1
|
Sen S, Dodamani A, Nambiar M. Emerging mechanisms and roles of meiotic crossover repression at centromeres. Curr Top Dev Biol 2022; 151:155-190. [PMID: 36681469 DOI: 10.1016/bs.ctdb.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Crossover events during recombination in meiosis are essential for generating genetic diversity as well as crucial to allow accurate chromosomal segregation between homologous chromosomes. Spatial control for the distribution of crossover events along the chromosomes is largely a tightly regulated process and involves many facets such as interference, repression as well as assurance, to make sure that not too many or too few crossovers are generated. Repression of crossover events at the centromeres is a highly conserved process across all species tested. Failure to inhibit such recombination events can result in chromosomal mis-segregation during meiosis resulting in aneuploid gametes that are responsible for infertility or developmental disorders such as Down's syndrome and other trisomies in humans. In the past few decades, studies to understand the molecular mechanisms behind this repression have shown the involvement of a multitude of factors ranging from the centromere-specific proteins such as the kinetochore to the flanking pericentric heterochromatin as well as DNA double-strand break repair pathways. In this chapter, we review the different mechanisms of pericentric repression mechanisms known till date as well as highlight the importance of understanding this regulation in the context of chromosomal segregation defects. We also discuss the clinical implications of dysregulation of this process, especially in human reproductive health and genetic diseases.
Collapse
Affiliation(s)
- Sucharita Sen
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ananya Dodamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Mridula Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
2
|
Schizosaccharomyces pombe Assays to Study Mitotic Recombination Outcomes. Genes (Basel) 2020; 11:genes11010079. [PMID: 31936815 PMCID: PMC7016768 DOI: 10.3390/genes11010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
The fission yeast—Schizosaccharomyces pombe—has emerged as a powerful tractable system for studying DNA damage repair. Over the last few decades, several powerful in vivo genetic assays have been developed to study outcomes of mitotic recombination, the major repair mechanism of DNA double strand breaks and stalled or collapsed DNA replication forks. These assays have significantly increased our understanding of the molecular mechanisms underlying the DNA damage response pathways. Here, we review the assays that have been developed in fission yeast to study mitotic recombination.
Collapse
|
3
|
Centromere repositioning causes inversion of meiosis and generates a reproductive barrier. Proc Natl Acad Sci U S A 2019; 116:21580-21591. [PMID: 31597736 PMCID: PMC6815110 DOI: 10.1073/pnas.1911745116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mutations in inner kinetochore components induce centromere repositioning without alteration in the centromeric DNA sequence, revealing a feedback mechanism underlying the high epigenetic stability of the centromere. This also provides a desirable experimental system to explore the functional significance of centromere positioning in meiosis. We discovered that in a heterozygotic meiosis, a repositioned centromere generates a reproductive barrier, suggesting a functional role of evolutionary new centromeres in speciation; furthermore, in a homozygotic meiosis, chromosomes carrying repositioned centromeres frequently undergo the 2 stages of meiotic segregation in an inverted order, demonstrating high flexibility in the meiotic process. The chromosomal position of each centromere is determined epigenetically and is highly stable, whereas incremental cases have supported the occurrence of centromere repositioning on an evolutionary time scale (evolutionary new centromeres, ENCs), which is thought to be important in speciation. The mechanisms underlying the high stability of centromeres and its functional significance largely remain an enigma. Here, in the fission yeast Schizosaccharomyces pombe, we identify a feedback mechanism: The kinetochore, whose assembly is guided by the centromere, in turn, enforces centromere stability. Upon going through meiosis, specific inner kinetochore mutations induce centromere repositioning—inactivation of the original centromere and formation of a new centromere elsewhere—in 1 of the 3 chromosomes at random. Repositioned centromeres reside asymmetrically in the pericentromeric regions and cells carrying them are competent in mitosis and homozygotic meiosis. However, when cells carrying a repositioned centromere are crossed with those carrying the original centromere, the progeny suffer severe lethality due to defects in meiotic chromosome segregation. Thus, repositioned centromeres constitute a reproductive barrier that could initiate genetic divergence between 2 populations with mismatched centromeres, documenting a functional role of ENCs in speciation. Surprisingly, homozygotic repositioned centromeres tend to undergo meiosis in an inverted order—that is, sister chromatids segregate first, and homologous chromosomes separate second—whereas the original centromeres on other chromosomes in the same cell undergo meiosis in the canonical order, revealing hidden flexibility in the perceived rigid process of meiosis.
Collapse
|
4
|
Abstract
Centromeres, chromosomal regions that become physically linked to the spindle during cell division, ensure equal division of genetic material between daughter cells. They are ubiquitous and essential in eukaryotic life. In this primer, we ask the questions 'What defines a functional centromere?' and 'What do all centromeres have in common?' To address these questions we highlight what is known about centromere size, centromere architecture, underlying DNA sequence and centromeric proteins. Studies from a variety of organisms reveal a vast diversity in centromere form and function that remains perplexing and largely unexplained.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
5
|
Panchenko T, Black BE. The epigenetic basis for centromere identity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:1-32. [PMID: 19521810 DOI: 10.1007/978-3-642-00182-6_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The centromere serves as the control locus for chromosome segregation at mitosis and meiosis. In most eukaryotes, including mammals, the location of the centromere is epigenetically defined. The contribution of both genetic and epigenetic determinants to centromere function is the subject of current investigation in diverse eukaryotes. Here we highlight key findings from several organisms that have shaped the current view of centromeres, with special attention to experiments that have elucidated the epigenetic nature of their specification. Recent insights into the histone H3 variant, CENP-A, which assembles into centromeric nucleosomes that serve as the epigenetic mark to perpetuate centromere identity, have added important mechanistic understanding of how centromere identity is initially established and subsequently maintained in every cell cycle.
Collapse
Affiliation(s)
- Tanya Panchenko
- Department of Biochemistry, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
6
|
Epigenetic Silencing of Pericentromeric Heterochromatin by RNA Interference in Schizosaccharomyces pombe. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
7
|
Hansen KR, Ibarra PT, Thon G. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1. Nucleic Acids Res 2006; 34:78-88. [PMID: 16407326 PMCID: PMC1326240 DOI: 10.1093/nar/gkj415] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In Schizosaccharomyces pombe the RNAi machinery and proteins mediating heterochromatin formation regulate the transcription of non-coding centromeric repeats. These repeats share a high sequence similarity with telomere-linked helicase (tlh) genes, implying an ancestral relationship between the two types of elements and suggesting that transcription of the tlh genes might be regulated by the same factors as centromeric repeats. Indeed, we found that mutants lacking the histone methyltransferase Clr4, the Pcu4 cullin, Clr7 or Clr8, accumulate high levels of tlh forward and reverse transcripts. Mutations and conditions perturbing histone acetylation had similar effects further demonstrating that the tlh genes are normally repressed by heterochromatin. In contrast, mutations in the RNAi factors Dcr1, Ago1 or Rdp1 led only to a modest derepression of the tlh genes indicating an alternate pathway recruits heterochromatin components to telomeres. The telomere-binding protein Taz1 might be part of such a redundant pathway, tlh transcripts being present at low levels in Deltataz1 mutants and at higher levels in Deltataz1 Deltadcr1 double mutants. Surprisingly, the chromodomain protein Chp1, a component of the Ago1-containing RITS complex, contributes more to tlh repression than Ago1, indicating the repressive effects of Chp1 are partially independent of RITS. The tlh genes are found in the subtelomeric regions of several other fungi raising the intriguing possibility of conserved regulation and function.
Collapse
Affiliation(s)
| | | | - Geneviève Thon
- To whom correspondence should be addressed at Department of Genetics, Institute of Molecular Biology and Physiology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen K, Denmark. Tel: +45 35 32 21 08; Fax: +45 35 32 21 13;
| |
Collapse
|
8
|
Takahashi K, Takayama Y, Masuda F, Kobayashi Y, Saitoh S. Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle. Philos Trans R Soc Lond B Biol Sci 2005; 360:595-606; discussion 606-7. [PMID: 15897182 PMCID: PMC1569465 DOI: 10.1098/rstb.2004.1614] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CENP-A is a centromere-specific histone H3 variant that is- essential for faithful chromosome segregation in all eukaryotes thus far investigated. We genetically identified two factors, Ams2 and Mis6, each of which is required for the correct centromere localization of SpCENP-A (Cnp1), the fission yeast homologue of CENP-A. Ams2 is a cell-cycle-regulated GATA factor that localizes on the nuclear chromatin, including on centromeres, during the S phase. Ams2 may be responsible for the replication-coupled loading of SpCENP-A by facilitating nucleosomal formation during the S phase. Consistently, overproduction of histone H4, but not that of H3, suppressed the defect of SpCENP-A localization in Ams2-deficient cells. We demonstrated the existence of at least two distinct phases for SpCENP-A loading during the cell cycle: the S phase and the late-G2 phase. Ectopically induced SpCENP-A was efficiently loaded onto the centromeres in G2-arrested cells, indicating that SpCENP-A probably undergoes replication-uncoupled loading after the completion of S phase. This G2 loading pathway of SpCENP-A may require Mis6, a constitutive centromere-binding protein that is also implicated in the Mad2-dependent spindle attachment checkpoint response. Here, we discuss the functional relationship between the flexible loading mechanism of CENP-A and the plasticity of centromere chromatin formation in fission yeast.
Collapse
Affiliation(s)
- Kohta Takahashi
- Division of Cell Biology, Institute of Life Science, Kurume University, 1-1 Hyakunen-kohen, Kurume, Fukuoka 839-0864, Japan.
| | | | | | | | | |
Collapse
|
9
|
Matsumoto T, Yanagida M. The dream of every chromosome: equal segregation for a healthy life of the host. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:281-310. [PMID: 18727505 DOI: 10.1007/1-4020-3764-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Tomohiro Matsumoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
10
|
Abstract
Centromeres have played a pivotal role in the evolution of the eukaryote genome. Their indispensable involvement in chromosome segregation and the evolution of linkage groups throughout all eukaryotic lineages intuitively suggests conserved structure and function. Unexpectedly, recent molecular and biochemical analyses of centromeres have revealed highly divergent patterns in both DNA sequence and organization. Unlike the microtubules with which they interact, centromeres have undergone rapid diversification during evolution while retaining the same functional attributes. The most recent evidence indicates that centromeres may be species-specific entities composed of highly variable DNA families that interact with an array of non-histone proteins before attachment to the microtubules.
Collapse
Affiliation(s)
- D D Shaw
- Research School of Biological Sciences, Australian National University, Canberra, A.C.T. 2601, Australia
| |
Collapse
|
11
|
Abstract
Recent advances in the identification of molecular components of centromeres have demonstrated a crucial role for chromatin proteins in determining both centromere identity and the stability of kinetochore-microtubule attachments. Although we are far from a complete understanding of the establishment and propagation of centromeres, this review seeks to highlight the contribution of histones, histone deposition factors, histone modifying enzymes, and heterochromatin proteins to the assembly of this sophisticated, highly specialized chromatin structure. First, an overview of DNA sequence elements at centromeric regions will be presented. We will then discuss the contribution of chromatin to kinetochore function in budding yeast, and pericentric heterochromatin domains in other eukaryotic systems. We will conclude with discussion of specialized nucleosomes that direct kinetochore assembly and propagation of centromere-defining chromatin domains.
Collapse
Affiliation(s)
- J A Sharp
- University of California, Berkeley, Stanley Hall, Mail Code 3206, Berkeley, CA 94720, USA.
| | | |
Collapse
|
12
|
Partridge JF, Scott KSC, Bannister AJ, Kouzarides T, Allshire RC. cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr Biol 2002; 12:1652-60. [PMID: 12361567 DOI: 10.1016/s0960-9822(02)01177-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metazoan centromeres are generally composed of large repetitive DNA structures packaged in heterochromatin. Similarly, fission yeast centromeres contain large inverted repeats and two distinct silenced domains that are both required for centromere function. The central domain is flanked by outer repetitive elements coated in histone H3 methylated on lysine 9 and bound by conserved heterochromatin proteins. This centromeric heterochromatin is required for cohesion between sister centromeres. Defective heterochromatin causes premature sister chromatid separation and chromosome missegregation. The role of cis-acting DNA sequences in the formation of centromeric heterochromatin has not been established. RESULTS A deletion strategy was used to identify centromeric sequences that allow heterochromatin formation in fission yeast. Fragments from the outer repeats are sufficient to cause silencing of an adjacent gene when inserted at a euchromatic chromosomal locus. This silencing is accompanied by the local de novo methylation of histone H3 on lysine 9, recruitment of known heterochromatin components, Swi6 and Chp1, and the provision of a new strong cohesin binding site. In addition, we demonstrate that the chromodomain of Chp1 binds to MeK9-H3 and that Chp1 itself is required for methylation of histone H3 on lysine 9. CONCLUSIONS A short sequence, reiterated at fission yeast centromeres, can direct silent chromatin assembly and cohesin recruitment in a dominant manner. The heterochromatin formed at the euchromatic locus is indistinguishable from that found at endogenous centromeres. Recruitment of Rad21-cohesin underscores the link between heterochromatin and chromatid cohesion and indicates that these centromeric elements act independently of kinetochore activity to recruit cohesin.
Collapse
Affiliation(s)
- Janet F Partridge
- MRC Human Genetics Unit, Crewe Road, EH4 2XU, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O'Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Düsterhöft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, et alWood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O'Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schäfer M, Müller-Auer S, Gabel C, Fuchs M, Düsterhöft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dréano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P, Cerrutti L. The genome sequence of Schizosaccharomyces pombe. Nature 2002; 415:871-80. [PMID: 11859360 DOI: 10.1038/nature724] [Show More Authors] [Citation(s) in RCA: 1152] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.
Collapse
Affiliation(s)
- V Wood
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sullivan BA, Blower MD, Karpen GH. Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2001; 2:584-96. [PMID: 11483983 DOI: 10.1038/35084512] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centromere is the genetic locus required for chromosome segregation. It is the site of spindle attachment to the chromosomes and is crucial for the transfer of genetic information between cell and organismal generations. Although the centromere was first recognized more than 120 years ago, little is known about what determines its site(s) of activity, and how it contributes to kinetochore formation and spindle attachment. Recent work in this field has supported the hypothesis that most eukaryotic centromeres are determined epigenetically rather than by primary DNA sequence. Here, we review recent studies that have elucidated the organization and functions of centromeric chromatin, and evaluate present-day models for how centromere identity and propagation are determined.
Collapse
Affiliation(s)
- B A Sullivan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
15
|
Vernis L, Poljak L, Chasles M, Uchida K, Casarégola S, Käs E, Matsuoka M, Gaillardin C, Fournier P. Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica. J Mol Biol 2001; 305:203-17. [PMID: 11124900 DOI: 10.1006/jmbi.2000.4300] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autonomously replicating sequences (ARSs) in the yeast Yarrowia lipolytica require two components: an origin of replication (ORI) and centromere (CEN) DNA, both of which are necessary for extrachromosomal maintenance. To investigate this cooperation in more detail, we performed a screen for genomic sequences able to confer high frequency of transformation to a plasmid-borne ORI. Our results confirm a cooperation between ORI and CEN sequences to form an ARS, since all sequences identified in this screen displayed features of centromeric DNA and included the previously characterized CEN1-1, CEN3-1 and CEN5-1 fragments. Two new centromeric DNAs were identified as they are unique, map to different chromosomes (II and IV) and induce chromosome breakage after genomic integration. A third sequence, which is adjacent to, but distinct from the previously characterized CEN1-1 region was isolated from chromosome I. Although these CEN sequences do not share significant sequence similarities, they display a complex pattern of short repeats, including conserved blocks of 9 to 14 bp and regions of dyad symmetry. Consistent with their A+T-richness and strong negative roll angle, Y. lipolytica CEN-derived sequences, but not ORIs, were capable of binding isolated Drosophila nuclear scaffolds. However, a Drosophila scaffold attachment region that functions as an ARS in other yeasts was unable to confer autonomous replication to an ORI-containing plasmid. Deletion analysis of CEN1-1 showed that the sequences responsible for the induction of chromosome breakage could be eliminated without compromising extrachromosomal maintenance. We propose that, while Y. lipolytica CEN DNA is essential for plasmid maintenance, this function can be supplied by several sub-fragments which, together, form the active chromosomal centromere. This complex organization of Y. lipolytica centromeres is reminiscent of the regional structures described in the yeast Schizosaccharomyces pombe or in multicellular eukaryotes.
Collapse
Affiliation(s)
- L Vernis
- Laboratoire de Génétique Moléculaire et Cellulaire, INRA-CNRS, Thiverval-Grignon, 78850, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ekwall K, Cranston G, Allshire RC. Fission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation. Genetics 1999; 153:1153-69. [PMID: 10545449 PMCID: PMC1460827 DOI: 10.1093/genetics/153.3.1153] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe genes are transcriptionally silenced when placed within centromeres, within or close to the silent mating-type loci or adjacent to telomeres. Factors required to maintain mating-type silencing also affect centromeric silencing and chromosome segregation. We isolated mutations that alleviate repression of marker genes in the inverted repeats flanking the central core of centromere I. Mutations csp1 to 13 (centromere: suppressor of position effect) defined 12 loci. Ten of the csp mutants have no effect on mat2/3 or telomere silencing. All csp mutants allow some expression of genes in the centromeric flanking repeat, but expression in the central core is undetectable. Consistent with defective centromere structure and function, chromosome loss rates are elevated in all csp mutants. Mutants csp1 to 6 are temperature-sensitive lethal and csp3 and csp6 cells are defective in mitosis at 36 degrees. csp7 to 13 display a high incidence of lagging chromosomes on late anaphase spindles. Thus, by screening for mutations that disrupt silencing in the flanking region of a fission yeast centromere a novel collection of mutants affecting centromere architecture and chromosome segregation has been isolated.
Collapse
Affiliation(s)
- K Ekwall
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland
| | | | | |
Collapse
|
17
|
Freeman-Cook LL, Sherman JM, Brachmann CB, Allshire RC, Boeke JD, Pillus L. The Schizosaccharomyces pombe hst4(+) gene is a SIR2 homologue with silencing and centromeric functions. Mol Biol Cell 1999; 10:3171-86. [PMID: 10512858 PMCID: PMC25575 DOI: 10.1091/mbc.10.10.3171] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although silencing is a significant form of transcriptional regulation, the functional and mechanistic limits of its conservation have not yet been established. We have identified the Schizosaccharomyces pombe hst4(+) gene as a member of the SIR2/HST silencing gene family that is defined in organisms ranging from bacteria to humans. hst4Delta mutants grow more slowly than wild-type cells and have abnormal morphology and fragmented DNA. Mutant strains show decreased silencing of reporter genes at both telomeres and centromeres. hst4(+) appears to be important for centromere function as well because mutants have elevated chromosome-loss rates and are sensitive to a microtubule-destabilizing drug. Consistent with a role in chromatin structure, Hst4p localizes to the nucleus and appears concentrated in the nucleolus. hst4Delta mutant phenotypes, including growth and silencing phenotypes, are similar to those of the Saccharomyces cerevisiae HSTs, and at a molecular level, hst4(+) is most similar to HST4. Furthermore, hst4(+) is a functional homologue of S. cerevisiae HST3 and HST4 in that overexpression of hst4(+) rescues the temperature-sensitivity and telomeric silencing defects of an hst3Delta hst4Delta double mutant. These results together demonstrate that a SIR-like silencing mechanism is conserved in the distantly related yeasts and is likely to be found in other organisms from prokaryotes to mammals.
Collapse
Affiliation(s)
- L L Freeman-Cook
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
18
|
Saitoh S, Takahashi K, Yanagida M. Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell 1997; 90:131-43. [PMID: 9230309 DOI: 10.1016/s0092-8674(00)80320-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Disorder in sister chromatid separation can lead to genome instability and cancer. A temperature-sensitive S. pombe mis6-302 frequently loses a minichromosome at 26 degrees C and abolishes equal segregation of regular chromosomes at 36 degrees C. The mis6+ gene is essential for viability, and its deletion results in missegregation identical to mis6-302. Mis6 acts before or at the onset of S phase, and mitotic missegregation defects are produced only after the passage of G1/S at 36 degrees C. Mis6 locates at the centromeres throughout the cell cycle. In the mutant, positioning of the centromeres becomes abnormal, and specialized chromatin in the inner centromeres, which give the smear micrococcal nuclease pattern in wild type, is disrupted. The ability to establish correct biorientation of sister centromeres in metaphase cells requires the Mis6-containing chromatin and originates during the passage of G1/S.
Collapse
Affiliation(s)
- S Saitoh
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashiraka-Oiwakecho, Sakyo-ku, Japan
| | | | | |
Collapse
|
19
|
Ngan VK, Clarke L. The centromere enhancer mediates centromere activation in Schizosaccharomyces pombe. Mol Cell Biol 1997; 17:3305-14. [PMID: 9154829 PMCID: PMC232183 DOI: 10.1128/mcb.17.6.3305] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The centromere enhancer is a functionally important DNA region within the Schizosaccharomyces pombe centromeric K-type repeat. We have previously shown that addition of the enhancer and cen2 centromeric central core to a circular minichromosome is sufficient to impart appreciable centromere function. A more detailed analysis of the enhancer shows that it is dispensable for centromere function in a cen1-derived minichromosome containing the central core and the remainder of the K-type repeat, indicating that the critical centromeric K-type repeat, like the central core, is characterized by functional redundancy. The centromeric enhancer is required, however, for a central core-carrying minichromosome to exhibit immediate centromere activity when the circular DNA is introduced via transformation into S. pombe. This immediate activation is probably a consequence of a centromere-targeted epigenetic system that governs the chromatin architecture of the region. Moreover, our studies show that two entirely different DNA sequences, consisting of elements derived from two native centromeres, can display centromere function. An S. pombe CENP-B-like protein, Abp1p/Cbp1p, which is required for proper chromosome segregation in vivo, binds in vitro to sites within and adjacent to the modular centromere enhancer, as well as within the centromeric central cores. These results provide direct evidence in fission yeast of a model, similar to one proposed for mammalian systems, whereby no specific sequence is necessary for centromere function but certain classes of sequences are competent to build the appropriate chromatin foundation upon which the centromere/kinetochore can be formed and activated.
Collapse
Affiliation(s)
- V K Ngan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|
20
|
Halverson D, Baum M, Stryker J, Carbon J, Clarke L. A centromere DNA-binding protein from fission yeast affects chromosome segregation and has homology to human CENP-B. J Cell Biol 1997; 136:487-500. [PMID: 9024682 PMCID: PMC2134285 DOI: 10.1083/jcb.136.3.487] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1996] [Revised: 12/09/1996] [Indexed: 02/03/2023] Open
Abstract
Genetic and biochemical strategies have been used to identify Schizosaccharomyces pombe proteins with roles in centromere function. One protein, identified by both approaches, shows significant homology to the human centromere DNA-binding protein, CENP-B, and is identical to Abp1p (autonomously replicating sequence-binding protein 1) (Murakami, Y., J.A. Huberman, and J. Hurwitz. 1996. Proc. Natl. Acad. Sci. USA. 93:502-507). Abp1p binds in vitro specifically to at least three sites in centromeric central core DNA of S. pombe chromosome II (cc2). Overexpression of abp1 affects mitotic chromosome stability in S. pombe. Although inactivation of the abp1 gene is not lethal, the abp1 null strain displays marked mitotic chromosome instability and a pronounced meiotic defect. The identification of a CENP-B-related centromere DNA-binding protein in S. pombe strongly supports the hypothesis that fission yeast centromeres are structurally and functionally related to the centromeres of higher eukaryotes.
Collapse
Affiliation(s)
- D Halverson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | | | | | | | |
Collapse
|
21
|
Taylor SS, Larin Z, Tyler-Smith C. Analysis of extrachromosomal structures containing human centromeric alphoid satellite DNA sequences in mouse cells. Chromosoma 1996; 105:70-81. [PMID: 8753696 DOI: 10.1007/bf02509516] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Yeast artificial chromosomes (YACs) spanning the centromeric region of the human Y chromosome were introduced into mouse LA-9 cells by spheroplast fusion in order to determine whether they would form mammalian artificial chromosomes. In about 50% of the cell lines generated, the YAC DNA was associated with circular extrachromosomal structures. These episomes were only present in a proportion of the cells, usually at high copy number, and were lost rapidly in the absence of selection. These observations suggest that, despite the presence of centromeric sequences, the structures were not segregating efficiently and thus were not forming artificial chromosomes. However, extrachromosomal structures containing alphoid DNA appeared cytogenetically smaller than those lacking it, as long as yeast DNA was also absent. This suggests that alphoid DNA can generate the condensed chromatin structure at the centromere.
Collapse
Affiliation(s)
- S S Taylor
- CRC Chromosome Molecular Biology Group, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
22
|
Murakami S, Niwa O. Fission yeast sta mutations that stabilize an unstable minichromosome are novel cdc2-interacting suppressors and are involved in regulation of spindle dynamics. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:391-9. [PMID: 8552043 DOI: 10.1007/bf00287100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytological observations have shown that the presence of unstable minichromosomes can delay progression through the early stages of mitosis in fission yeast (Schizosaccharomyces pombe), suggesting that such minichromosomes may provide a useful tool for examining the system that regulates the coordinated segregation of chromosomes. One such unstable minichromosome is a large circular minichromosome. We previously showed that the mitotic instability of this minichromosome is probably due to the frequent occurrence of catenated forms of DNA after replication. To identify genes involved in the regulation of chromosome behavior in mitosis, we isolated mutants which stabilized this minichromosome. Three loci (sta1, sta2, and sta3) were identified. Two of them were found to be suppressors of temperature-sensitive mutations in cdc2, which encodes the catalytic subunit of muturation promoting factor (MPF). They show no linkage to, and are thus different from, suc1, and cdc13, previously identified as genes that interact with cdc2. The other mutation mapped to a gene previously identified as being required for the correct formation of the mitotic spindle. Data provided in this study suggest that the sta genes are involved in the regulation of spindle dynamics to ensure proper chromosome segregation during mitosis.
Collapse
Affiliation(s)
- S Murakami
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | |
Collapse
|
23
|
Smith JG, Caddle MS, Bulboaca GH, Wohlgemuth JG, Baum M, Clarke L, Calos MP. Replication of centromere II of Schizosaccharomyces pombe. Mol Cell Biol 1995; 15:5165-72. [PMID: 7651433 PMCID: PMC230763 DOI: 10.1128/mcb.15.9.5165] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The centromeric DNAs of Schizosaccharomyces pombe chromosomes resemble those of higher eukaryotes in being large and composed predominantly of repeated sequences. To begin a detailed analysis of the mode of replication of a complex centromere, we examined whether any sequences within S. pombe centromere II (cen2) have the ability to mediate autonomous replication. We found a high density of segments with such activity, including at least eight different regions comprising most of the repeated and unique centromeric DNA elements. A physical mapping analysis using two-dimensional gels showed that autonomous replication initiated within the S. pombe sequences in each plasmid. A two-dimensional gel analysis of replication on the chromosomes revealed that the K and L repeat elements, which occur in multiple copies at all three centromeres and comprise approximately 70% of total centromeric DNA mass in S. pombe, are both sites of replication initiation. In contrast, the unique cen2 central core, which contains multiple segments that can support autonomous replication, appears to be repressed for initiation on the chromosome. We discuss the implications of these findings for our understanding of DNA replication and centromere function.
Collapse
Affiliation(s)
- J G Smith
- Department of Genetics, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Murakami S, Yanagida M, Niwa O. A large circular minichromosome of Schizosaccharomyces pombe requires a high dose of type II DNA topoisomerase for its stabilization. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:671-9. [PMID: 7898434 DOI: 10.1007/bf00290712] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have constructed circular minichromosomes, ranging in size from 36 to 110 kb, containing the centromeric repeats of Schizosaccharomyces pombe cen3. Comparison of their mitotic stability showed that the circular minichromosomes became more unstable with increasing in size, however, a linear cen3 minichromosome, which is almost the same size as the largest circular one tested, does not show such instability. High levels of expression of the top2+ (type II DNA topoisomerase; topo II) but not top1+ gene (type I DNA topoisomerase) suppressed the instability of the largest circular minichromosome, whereas partial inactivation of topo II dramatically destabilized the minichromosome. A mutant topo II, defective in nuclear localization but still retaining its in vitro relaxation activity, did not stabilize the circular minichromosome. These results indicate that endogenous type II DNA topoisomerase is insufficient for accurate segregation of the circular minichromosome. In addition, the replication of the minichromosomal DNA appears to proceed normally, because the presence of the unstable minichromosome did not cause G2 delay. A likely cause of the instability is intertwining of the minichromosome DNA possibly occurring after DNA replication. An interaction between topo II and the centromeric repeats is implied by the finding that multiple copies of the centromeric repeat, dg-dh, affect stability of the minichromosome similarly to top2+ gene dosage.
Collapse
Affiliation(s)
- S Murakami
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | |
Collapse
|
25
|
Marschall LG, Clarke L. A novel cis-acting centromeric DNA element affects S. pombe centromeric chromatin structure at a distance. J Cell Biol 1995; 128:445-54. [PMID: 7860624 PMCID: PMC2199894 DOI: 10.1083/jcb.128.4.445] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The chromatin structure of the central core region of Schizosaccharomyces pombe centromeric DNA is unusual. This distinctive chromatin structure is associated only with central core sequences in a functional context and is modulated by a novel cis-acting DNA element (centromere enhancer) within the functionally critical K centromeric repeat, which is found in multiple copies in all three S. pombe centromeres. The centromere enhancer alters central core chromatin structure from a distance and in an orientation-independent manner without altering the nucleosomal packaging of sequences between the enhancer and the central core. These findings suggest a functionally relevant structural interaction between the enhancer and the centromeric central core brought about by DNA looping.
Collapse
Affiliation(s)
- L G Marschall
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
26
|
Wilkinson CR, Bartlett R, Nurse P, Bird AP. The fission yeast gene pmt1+ encodes a DNA methyltransferase homologue. Nucleic Acids Res 1995; 23:203-10. [PMID: 7862522 PMCID: PMC306655 DOI: 10.1093/nar/23.2.203] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA methylation of cytosine residues is a widespread phenomenon and has been implicated in a number of biological processes in both prokaryotes and eukaryotes. This methylation occurs at the 5-position of cytosine and is catalyzed by a distinct family of conserved enzymes, the cytosine-5 methyltransferases (m5C-MTases). We have cloned a fission yeast gene pmt1+ (pombe methyltransferase) which encodes a protein that shares significant homology with both prokaryotic and eukaryotic m5C-MTases. All 10 conserved domains found in these enzymes are present in the pmt1 protein. This is the first m5C-MTase homologue cloned from a fungal species. Its presence is surprising, given the inability to detect DNA methylation in yeasts. Haploid cells lacking the pmt1+ gene are viable, indicating that pmt1+ is not an essential gene. Purified, bacterially produced pmt1 protein does not possess obvious methyltransferase activity in vitro. Thus the biological significance of the m5C-MTase homologue in fission yeast is currently unclear.
Collapse
Affiliation(s)
- C R Wilkinson
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | |
Collapse
|
27
|
Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 1995; 9:218-33. [PMID: 7851795 DOI: 10.1101/gad.9.2.218] [Citation(s) in RCA: 371] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ura4+ gene displays phenotypes consistent with variegated expression when inserted at 11 sites throughout fission yeast centromere 1. An abrupt transition occurs between the zone of centromeric repression and two adjacent expressed sites. Mutations in six genes alleviate repression of the silent-mating type loci and of ura4+ expressed from a site adjacent to the silent locus, mat3-M. Defects at all six loci affect repression of the ura4+ gene adjacent to telomeres and at the three centromeric sites tested. The clr4-S5 and rik1-304 mutations cause the most dramatic derepression at two out of three sites within cen1. All six mutations had only slight or intermediate effects on a third site in the center of cen1 or on telomeric repression. Strains with lesions at the clr4, rik1, and swi6 loci have highly elevated rates of chromosome loss. We propose that the products of these genes are integral in the assembly of a heterochromatin-like structure, with distinct domains, enclosing the entire centromeric region that reduces or excludes access to transcription factors. The formation of this heterochromatic structure may be an absolute requirement for the formation of a fully functional centromere.
Collapse
Affiliation(s)
- R C Allshire
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, UK
| | | | | | | | | |
Collapse
|
28
|
Iborra F, Ball MM. Kluyveromyces marxianus small DNA fragments contain both autonomous replicative and centromeric elements that also function in Kluyveromyces lactis. Yeast 1994; 10:1621-9. [PMID: 7725797 DOI: 10.1002/yea.320101211] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two fragments containing both an autonomous replicating sequence (ARS) and a centromere have been isolated and sequenced from the yeast Kluyveromyces marxianus. The ARS and centromeric core sequences are only 500 bp apart, but ARS activity could be separated from the centromeric sequences. Centromeric sequences are organized in a similar way to those of budding yeasts: two well-conserved elements: CDEI (5' TCACGTG 3') and CDEIII (5' TNTTCCGAAAGTWAAA 3'), are separated by a 165 bp AT-rich (+/- 90%) CDEII element whose length is twice that of Saccharomyces cerevisiae CDEII but almost identical to that of K. lactis. The ARS-core consensus sequence (5' TTTATTGTT 3') is also similar to that of K. lactis. Both ARS and centromeric elements function in this strain, albeit inefficiently, but not in S. cerevisiae. A third ARS-containing fragment with a different organization has been isolated and sequenced.
Collapse
Affiliation(s)
- F Iborra
- Laboratoire de Biologie et Génétique Moléculaire, IGM CNRS URA 1354, Orsay, France
| | | |
Collapse
|
29
|
Takahashi K, Yamada H, Yanagida M. Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol Biol Cell 1994; 5:1145-58. [PMID: 7865880 PMCID: PMC301137 DOI: 10.1091/mbc.5.10.1145] [Citation(s) in RCA: 176] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Precise chromosome transmission in cell division cycle is maintained by a number of genes. The attempt made in the present study was to isolate temperature-sensitive (ts) fission yeast mutants that display high loss rates of minichromosomes at permissive or semipermissive temperature (designated mis). By colony color assay of 539 ts strains that contain a minichromosome, we have identified 12 genetic loci (mis1-mis12) and determined their phenotypes at restrictive temperature. Seven of them are related to cell cycle block phenotype at restrictive temperature, three of them in mitosis. Unequal distribution of regular chromosomes in the daughters is extensive in mis6 and mis12. Cells become inviable after rounds of cell division due to missegregation. The phenotype of mis5 is DNA replication defect and hypersensitivity to UV ray and hydroxyurea. mis5+ encodes a novel member of the ubiquitous MCM family required for the onset of replication. The mis5+ gene is essential for viability and functionally distinct from other previously identified members in fission yeast, cdc21+, nda1+, and nda4+. The mis11 mutant phenotype was the cell division block with reduced cell size. Progression of the G1 and G2 phases is blocked in mis11. The cloned mis11+ gene is identical to prp2+, which is essential for RNA splicing and similar to a mammalian splicing factor U2AF65.
Collapse
Affiliation(s)
- K Takahashi
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | |
Collapse
|
30
|
Baum M, Ngan VK, Clarke L. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol Biol Cell 1994; 5:747-61. [PMID: 7812044 PMCID: PMC301093 DOI: 10.1091/mbc.5.7.747] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The DNA requirements for centromere function in fission yeast have been investigated using a minichromosome assay system. Critical elements of Schizosaccharomyces pombe centromeric DNA are portions of the centromeric central core and sequences within a 2.1-kilobase segment found on all three chromosomes as part of the K-type (K/K"/dg) centromeric repeat. The S. pombe centromeric central core contains DNA sequences that appear functionally redundant, and the inverted repeat motif that flanks the central core in all native fission yeast centromeres is not essential for centromere function in circular minichromosomes. Tandem copies of centromeric repeat K", in conjunction with the central core, exert an additive effect on centromere function, increasing minichromosome mitotic stability with each additional copy. Centromeric repeats B and L, however, and parts of the central core and its core-associated repeat are dispensable and cannot substitute for K-type sequences. Several specific protein binding sites have been identified within the centromeric K-type repeat, consistent with a recently proposed model for centromere/kinetochore function in S. pombe.
Collapse
Affiliation(s)
- M Baum
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
31
|
McManus J, Perry P, Sumner AT, Wright DM, Thomson EJ, Allshire RC, Hastie ND, Bickmore WA. Unusual chromosome structure of fission yeast DNA in mouse cells. J Cell Sci 1994; 107 ( Pt 3):469-86. [PMID: 8006067 DOI: 10.1242/jcs.107.3.469] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chromosomes from the fission yeast Schizosaccharomyces pombe have been introduced into mouse cells by protoplast fusion. In most cell lines the yeast DNA integrates into a single site within a mouse chromosome and results in striking chromosome morphology at metaphase. Both light and electron microscopy show that the yeast chromosome region is narrower than the flanking mouse DNA. Regions of the yeast insert stain less intensely with propidium iodide than surrounding DNA and bear a morphological resemblance to fragile sites. We investigate the composition of the yeast transgenomes and the modification and chromatin structure of this yeast DNA in mouse cells. We suggest that the underlying basis for the structure we see lies above the level of DNA modification and nucleosome assembly, and may reflect the attachment of the yeast DNA to the rodent cell nucleoskeleton. The yeast integrant replicates late in S phase at a time when G bands of the mouse chromosomes are being replicated, and participates in sister chromatid exchanges at a high frequency. We discuss the implications of these studies to the understanding of how chromatin folding relates to metaphase chromosome morphology and how large stretches of foreign DNA behave when introduced into mammalian cells.
Collapse
Affiliation(s)
- J McManus
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The centromere locus from linkage group VII of Neurospora crassa has been cloned, characterized, and physically mapped. The centromeric DNA is contained within a 450-kb region that is recombination deficient, A+T-rich, and contains repetitive sequences. Repetitive sequences from within this region hybridize to a family of repeats located at or near centromeres in all seven linkage groups of N. crassa. Genomic Southern blots and sequence analysis of these repeats revealed a unique centromere structure containing a divergent family of centromere-specific repeats. The predominantly transitional differences between copies of the centromere-specific sequence repeats and their high A+T content suggest that their divergence was mediated by repeat-induced point (RIP) mutations.
Collapse
|
33
|
Abstract
The centromere locus from linkage group VII of Neurospora crassa has been cloned, characterized, and physically mapped. The centromeric DNA is contained within a 450-kb region that is recombination deficient, A+T-rich, and contains repetitive sequences. Repetitive sequences from within this region hybridize to a family of repeats located at or near centromeres in all seven linkage groups of N. crassa. Genomic Southern blots and sequence analysis of these repeats revealed a unique centromere structure containing a divergent family of centromere-specific repeats. The predominantly transitional differences between copies of the centromere-specific sequence repeats and their high A+T content suggest that their divergence was mediated by repeat-induced point (RIP) mutations.
Collapse
MESH Headings
- Base Composition
- Base Sequence
- Blotting, Southern
- Centromere/chemistry
- Centromere/physiology
- Chromosome Walking
- Chromosomes, Artificial, Yeast
- Chromosomes, Fungal
- Cloning, Molecular/methods
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Deoxyribonucleases, Type II Site-Specific
- Escherichia coli
- Genetic Linkage
- Molecular Sequence Data
- Neurospora crassa/genetics
- Polymorphism, Restriction Fragment Length
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- M Centola
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
34
|
Abstract
Chromatin structure at Schizosaccharomyces pombe centromeres is unusual. The insertion of the ura4 gene within these centromeres resulted in genetically identical cells mosaic for its expression. Placement of the ade6 gene within cen1 or cen3 resulted in red-white sectored colonies, demonstrating the instability of gene expression. The occurrence of pink colonies implied that intermediate levels of repression were established. Repression of both genes within centromeres was temperature sensitive. The chromatin structure of the ura4 gene at centromeres was altered, suggesting that the unusual chromatin encroaches into the gene and inhibits normal expression. These repressive effects at S. pombe centromeres resemble the classical phenomenon of position effect variegation imposed by Drosophila heterochromatin on nearby genes. However, since the epigenetic states can be set at intermediate levels of expression, a purely euchromatin-heterochromatin dichotomy does not apply. A model for the epigenetic regulation of genes placed within S. pombe centromeres is presented.
Collapse
Affiliation(s)
- R C Allshire
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, Scotland
| | | | | | | |
Collapse
|
35
|
Heus JJ, Bloom KS, Zonneveld BJ, Steensma HY, Van den Berg JA. Chromatin structures of Kluyveromyces lactis centromeres in K. lactis and Saccharomyces cerevisiae. Chromosoma 1993; 102:660-7. [PMID: 8306828 DOI: 10.1007/bf00352314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have investigated the chromatin structure of Kluyveromyces lactis centromeres in isolated nuclei of K. lactis and Saccharomyces cerevisiae by using micrococcal nuclease and DNAse I digestion. The protected region found in K. lactis is approximately 270 bp long and encompasses the centromeric DNA elements, KlCDEI, KlCDEII, and KlCDEIII, but not KlCDE0. Halving KlCDEII to 82 bp impaired centromere function and led to a smaller protected structure (210 bp). Likewise, deletion of 5 bp from KlCDEI plus adjacent flanking sequences resulted in a smaller protected region and a decrease in centromere function. The chromatin structures of KlCEN2 and KlCEN4 present on plasmids were found to be similar to the structures of the corresponding centromeres in their chromosomal context. A different protection pattern of KlCEN2 was detected in S. cerevisiae, suggesting that KlCEN2 is not properly recognized by at least one of the centromere binding proteins of S. cerevisiae. The difference is mainly found at the KlCDEIII side of the structure. This suggests that one of the components of the ScCBF3-complex is not able to bind to KlCDEIII, which could explain the species specificity of K. lactis and S. cerevisiae centromeres.
Collapse
Affiliation(s)
- J J Heus
- Clusius Laboratory, Department of Molecular and Cellular Biology, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol Cell Biol 1993. [PMID: 8336703 DOI: 10.1128/mcb.13.8.4578] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gross variations in the structure of the centromere of Schizosaccharomyces pombe chromosome III (cen3) were apparent following characterization of this centromeric DNA in strain Sp223 and comparison of the structure with that of cen3 in three other commonly used laboratory strains. Further differences in centromere structure were revealed when the structure of the centromere of S. pombe chromosome II (cen2) was compared among common laboratory strains and when the structures of cen2 and cen3 from our laboratory strains were compared with those reported from other laboratories. Differences observed in cen3 structure include variations in the arrangement of the centromeric K repeats and an inverted orientation of the conserved centromeric central core. In addition, we have identified two laboratory strains that contain a minimal cen2 repeat structure that lacks the tandem copies of the cen2-specific block of K-L-B-J repeats characteristic of Sp223 cen2. We have also determined that certain centromeric DNA structural motifs are relatively conserved among the four laboratory strains and eight additional wild-type S. pombe strains isolated from various food and beverage sources. We conclude that in S. pombe, as in higher eukaryotes, the centromere of a particular chromosome is not a defined genetic locus but can contain significant variability. However, the basic DNA structural motif of a central core immediately flanked by inverted repeats is a common parameter of the S. pombe centromere.
Collapse
|
37
|
Steiner NC, Hahnenberger KM, Clarke L. Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol Cell Biol 1993; 13:4578-87. [PMID: 8336703 PMCID: PMC360078 DOI: 10.1128/mcb.13.8.4578-4587.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gross variations in the structure of the centromere of Schizosaccharomyces pombe chromosome III (cen3) were apparent following characterization of this centromeric DNA in strain Sp223 and comparison of the structure with that of cen3 in three other commonly used laboratory strains. Further differences in centromere structure were revealed when the structure of the centromere of S. pombe chromosome II (cen2) was compared among common laboratory strains and when the structures of cen2 and cen3 from our laboratory strains were compared with those reported from other laboratories. Differences observed in cen3 structure include variations in the arrangement of the centromeric K repeats and an inverted orientation of the conserved centromeric central core. In addition, we have identified two laboratory strains that contain a minimal cen2 repeat structure that lacks the tandem copies of the cen2-specific block of K-L-B-J repeats characteristic of Sp223 cen2. We have also determined that certain centromeric DNA structural motifs are relatively conserved among the four laboratory strains and eight additional wild-type S. pombe strains isolated from various food and beverage sources. We conclude that in S. pombe, as in higher eukaryotes, the centromere of a particular chromosome is not a defined genetic locus but can contain significant variability. However, the basic DNA structural motif of a central core immediately flanked by inverted repeats is a common parameter of the S. pombe centromere.
Collapse
Affiliation(s)
- N C Steiner
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
38
|
Fournier P, Abbas A, Chasles M, Kudla B, Ogrydziak DM, Yaver D, Xuan JW, Peito A, Ribet AM, Feynerol C. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc Natl Acad Sci U S A 1993; 90:4912-6. [PMID: 8506336 PMCID: PMC46623 DOI: 10.1073/pnas.90.11.4912] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two sequences (ARS18 and ARS68) displaying autonomous replication activity were previously cloned in the yeast Yarrowia lipolytica. The smallest fragment (1-1.3 kb) required for extrachromosomal replication of a plasmid is significantly larger in Y. lipolytica than in Saccharomyces cerevisiae. Neither autonomously replicating sequence (ARS) is homologous with known ARS or centromere (CEN) consensus sequences. They share short regions of sequence similarity with each other. These ARS fragments also contain Y. lipolytica centromeres: (i) integration of marker genes at the ARS loci results in a CEN-linked segregation of the markers, (ii) an ARS on a plasmid largely maintains sister chromatid attachment in meiosis I, and (iii) integration of these sequences at the LEU2 locus leads to chromosome breakage. Deletions performed on ARS18 show that CEN and ARS functions can be physically separated, but both are needed to establish a replicating plasmid.
Collapse
Affiliation(s)
- P Fournier
- Lab Génétique, Institut National de la Recherche Agronomique, Grignon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Funabiki H, Hagan I, Uzawa S, Yanagida M. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 1993; 121:961-76. [PMID: 8388878 PMCID: PMC2119680 DOI: 10.1083/jcb.121.5.961] [Citation(s) in RCA: 421] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) shows that fission yeast centromeres and telomeres make up specific spatial arrangements in the nucleus. Their positioning and clustering are cell cycle regulated. In G2, centromeres cluster adjacent to the spindle pole body (SPB), while in mitosis, their association with each other and with the SPB is disrupted. Similarly, telomeres cluster at the nuclear periphery in G2 and their associations are disrupted in mitosis. Mitotic centromeres interact with the spindle. They remain undivided until the spindle reaches a critical length, then separate and move towards the poles. This demonstrated, for the first time, that anaphase A occurs in fission yeast. The mode of anaphase A and B is similar to that of higher eukaryotes. In nda3 and cut7 mutants defective in tubulin of a kinesin-related motor, cells are blocked in early stages of mitosis due to the absence of the spindle, and centromeres dissociate but remain close to the SPB, whereas in a metaphase-arrested nuc2 mutant, they reside at the middle of the spindle. FISH is therefore a powerful tool for analyzing mitotic chromosome movement and disjunction using various mutants. Surprisingly, in top2 defective in DNA topoisomerase II, while most chromatid DNAs remain undivided, sister centromeres are separated. Significance of this finding is discussed. In contrast, most chromatid DNAs are separated but telomeric DNAs are not in cut1 mutant. In cut1, the dependence of SPB duplication on the completion of mitosis is abolished. In crm1 mutant cells defective in higher-order chromosome organization, the interphase arrangements of centromeres and telomeres are disrupted.
Collapse
Affiliation(s)
- H Funabiki
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
40
|
Abstract
Traditionally, many people doing research in molecular biology attribute coding properties to a given DNA sequence if this sequence contains an open reading frame for translation into a sequence of amino acids. This protein coding capability of DNA was detected about 30 years ago. The underlying genetic code is highly conserved and present in every biological species studied so far. Today, it is obvious that DNA has a much larger coding potential for other important tasks. Apart from coding for specific RNA molecules such as rRNA, snRNA and tRNA molecules, specific structural and sequence patterns of the DNA chain itself express distinct codes for the regulation and expression of its genetic activity. A chromatin code has been defined for phasing of the histone-octamer protein complex in the nucleosome. A translation frame code has been shown to exist that determines correct triplet counting at the ribosome during protein synthesis. A loop code seems to organize the single stranded interaction of the nascent RNA chain with proteins during the splicing process, and a splicing code phases successive 5' and 3' splicing sites. Most of these DNA codes are not exclusively based on the primary DNA sequence itself, but also seem to include specific features of the corresponding higher order structures. Based on the view that these various DNA codes are genetically instructive for specific molecular interactions or processes, important in the nucleus during interphase and during cell division, the coding capability of tandem repetitive DNA sequences has recently been reconsidered.
Collapse
Affiliation(s)
- P Vogt
- Section Molecular Human Genetics, University of Heidelberg, Federal Republic of Germany
| |
Collapse
|
41
|
Takahashi K, Murakami S, Chikashige Y, Funabiki H, Niwa O, Yanagida M. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 1992; 3:819-35. [PMID: 1515677 PMCID: PMC275637 DOI: 10.1091/mbc.3.7.819] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fission yeast centromeres vary in size but are organized in a similar fashion. Each consists of two distinct domains, namely, the approximately 15-kilobase (kb) central region (cnt+imr), containing chromosome-specific low copy number sequences, and 20- to 100-kb outer surrounding sequences (otr) with highly repetitive motifs common to all centromeres. The central region consists of an inner asymmetric sequence flanked by inverted repeats that exhibit strict identity with each other. Nucleotide changes in the left repeat are always accompanied with the same changes in the right. The chromatin structure of the central region is unusual. A nucleosomal nuclease digestion pattern formed on unstable plasmids but not on stable chromosome. DNase I hypersensitive sites correlate with the location of tRNA genes in the central region. Autonomously replicating sequences are also present in the central region. The behavior of truncated minichromosomes suggested that the central region is essential, but not sufficient, to confer transmission stability. A portion of the outer repetitive region is also required. A larger outer region is necessary to ensure correct meiotic behavior. Fluorescence in situ hybridization identified individual cens. In the interphase, they cluster near the nuclear periphery. The central sequence (cnt+imr) may play a role in positioning individual chromosomes within the nucleus, whereas the outer regions (otr) may interact with each other to form the higher-order complex structure.
Collapse
Affiliation(s)
- K Takahashi
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|