1
|
Russell NX, Burra K, Shah RM, Bottasso-Arias N, Mohanakrishnan M, Snowball J, Ediga HH, Madala SK, Sinner D. Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea. Am J Physiol Lung Cell Mol Physiol 2023; 325:L788-L802. [PMID: 37873566 PMCID: PMC11068408 DOI: 10.1152/ajplung.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/28/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Abstract
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wntless (Wls), a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulates the expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin-deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.NEW & NOTEWORTHY Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. In this study, we focused on the role of ion channels in the differentiation and patterning of the large airways of the developing respiratory tract. We identify a mechanism by which Wnt-beta-catenin signaling controls levels of ion channel-encoding genes to promote tracheal differentiation.
Collapse
Affiliation(s)
- Nicholas X Russell
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Ronak M Shah
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - John Snowball
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Harshavardhana H Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
2
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|
3
|
Russell NX, Burra K, Shah R, Bottasso-Arias N, Mohanakrishnan M, Snowball J, Ediga HH, Madala SK, Sinner D. Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523309. [PMID: 36711918 PMCID: PMC9882072 DOI: 10.1101/2023.01.10.523309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in non-contractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wls, a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulated expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.
Collapse
Affiliation(s)
- Nicholas X. Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Nationwide Children’s Hospital Columbus OH
| | - Ronak Shah
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program Current Affiliation: Renaissance School of Medicine at Stony Brook University
| | - Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - John Snowball
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: P&G Cincinnati, OH
| | - Harshavardhana H. Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
4
|
Zhang YH, Li Z, Zeng T, Chen L, Li H, Huang T, Cai YD. Detecting the Multiomics Signatures of Factor-Specific Inflammatory Effects on Airway Smooth Muscles. Front Genet 2021; 11:599970. [PMID: 33519902 PMCID: PMC7838645 DOI: 10.3389/fgene.2020.599970] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Smooth muscles are a specific muscle subtype that is widely identified in the tissues of internal passageways. This muscle subtype has the capacity for controlled or regulated contraction and relaxation. Airway smooth muscles are a unique type of smooth muscles that constitute the effective, adjustable, and reactive wall that covers most areas of the entire airway from the trachea to lung tissues. Infection with SARS-CoV-2, which caused the world-wide COVID-19 pandemic, involves airway smooth muscles and their surrounding inflammatory environment. Therefore, airway smooth muscles and related inflammatory factors may play an irreplaceable role in the initiation and progression of several severe diseases. Many previous studies have attempted to reveal the potential relationships between interleukins and airway smooth muscle cells only on the omics level, and the continued existence of numerous false-positive optimal genes/transcripts cannot reflect the actual effective biological mechanisms underlying interleukin-based activation effects on airway smooth muscles. Here, on the basis of newly presented machine learning-based computational approaches, we identified specific regulatory factors and a series of rules that contribute to the activation and stimulation of airway smooth muscles by IL-13, IL-17, or the combination of both interleukins on the epigenetic and/or transcriptional levels. The detected discriminative factors (genes) and rules can contribute to the identification of potential regulatory mechanisms linking airway smooth muscle tissues and inflammatory factors and help reveal specific pathological factors for diseases associated with airway smooth muscle inflammation on multiomics levels.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Hao Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tao Huang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Gu Y, Servello D, Han Z, Lalchandani RR, Ding JB, Huang K, Gu C. Balanced Activity between Kv3 and Nav Channels Determines Fast-Spiking in Mammalian Central Neurons. iScience 2018; 9:120-137. [PMID: 30390433 PMCID: PMC6218699 DOI: 10.1016/j.isci.2018.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/11/2018] [Accepted: 10/12/2018] [Indexed: 10/29/2022] Open
Abstract
Fast-spiking (FS) neurons can fire action potentials (APs) up to 1,000 Hz and play key roles in vital functions such as sound location, motor coordination, and cognition. Here we report that the concerted actions of Kv3 voltage-gated K+ (Kv) and Na+ (Nav) channels are sufficient and necessary for inducing and maintaining FS. Voltage-clamp analysis revealed a robust correlation between the Kv3/Nav current ratio and FS. Expressing Kv3 channels alone could convert ∼30%-60% slow-spiking (SS) neurons to FS in culture. In contrast, co-expression of either Nav1.2 or Nav1.6 together with Kv3.1 or Kv3.3, but not alone or with Kv1.2, converted SS to FS with 100% efficiency. Furthermore, RNA-sequencing-based genome-wide analysis revealed that the Kv3/Nav ratio and Kv3 expression levels strongly correlated with the maximal AP frequencies. Therefore, FS is established by the properly balanced activities of Kv3 and Nav channels and could be further fine-tuned by channel biophysical features and localization patterns.
Collapse
Affiliation(s)
- Yuanzheng Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 182 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Dustin Servello
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Zhi Han
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; College of Software, Nankai University, Tianjin 300071, China; Regenstrief Institute, Indianapolis, IN 46202, USA
| | - Rupa R Lalchandani
- Department of Neurosurgery, and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jun B Ding
- Department of Neurosurgery, and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Regenstrief Institute, Indianapolis, IN 46202, USA; School of Biomedical Engineering, Shenzhen University, Shenzhen 518037, China
| | - Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 182 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA; Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Wever CM, Geoffrion D, Grande BM, Yu S, Alcaide M, Lemaire M, Riazalhosseini Y, Hébert J, Gavino C, Vinh DC, Petrogiannis-Haliotis T, Dmitrienko S, Mann KK, Morin RD, Johnson NA. The genomic landscape of two Burkitt lymphoma cases and derived cell lines: comparison between primary and relapse samples. Leuk Lymphoma 2018; 59:2159-2174. [PMID: 29295643 DOI: 10.1080/10428194.2017.1413186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Relapse occurs in 10-40% of Burkitt lymphoma (BL) patients that have completed intensive chemotherapy regimens and is typically fatal. While treatment-naive BL has been characterized, the genomic landscape of BL at the time of relapse (rBL) has never been reported. Here, we present a genomic characterization of two rBL patients. The diagnostic samples had mutations common in BL, including MYC and CCND3. Additional mutations were detected at relapse, affecting important pathways such as NFκB (IKBKB) and MEK/ERK (NRAS) signaling, glutamine metabolism (SIRT4), and RNA processing (ZFP36L2). Genes implicated in drug resistance were also mutated at relapse (TP53, BAX, ALDH3A1, APAF1, FANCI). This concurrent genomic profiling of samples obtained at diagnosis and relapse has revealed mutations not previously reported in this disease. The patient-derived cell lines will be made available and, along with their detailed genetics, will be a valuable resource to examine the role of specific mutations in therapeutic resistance.
Collapse
Affiliation(s)
- Claudia M Wever
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | | | - Bruno M Grande
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Stephen Yu
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Miguel Alcaide
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada
| | - Maryse Lemaire
- b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Yasser Riazalhosseini
- e Department of Human Genetics , McGill University , Montreal , Canada.,f McGill University and Genome Quebec Innovation Centre , Montreal , Canada
| | - Josée Hébert
- g Department of Medicine, Faculty of Medicine , Université de Montréal , Montreal , Canada.,h Research Centre and Division of Hematology-Oncology Maisonneuve-Rosemont Hospital , The Québec Leukemia Cell Bank , Montreal , Canada
| | - Christina Gavino
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | - Donald C Vinh
- i Infectious Disease Susceptibility Program (Research Institute-McGill University Health Centre) , Montreal , Canada.,j Department of Medicine , Medical Microbiology and Human Genetics (McGill University Health Centre) , Montreal , Canada
| | | | | | - Koren K Mann
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| | - Ryan D Morin
- c Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , Canada.,d Genome Sciences Centre, BC Cancer Agency , Vancouver , Canada
| | - Nathalie A Johnson
- a Department of Medicine , McGill University, Lady Davis Institute, Jewish General Hospital , Montreal , Canada.,b Lady Davis Institute, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
7
|
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev 2017; 97:1431-1468. [PMID: 28904001 PMCID: PMC6151494 DOI: 10.1152/physrev.00002.2017] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
The intrinsic electrical characteristics of different types of neurons are shaped by the K+ channels they express. From among the more than 70 different K+ channel genes expressed in neurons, Kv3 family voltage-dependent K+ channels are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. In general, the four Kv3 channels Kv3.1-Kv3.4 share the property of activating and deactivating rapidly at potentials more positive than other channels. Each Kv3 channel gene can generate multiple protein isoforms, which contribute to the high-frequency firing of neurons such as auditory brain stem neurons, fast-spiking GABAergic interneurons, and Purkinje cells of the cerebellum, and to regulation of neurotransmitter release at the terminals of many neurons. The different Kv3 channels have unique expression patterns and biophysical properties and are regulated in different ways by protein kinases. In this review, we cover the function, localization, and modulation of Kv3 channels and describe how levels and properties of the channels are altered by changes in ongoing neuronal activity. We also cover how the protein-protein interaction of these channels with other proteins affects neuronal functions, and how mutations or abnormal regulation of Kv3 channels are associated with neurological disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yalan Zhang
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Rajakulendran S, Roberts J, Koltzenburg M, Hanna MG, Stewart H. Deletion of chromosome 12q21 affecting KCNC2 and ATXN7L3B in a family with neurodevelopmental delay and ataxia. J Neurol Neurosurg Psychiatry 2013; 84:1255-7. [PMID: 23475819 DOI: 10.1136/jnnp-2012-304555] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To describe the clinical and genetic findings in a family affected by neurodevelopmental delay and cerebellar ataxia. METHODS The affected mother and her two children underwent clinical assessments followed by radiological, neurophysiological and cytogenetic investigations. RESULTS All three affected members exhibited varying degrees of delay in attaining motor and cognitive milestones, along with learning difficulties and cerebellar ataxia. All three harboured a new 670 kb deletion of chromosome 12q21. Two genes, KCNC2 and ATXN7L3B, lie within the deleted region. CONCLUSIONS This family's complex phenotype is associated with a new chromosomal deletion, which suggests potential roles for the two genes, KCNC2 and ATXN7L3B, in human neurological disease.
Collapse
|
9
|
Peng L, Wang C, Chen Z, Wang JL, Tang BS, Jiang H. Spinocerebellar ataxia type 13 is an uncommon SCA subtype in the Chinese Han population. Int J Neurosci 2013; 123:450-3. [PMID: 23293936 DOI: 10.3109/00207454.2013.763254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The spinocerebellar ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative disorders, among which SCA subtype 13 (SCA13) was found associated with mutations in the KCNC3 gene. Among 522 Chinese Han SCA patients (including familial and sporadic) we have collected since 1995, approximately 40% of them have not yet been assigned genotype. To investigate the mutation frequency of KCNC3 in SCA patients from mainland Chinese Han population, we analyzed the KCNC3 gene in 201 unrelated patients diagnosed with dominantly inherited cerebellar ataxia using the denaturing high-performance liquid chromatography (DHPLC) method. All analyzed samples displayed the normal elution profile, which denoted that no disease-related mutation was identified, suggesting that SCA13 be a rare form of SCA in mainland China.
Collapse
Affiliation(s)
- Lan Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | | | | | | | | |
Collapse
|
10
|
Volumetric and ionic regulation during the in vitro development of a corneal endothelial barrier. Exp Eye Res 2008; 86:758-69. [PMID: 18384772 DOI: 10.1016/j.exer.2008.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/14/2008] [Accepted: 02/14/2008] [Indexed: 12/13/2022]
Abstract
Corneal endothelium is responsible for generating an ion flux between the corneal stroma and the anterior chamber of the eye that is necessary for the cornea to remain transparent. However, the ion transport regulatory mechanisms that develop during the formation of the endothelial barrier are not known. In this study, we determined the influence of cell confluence on cell volume and intracellular ionic content on the corneal endothelial cells of rabbits. Our results demonstrate that non-confluent endothelial cells display a hypertrophic volume increase, with higher intracellular contents of potassium and chlorine than those of confluent cells. In contrast, when cells reach confluence and the endothelial barrier forms, cell volume decreases and the intracellular contents of potassium and chlorine decrease. Our genetic analysis showed a higher expression of CFTR and CA2 genes in non-confluent cells, and of the gene KCNC3 in confluent cells. These results suggest that the normal ionic current that keeps the corneal stroma dehydrated and transparent is regulated by cell-cell contacts and endothelial cell confluence, and could explain why the loss of corneal endothelial cells is often associated with corneal edema and even blindness.
Collapse
|
11
|
Yan L, Herrington J, Goldberg E, Dulski PM, Bugianesi RM, Slaughter RS, Banerjee P, Brochu RM, Priest BT, Kaczorowski GJ, Rudy B, Garcia ML. Stichodactyla helianthus peptide, a pharmacological tool for studying Kv3.2 channels. Mol Pharmacol 2005; 67:1513-21. [PMID: 15709110 DOI: 10.1124/mol.105.011064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated potassium (Kv) channels regulate many physiological functions and represent important therapeutic targets in the treatment of several clinical disorders. Although some of these channels have been well-characterized, the study of others, such as Kv3 channels, has been hindered because of limited pharmacological tools. The current study was initiated to identify potent blockers of the Kv3.2 channel. Chinese hamster ovary (CHO)-K1 cells stably expressing human Kv3.2b (CHO-K1.hKv3.2b) were established and characterized. Stichodactyla helianthus peptide (ShK), isolated from S. helianthus venom and a known high-affinity blocker of Kv1.1 and Kv1.3 channels, was found to potently inhibit 86Rb+ efflux from CHO-K1.hKv3.2b (IC50 approximately 0.6 nM). In electrophysiological recordings of Kv3.2b channels expressed in Xenopus laevis oocytes or in planar patch-clamp studies, ShK inhibited hKv3.2b channels with IC50 values of approximately 0.3 and 6 nM, respectively. Despite the presence of Kv3.2 protein in human pancreatic beta cells, ShK has no effect on the Kv current of these cells, suggesting that it is unlikely that homotetrameric Kv3.2 channels contribute significantly to the delayed rectifier current of insulin-secreting cells. In mouse cortical GABAergic fast-spiking interneurons, however, application of ShK produced effects consistent with the blockade of Kv3 channels (i.e., an increase in action potential half-width, a decrease in the amplitude of the action potential after hyperpolarization, and a decrease in maximal firing frequency in response to depolarizing current injections). Taken together, these results indicate that ShK is a potent inhibitor of Kv3.2 channels and may serve as a useful pharmacological probe for studying these channels in native preparations.
Collapse
Affiliation(s)
- Lizhen Yan
- Department of Ion Channels, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jiang B, Sun X, Cao K, Wang R. Endogenous Kv channels in human embryonic kidney (HEK-293) cells. Mol Cell Biochem 2002; 238:69-79. [PMID: 12349911 DOI: 10.1023/a:1019907104763] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human embryonic kidney cells (HEK-293) have been widely used as one mammalian expression system in the study of voltage-gated K+ (Kv) channels. Understanding the endogenous Kv channels in these cells is the prerequisite for the characterization of the heterogeneously expressed Kv channels in these cells. In the present study we screened the transcriptional expression of different Kv genes in HEK-293 cells using reverse transcribed DNApolymerase chain reaction (RT-PCR) method. Among 16 Kv genes examined in native HEK-293 cells 10 Kv genes were reproducibly amplified, including those Kv a subunits encoding for the delayed rectifier (IK) [Kv1.1, Kv1.2, Kv1.3, Kv1.6, and Kv3.1], and for the transient outward Kv channels (IA) [Kv1.4, Kv3.3, Kv3.4, and Kv4.1] as well as a Kvbeta2 subunit. The whole-cell outward rectifier IK currents in the native HEK-293 cells were recorded (203 +/- 13 pA at +30 mV, n = 82) with the patch-clamp technique. In about 42% of the examined cells, IA coexisted with IK currents. IK currents were inhibited by tetraethylammonium chloride (TEA) at 1 and 10 mM by 39.5 and 48.4%, respectively. A 39.6% inhibition of IK currents was also observed in the presence of4-aminopyridine (4-AP, 5 mM). Interestingly, both TEAand 4-AP also inhibited IA currents. 4-acelamido-4'-isothiocyanalostilbene-2, 2'-disulfonic acid (1 mM), a Cl- channel blocker, had no effect on the endogenous outward currents. We concluded that multiple endogenous Kv genes were expressed in native HEK-293 cells, which possessed significant endogenous IK and IA currents with unique pharmacological properties.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Physiology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
13
|
Abstract
Human Kv3.3/KCNC3 is a Shaw-type potassium channel that has been mapped to chromosome 19q13.3-13.4. Complete mouse and rat Kv3.3 cDNA coding sequences have been published, yet the human Kv3.3 cDNA has remained incomplete for years. We report here for the first time the amino acid sequence for hKv3.3 and the electrophysiological behavior of the encoded channel in transiently transfected mammalian cells. In addition, we report the occurrence of Kv3.3 message in rabbit corneal endothelial cells and the properties of the currents when the corneal channel is expressed. The hKv3.3 gene is highly GC-rich (69%) and contains numerous GC runs which made DNA sequencing and PCR amplification especially problematic. The full-length sequence contains two possible start codons. The encoded 757 amino acid hKv3. 3 protein is about 93% identical to mouse and rat Kv3.3 in the first 659 amino acids before the C-terminal domains diverge greatly as a result of alternative splicing. The rabbit cornea Kv3.3 is a close sequence match for hKv3.3 even in the C-terminal domain. However, we have not yet found a cornea sequence which contains the first potential start codon from hKv3.3. Electrophysiologically, the hKv3. 3 channel produces an A-current although expression of constructs which lack the 5' region of the first start codon inactivate much more slowly than full-length constructs. This short hKv3.3 construct also shows changes in activation.
Collapse
Affiliation(s)
- J L Rae
- Departments of Physiology and Biophysics and Ophthalmology, Mayo Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
14
|
Abstract
By the introduction of technological advancement in methods of structural analysis, electronics, and recombinant DNA techniques, research in physiology has become molecular. Additionally, focus of interest has been moving away from classical physiology to become increasingly centered on mechanisms of disease. A wonderful example for this development, as evident by this review, is the field of ion channel research which would not be nearly as advanced had it not been for human diseases to clarify. It is for this reason that structure-function relationships and ion channel electrophysiology cannot be separated from the genetic and clinical description of ion channelopathies. Unique among reviews of this topic is that all known human hereditary diseases of voltage-gated ion channels are described covering various fields of medicine such as neurology (nocturnal frontal lobe epilepsy, benign neonatal convulsions, episodic ataxia, hemiplegic migraine, deafness, stationary night blindness), nephrology (X-linked recessive nephrolithiasis, Bartter), myology (hypokalemic and hyperkalemic periodic paralysis, myotonia congenita, paramyotonia, malignant hyperthermia), cardiology (LQT syndrome), and interesting parallels in mechanisms of disease emphasized. Likewise, all types of voltage-gated ion channels for cations (sodium, calcium, and potassium channels) and anions (chloride channels) are described together with all knowledge about pharmacology, structure, expression, isoforms, and encoding genes.
Collapse
Affiliation(s)
- F Lehmann-Horn
- Department of Applied Physiology, University of Ulm, Ulm, Germany.
| | | |
Collapse
|
15
|
Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, Moreno H, Nadal MS, Hernandez-Pineda R, Hernandez-Cruz A, Erisir A, Leonard C, Vega-Saenz de Miera E. Contributions of Kv3 channels to neuronal excitability. Ann N Y Acad Sci 1999; 868:304-43. [PMID: 10414303 DOI: 10.1111/j.1749-6632.1999.tb11295.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four mammalian Kv3 genes have been identified, each of which generates, by alternative splicing, multiple protein products differing in their C-terminal sequence. Products of the Kv3.1 and Kv3.2 genes express similar delayed-rectifier type currents in heterologous expression systems, while Kv3.3 and Kv3.4 proteins express A-type currents. All Kv3 currents activate relatively fast at voltages more positive than -10 mV, and deactivate very fast. The distribution of Kv3 mRNAs in the rodent CNS was studied by in situ hybridization, and the localization of Kv3.1 and Kv3.2 proteins has been studied by immunohistochemistry. Most Kv3.2 mRNAs (approximately 90%) are present in thalamic-relay neurons throughout the dorsal thalamus. The protein is expressed mainly in the axons and terminals of these neurons. Kv3.2 channels are thought to be important for thalamocortical signal transmission. Kv3.1 and Kv3.2 proteins are coexpressed in some neuronal populations such as in fast-spiking interneurons of the cortex and hippocampus, and neurons in the globus pallidus. Coprecipitation studies suggest that in these cells the two types of protein form heteromeric channels. Kv3 proteins appear to mediate, in native neurons, similar currents to those seen in heterologous expression systems. The activation voltage and fast deactivation rates are believed to allow these channels to help repolarize action potentials fast without affecting the threshold for action potential generation. The fast deactivating current generates a quickly recovering after hyperpolarization, thus maximizing the rate of recovery of Na+ channel inactivation without contributing to an increase in the duration of the refractory period. These properties are believed to contribute to the ability of neurons to fire at high frequencies and to help regulate the fidelity of synaptic transmission. Experimental evidence has now become available showing that Kv3.1-Kv3.2 channels play critical roles in the generation of fast-spiking properties in cortical GABAergic interneurons.
Collapse
Affiliation(s)
- B Rudy
- Department of Physiology and Neuroscience, New York University of Medicine, New York 10016, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Payne JA, Xu JC, Haas M, Lytle CY, Ward D, Forbush B. Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-Cl cotransporter in human colon. J Biol Chem 1995; 270:17977-85. [PMID: 7629105 DOI: 10.1074/jbc.270.30.17977] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
By moving chloride into epithelial cells, the Na-K-Cl cotransporter aids transcellular movement of chloride across both secretory and absorptive epithelia. Using cDNA probes from the recently identified elasmobranch secretory Na-K-Cl cotransporter (sNKCC1) (Xu, J. C., Lytle, C. Zhu, T. T., Payne, J. A., Benz, E., and Forbush, B., III (1994) Proc. Natl. Acad. Sci. 91, 2201-2205), we have identified the human homologue. By screening cDNA libraries of a human colonic carcinoma line, T84 cell, we identified a sequence of 4115 bases from overlapping clones. The deduced protein is 1212 amino acids in length, and analysis of the primary structure indicates 12 transmembrane segments. The primary structure is 74% identical to sNKCC1, 91% identical to a mouse Na-K-Cl cotransporter (mNKCC1), 58% identical to rabbit and rat renal Na-K-Cl cotransporters (NKCC2), and 43% identical to the thiazide-sensitive Na-Cl cotransporters from flounder urinary bladder and rat kidney. Similar to sNKCC1 and mNKCC1, the 5'-end of the human colonic cotransporter is rich in G + C content. Interestingly, a triple repeat (GCG)7 occurs within the 5'-coding region and contributes to a large alanine repeat (Ala15). Two sites for N-linked glycosylation are predicted on an extracellular loop between putative transmembrane segments 7 and 8. A single potential site for phosphorylation by protein kinase A is present in the predicted cytoplasmic C-terminal domain. Northern blot analysis revealed a 7.4-7.5-kilobase transcript in T84 cells and shark rectal gland and a approximately 7.2-kilobase transcript in mammalian colon, kidney, lung, and stomach. Metaphase spreads from lymphocytes were probed with biotin-labeled cDNA and avidin fluorescein (the cotransporter gene was localized to human chromosome 5 at position 5q23.3). Human embryonic kidney cells stably transfected with the full-length cDNA expressed a approximately 170-kDa protein recognized by anti-cotransporter antibodies. Following treatment with N-glycosidase F, the molecular mass of the expressed protein was similar to that predicted for the core protein from the cDNA sequence (132-kDa) and identical to that of deglycosylated T84 cotransporter (approximately 135-kDa). The stably transfected cells exhibited a approximately 15-fold greater bumetanide-sensitive 86Rb influx than control cells, and this flux required external sodium and chloride. Flux kinetics were consistent with an electroneutral cotransport of 1Na:1K:2Cl. Preincubation in chloride-free media was necessary to activate fully the expressed cotransporter, suggesting a [Cl]-dependent regulatory mechanism.
Collapse
Affiliation(s)
- J A Payne
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|