunningham T, Svetlov V, Cooper TG. Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:847-58. [PMID: 8622686 PMCID: PMC231065 DOI: 10.1128/mcb.16.3.847] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Saccharomyces cerevisiae cells selectively use nitrogen sources in their environment. Nitrogen catabolite repression (NCR) is the basis of this selectivity. Until recently NCR was thought to be accomplished exclusively through the negative regulation of Gln3p function by Ure2p. The demonstration that NCR-sensitive expression of multiple nitrogen-catabolic genes occurs in a gln3 delta ure2 delta dal80::hisG triple mutant indicated that the prevailing view of the nitrogen regulatory circuit was in need of revision; additional components clearly existed. Here we demonstrate that another positive regulator, designated Gat1p, participates in the transcription of NCR-sensitive genes and is able to weakly activate transcription when tethered upstream of a reporter gene devoid of upstream activation sequence elements. Expression of GAT1 is shown to be NCR sensitive, partially Gln3p dependent, and Dal80p regulated. In agreement with this pattern of regulation, we also demonstrate the existence of Gln3p and Dal80p binding sites upstream of GAT1.
Collapse
Affiliation(s)
- J A Coffman
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
35
|
Ushio K, Otsuka H, Yoshikawa S, Taguchi G, Shimosaka M, Mitsui N, Okazaki M. Cloning of the SAT1 gene concerned with salt tolerance of the yeast Zygosaccharomyces rouxii. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)89448-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Coffman JA, Rai R, Cooper TG. Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J Bacteriol 1995; 177:6910-8. [PMID: 7592485 PMCID: PMC177560 DOI: 10.1128/jb.177.23.6910-6918.1995] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The expression of many nitrogen catabolic genes decreases to low levels when readily used nitrogen sources (e.g., asparagine and glutamine) are provided in the growth medium; this physiological response is termed nitrogen catabolite repression (NCR). Transcriptional activation of these genes is mediated by the cis-acting element UASNTR and the trans-acting factor Gln3p. A second protein encoded by URE2 possesses the genetic characteristics of a negative regulator of nitrogen catabolic gene expression. A third locus, DAL80, encodes a repressor that binds to sequences required for Gln3p-dependent transcription and may compete with Gln3p for binding to them. These observations are consistent with an NCR regulatory pathway with the structure environmental signal-->Ure2p-->(Gln3p/Dal80p)-->UASNTR operation-->NCR-sensitive gene expression. If NCR-sensitive gene expression occurs exclusively by this pathway, as has been thought to be the case, then the NCR sensitivity of a gene's expression should be abolished by a ure2 delta mutation. This expectation was not realized experimentally; the responses of highly NCR-sensitive genes to ure2 delta mutations varied widely. This suggested that NCR was not mediated exclusively through Ure2p and Gln3p. We tested this idea by assaying GAP1, CAN1, DAL5, PUT1, UGA1, and GLN1 expression in single, double, and triple mutants lacking Gln3p, Dal80p, and/or Ure2p. All of these genes were expressed in the triple mutant, and this expression was NCR sensitive for four of the six genes. These results indicate that the NCR regulatory network consists of multiple branches, with the Ure2p-Gln3p-UASNTR pathway representing only one of them.
Collapse
Affiliation(s)
- J A Coffman
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
37
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
38
|
Rasmussen SW. A 37.5 kb region of yeast chromosome X includes the SME1, MEF2, GSH1 and CSD3 genes, a TCP-1-related gene, an open reading frame similar to the DAL80 gene, and a tRNA(Arg). Yeast 1995; 11:873-83. [PMID: 7483851 DOI: 10.1002/yea.320110909] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The complete DNA sequence of cosmid clone p59 comprising 37,549 bp derived from chromosome X was determined from an ordered set of subclones. The sequence contains 14 open reading frames (ORFs) containing at least 100 consecutive sense codons. Four of the ORFs represent already known and sequenced yeast genes: B645 is identical to the SME1 gene encoding a protein kinase, required for induction of meiosis in yeast, D819 represents the MEF2 gene probably encoding a second mitochondrial elongation factor-like protein, D678 is identical to the yeast GSH1 gene encoding gamma-glutamylcysteine synthetase and B746 is identical to the CSD3 gene, which plays an as yet unidentified role in chitin biosynthesis and/or its regulation. The deduced amino acid sequence of A550 is 63% identical to the Cc eta subunit of a murine TCP-1-containing chaperonin and more than 35% identical to thermophilic factor 55 from Sulfolobus shibatae, as well as to a number of proteins belonging to the chaperonin TCP-1 family. Open reading frame F551 exhibits homology to two regions of the DAL80 gene located on yeast chromosome XI encoding a pleiotropic negative regulatory protein. In addition, extensive homology was detected in three regions including parts of ORFs A560, B746/CSD3 and the incomplete ORF C852 to three consecutive ORFs of unknown function in the middle of the right arm of chromosome XI. Finally, the sequence contained a tRNA(Arg3) (AGC) gene.
Collapse
Affiliation(s)
- S W Rasmussen
- Department of Physiology, Carlsberg Laboratory, Copenhagen, Denmark
| |
Collapse
|
39
|
Xu S, Falvey DA, Brandriss MC. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:2321-30. [PMID: 7891726 PMCID: PMC230460 DOI: 10.1128/mcb.15.4.2321] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The yeast Saccharomyces cerevisiae can use alternative nitrogen sources such as arginine, urea, allantoin, gamma-aminobutyrate, or proline when preferred nitrogen sources like glutamine, asparagine, or ammonium ions are unavailable in the environment. Utilization of alternative nitrogen sources requires the relief of nitrogen repression and induction of specific permeases and enzymes. The products of the GLN3 and URE2 genes are required for the appropriate transcription of many genes in alternative nitrogen assimilatory pathways. GLN3 appears to activate their transcription when good nitrogen sources are unavailable, and URE2 appears to repress their transcription when alternative nitrogen sources are not needed. The participation of nitrogen repression and the regulators GLN3 and URE2 in the proline utilization pathway was evaluated in this study. Comparison of PUT gene expression in cells grown in repressing or derepressing nitrogen sources, in the absence of the inducer proline, indicated that both PUT1 and PUT2 are regulated by nitrogen repression, although the effect on PUT2 is comparatively small. Recessive mutations in URE2 elevated expression of the PUT1 and PUT2 genes 5- to 10-fold when cells were grown on a nitrogen-repressing medium. Although PUT3, the proline utilization pathway transcriptional activator, is absolutely required for growth on proline as the sole nitrogen source, a put3 ure2 strain had somewhat elevated PUT gene expression, suggesting an effect of the ure2 mutation in the absence of the PUT3 product. PUT1 and PUT2 gene expression did not require the GLN3 activator protein for expression under either repressing or derepressing conditions. Therefore, regulation of the PUT genes by URE2 does not require a functional GLN3 protein. The effect of the ure2 mutation on the PUT genes is not due to increased internal proline levels. URE2 repression appears to be limited to nitrogen assimilatory systems and does not affect genes involved in carbon, inositol, or phosphate metabolism or in mating-type control and sporulation.
Collapse
Affiliation(s)
- S Xu
- Department of Microbiology and Molecular Genetics, UMD-New Jersey Medical School, Newark 07103
| | | | | |
Collapse
|
40
|
Rai R, Daugherty JR, Cooper TG. UASNTR functioning in combination with other UAS elements underlies exceptional patterns of nitrogen regulation in Saccharomyces cerevisiae. Yeast 1995; 11:247-60. [PMID: 7785325 DOI: 10.1002/yea.320110307] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UASNTR, the UAS responsible for nitrogen catabolite repression-sensitive transcriptional activation of many nitrogen catabolic genes in Saccharomyces cerevisiae, has been previously thought to operate only as a pair of closely related dodecanucleotide sites each containing the sequence GATAA at its core. Here we show that a single UASNTR the unrelated cis-acting element was TTTGTTTAC situated upstream of GLN1, while in another the cis-acting element was the one previously shown to bind the PUT3 protein. When a UASNTR site functions in combination with an unrelated site, the regulatory responses observed are a hybrid consisting of characteristics derived from both the UASNTR site and the unrelated site as well. These observations resolve several significant inconsistencies that have plagued studies focused on elucidation of the mechanisms involved in the global regulation of nitrogen catabolism.
Collapse
Affiliation(s)
- R Rai
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
41
|
Talibi D, Grenson M, André B. Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. Nucleic Acids Res 1995; 23:550-7. [PMID: 7899074 PMCID: PMC306719 DOI: 10.1093/nar/23.4.550] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In S. cerevisiae, gamma-aminobutyrate (GABA) induces transcription of the UGA genes required for its utilization as a nitrogen source. Analysis of the 5' region of the UGA1 and UGA4 genes led to the identification of a conserved GC-rich sequence (UASGABA) essential to induction by gamma-aminobutyrate. Alone, this UASGABA element also supported some levels of reporter gene transcription in the presence of gamma-aminobutyrate. To be effective, UASGABA requires two positive-acting proteins that both contain a Cys6-Zn2 type zinc-finger motif, namely pathway-specific Uga3p and pleiotropic Uga35p(Dal81p/DurLp). Further analysis of the UGA4 gene revealed that Gln3p, a global nitrogen regulatory protein containing a GATA zinc-finger domain, is required in order to reach high levels of gamma-aminobutyrate-induced transcription. The Gln3p factor exerts its function mainly through a cluster of 5'-GAT(A/T)A-3'(UASGATA) situated just upstream from UASGABA. The role of Gln3p is less predominant in UGA1 than in UGA4 gene expression. We propose that tight coupling between the UASGABA and UASGATA elements enables the cell to integrate, according to its nitrogen status, the induced expression levels of UGA4.
Collapse
Affiliation(s)
- D Talibi
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Université Libre de Bruxelles, Belgium
| | | | | |
Collapse
|
42
|
André B, Talibi D, Soussi Boudekou S, Hein C, Vissers S, Coornaert D. Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5'-GAT(A/T)A-3' upstream from the UGA4 gene of Saccharomyces cerevisiae. Nucleic Acids Res 1995; 23:558-64. [PMID: 7899075 PMCID: PMC306720 DOI: 10.1093/nar/23.4.558] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The S. cerevisiae Uga43(Dal80) protein down-regulates the expression of multiple nitrogen pathway genes. It contains a zinc-finger motif similar to the DNA-binding domain of the vertebrate GATA family of transcription factors; this domain is known to direct binding to 5'-GATA-3' core sequences. The inducible UGA4 gene, which encodes the specific gamma-aminobutyrate permease, undergoes strong repression by Uga43p. This study shows that the 5' region of UGA4 contains a UAS element made of four directly repeated 5'-CGAT(A/T) AG-3' sequences. This element, called UASGATA, can potentially confer to the UGA4 gene high-level expression in the absence of inducer, but this potential activity is inhibited by two distinct repression systems. One system is Uga43p-dependent; it operates in cells grown on a poor nitrogen source. The other is the nitrogen repression system, which relies on Ure2p and glutamine and operates when a good nitrogen source is present. Nitrogen repression also blocks the synthesis of Uga43p, making the two repression systems mutually exclusive. Previous studies have shown that expression supported by 5'-GATA-3'-containing UAS elements requires Gln3p, another global nitrogen regulatory factor containing a GATA zinc-finger domain. Although Gln3p contributes to UASGATA activity, evidence suggests that a second factor can potentially direct expression through UASGATA. Expression conferred by this putative factor is subject to both Uga43p- and Ure2p-mediated repression. The role of UASGATA in the expression of the UGA4 gene is discussed in relation to its sensitivity to the two distinct repression systems.
Collapse
Affiliation(s)
- B André
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Sophianopoulou V, Diallinas G. Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol Rev 1995; 16:53-75. [PMID: 7888172 DOI: 10.1111/j.1574-6976.1995.tb00155.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lower eukaryotes such as the yeast Saccharomyces cerevisiae and the filamentous fungus Aspergillus nidulans possess a multiplicity of amino acid transporters or permeases which exhibit different properties with respect to substrate affinity, specificity, capacity and regulation. Regulation of amino acid uptake in response to physiological conditions of growth is achieved principally by a dual mechanism; control of gene expression, mediated by a complex interplay of pathway-specific and wide-domain transcription regulatory proteins, and control of transport activities, mediated by a series of protein factors, including a kinase, and possibly, by amino acids. All fungal and a number of bacterial amino acid permeases show significant sequence similarities (33-62% identity scores in binary comparisons), revealing a unique transporter family conserved across the prokaryotic-eukaryotic boundary. Prediction of the topology of this transporter family utilizing a multiple sequence alignment strongly suggests the presence of a common structural motif consisting of 12 alpha-helical putative transmembrane segments and cytoplasmically located N- and C-terminal hydrophilic regions. Interestingly, recent genetic and molecular results strongly suggest that yeast amino acid permeases are integrated into the plasma membrane through a specific intracellular translocation system. Finally, speculating on their predicted structure and on amino acid sequence similarities conserved within this family of permeases reveals regions of putative importance in amino acid transporter structure, function, post-translational regulation or biogenesis.
Collapse
Affiliation(s)
- V Sophianopoulou
- Institut de Génétique et Microbiologie (IGM), Université Paris-Sud, Centre d'Orsay, France
| | | |
Collapse
|
44
|
Coffman JA, el Berry HM, Cooper TG. The URE2 protein regulates nitrogen catabolic gene expression through the GATAA-containing UASNTR element in Saccharomyces cerevisiae. J Bacteriol 1994; 176:7476-83. [PMID: 8002570 PMCID: PMC197203 DOI: 10.1128/jb.176.24.7476-7483.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many of the gene products that participate in nitrogen metabolism are sensitive to nitrogen catabolite repression (NCR), i.e., their expression is decreased to low levels when readily used nitrogen sources such as asparagine are provided. Previous work has shown this NCR sensitivity requires the cis-acting UASNTR element and trans-acting GLN3. Here, we extend the analysis to include the response of their expression to deletion of the URE2 locus. The expression of these nitrogen catabolic genes becomes, to various degrees, NCR insensitive in the ure2 deletion. This response is shown to be mediated through the GATAA-containing UASNTR element and supports the current idea that the NCR regulatory circuit involves the following steps: environmental signal-->URE2-->GLN3-->UASNTR operation-->NCR-sensitive gene expression. The various responses of the nitrogen catabolic genes' expression to deletion of the URE2 locus also indicate that not all NCR is mediated through URE2.
Collapse
Affiliation(s)
- J A Coffman
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
45
|
Cunningham TS, Dorrington RA, Cooper TG. The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae. J Bacteriol 1994; 176:4718-25. [PMID: 8045902 PMCID: PMC196294 DOI: 10.1128/jb.176.15.4718-4725.1994] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of the nitrogen catabolic genes in Saccharomyces cerevisiae, including those of the gamma-aminobutyric acid (UGA) and allantoin (DAL) pathways, is regulated positively by the GLN3 protein and negatively by the DAL80 protein. The deduced sequences of the DAL80 and GLN3 proteins contain a zinc finger motif homologous to those shown to bind GATA sequences. In addition, DAL80 protein has been directly shown to bind to a pair of GATA-containing sequences (URSGATA) in vitro, and a pair of GATA-containing sequences (UASNTR) is required for GLN3-dependent transcriptional activation in a heterologous expression vector. We demonstrate here that the GATA-containing sites upstream of UGA4 required for optimal GLN3-dependent transcriptional activation also mediate DAL80 protein binding in vitro and DAL80-responsive regulation in vivo.
Collapse
Affiliation(s)
- T S Cunningham
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
46
|
Dhawale SS, Lane AC. Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res 1993; 21:5537-46. [PMID: 8284197 PMCID: PMC310513 DOI: 10.1093/nar/21.24.5537] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- S S Dhawale
- Indiana University, Purdue University at Fort Wayne 46805
| | | |
Collapse
|
47
|
Cunningham TS, Cooper TG. The Saccharomyces cerevisiae DAL80 repressor protein binds to multiple copies of GATAA-containing sequences (URSGATA). J Bacteriol 1993; 175:5851-61. [PMID: 8376332 PMCID: PMC206664 DOI: 10.1128/jb.175.18.5851-5861.1993] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Induced expression of the allantoin (DAL) catabolic genes in Saccharomyces cerevisiae has been suggested to be mediated by interaction of three different types of promoter elements. First is an inducer-independent upstream activation sequence, UASNTR, whose operation is sensitive to nitrogen catabolite repression. The GLN3 product is required for UASNTR-mediated transcriptional activation. This site consists of two separated elements, each of which has a GATAA sequence at its core. Response of the DAL genes to inducer is mediated by a second type of cis-acting element, DAL UIS. The DAL82 and DAL81 genes are required for response to inducer; DAL82 protein is the UIS-binding protein. When only the UASNTR and UIS elements are present, DAL gene expression occurs at high levels in the absence of inducer. We, therefore, hypothesized that a third element, an upstream repressor sequence (URS) mediates maintenance of DAL gene expression at a low level when inducer is absent. Since the DAL and UGA genes are overexpressed and largely inducer independent in dal80 deletion mutants, we have suggested DAL80 protein negatively regulates a wide spectrum of nitrogen-catabolic gene expression, likely in conjunction with a URS element. Here we show that DAL80 protein binds to DAL3 and UGA4 upstream DNA sequences, designated URSGATA, consisting of two GATAA-containing sites separated by at least 15 bp. The preferred orientation of the sites is tail to tail, but reasonable binding activity is also observed with a head-to-tail configuration. URSGATA elements contain the sequence GATAA at their core and hence share sequence homology with UASNTR elements.
Collapse
Affiliation(s)
- T S Cunningham
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | |
Collapse
|
48
|
Daniel-Vedele F, Caboche M. A tobacco cDNA clone encoding a GATA-1 zinc finger protein homologous to regulators of nitrogen metabolism in fungi. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:365-73. [PMID: 8413186 DOI: 10.1007/bf00280388] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In higher plants, the expression of the nitrate assimilation pathway is highly regulated. Although the molecular mechanisms involved in this regulation are currently being elucidated, very little is known about the trans-acting factors that allow expression of the nitrate and nitrite reductase genes which code for the first enzymes in the pathway. In the fungus Neurospora crassa, nit-2, the major nitrogen regulatory gene, activates the expression of unlinked structural genes that specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein containing a single zinc finger motif defined by the C-X2-C-X17-C-X2-C sequence. This DNA-binding domain recognizes the promoter region of N. crassa nitrogen-related genes and fragments derived from the tomato nia gene promoter. The observed specificity of the binding suggests the existence of a NIT2-like homolog in higher plants. PCR and cross-hybridization techniques were used to isolate, respectively, a partial cDNA from Nicotiana plumbaginifolia and a full-length cDNA from Nicotiana tabacum. These clones encode a NIT2-like protein (named NTL1 for nit-2-like), characterized by a single zinc finger domain, defined by the C-X2-C-X18-C-X2-C amino acids, and associated with a basic region. The amino acid sequence of NTL1 is 60% homologous to the NIT2 sequence in the zinc finger domain. The Ntl1 gene is present as a unique copy in the diploid N. plumbaginifolia species. The characteristics of Ntl1 gene expression are compatible with those of a regulator of the nitrate assimilation pathway, namely weak nitrate inducibility and regulation by light.
Collapse
Affiliation(s)
- F Daniel-Vedele
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | |
Collapse
|
49
|
Adamson JG, Zhou NE, Hodges RS. Structure, function and application of the coiled-coil protein folding motif. Curr Opin Biotechnol 1993; 4:428-37. [PMID: 7763973 DOI: 10.1016/0958-1669(93)90008-k] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent X-ray analyses and synthetic model studies of the coiled-coil motif have clarified roles for hydrophobic core residues and ionic interactions in determining stability, selectivity, stoichiometry and orientation of alpha-helices in this structure. Although much remains to be learnt, current knowledge now enables this motif to be used in novel constructs and points the way to a more explicit understanding of native coiled-coil formation and protein folding in general.
Collapse
Affiliation(s)
- J G Adamson
- Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
50
|
André B, Hein C, Grenson M, Jauniaux JC. Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:17-25. [PMID: 8455553 DOI: 10.1007/bf00282779] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transport of 4-aminobutyric acid (GABA) in Saccharomyces cerevisiae is mediated by three transport systems: the general amino acid permease (GAP1 gene), the proline permease (PUT4 gene), and a specific GABA permease (UGA4 gene) which is induced in the presence of GABA. The UGA4 gene encoding the inducible GABA-specific transporter was cloned and sequenced and its expression analyzed. The predicted amino acid sequence shows that UGA4 encodes a 62 kDa protein having 9-12 putative membrane-spanning regions. The predicted UGA4 protein shares significant sequence similarity with the yeast choline transporter (CTR gene), exhibiting but limited similarity to the previously reported GABA transporters, i.e. the yeast GAP1 and PUT4 permeases and the rat brain GAT-1 transporter. Induction of UGA4 in the presence of GABA is exerted at the level of UGA4 mRNA accumulation, most probably at the level of transcription itself. This induction is conferred by the 5' flanking region and requires the integrity of two positive regulatory proteins, the inducer-specific factor UGA3 and the pleiotropic factor UGA35/DURL/DAL81. In the absence of the pleiotropic UGA43/DAL80 repressor, UGA4 is constitutively expressed at high level.
Collapse
Affiliation(s)
- B André
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|