1
|
Milarska SE, Androsiuk P, Paukszto Ł, Jastrzębski JP, Maździarz M, Larson KW, Giełwanowska I. Complete chloroplast genomes of Cerastium alpinum, C. arcticum and C. nigrescens: genome structures, comparative and phylogenetic analysis. Sci Rep 2023; 13:18774. [PMID: 37907682 PMCID: PMC10618263 DOI: 10.1038/s41598-023-46017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023] Open
Abstract
The genus Cerastium includes about 200 species that are mostly found in the temperate climates of the Northern Hemisphere. Here we report the complete chloroplast genomes of Cerastium alpinum, C. arcticum and C. nigrescens. The length of cp genomes ranged from 147,940 to 148,722 bp. Their quadripartite circular structure had the same gene organization and content, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Repeat sequences varied from 16 to 23 per species, with palindromic repeats being the most frequent. The number of identified SSRs ranged from 20 to 23 per species and they were mainly composed of mononucleotide repeats containing A/T units. Based on Ka/Ks ratio values, most genes were subjected to purifying selection. The newly sequenced chloroplast genomes were characterized by a high frequency of RNA editing, including both C to U and U to C conversion. The phylogenetic relationships within the genus Cerastium and family Caryophyllaceae were reconstructed based on the sequences of 71 protein-coding genes. The topology of the phylogenetic tree was consistent with the systematic position of the studied species. All representatives of the genus Cerastium were gathered in a single clade with C. glomeratum sharing the least similarity with the others.
Collapse
Affiliation(s)
- Sylwia E Milarska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1, 10-721, Olsztyn, Poland
| | - Jan P Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Mateusz Maździarz
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1, 10-721, Olsztyn, Poland
| | - Keith W Larson
- Climate Impacts Research Centre, Umeå University, 90187, Umeå, Sweden
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
2
|
Wang Y, Wang J, Chen Y, Liu S, Zhao Y, Chen N. Comparative Analysis of Bacillariophyceae Chloroplast Genomes Uncovers Extensive Genome Rearrangements Associated with Speciation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10024. [PMID: 36011659 PMCID: PMC9408514 DOI: 10.3390/ijerph191610024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The Bacillariophyceae is a species-rich, ecologically significant class of Bacillariophyta. Despite their critical importance in marine ecosystems as primary producers and in the development of harmful algal blooms (HABs), taxonomic research on Bacillariophyceae species has been hindered because of their limited morphological features, plasticity of morphologies, and the low resolution of common molecular markers. Hence molecular markers with improved resolution are urgently needed. Organelle genomes, which can be constructed efficiently with the recent development of high throughput DNA sequencing technologies and the advancement of bioinformatics tools, have been proposed as super barcodes for their higher resolution for distinguishing different species and intra-species genomic variations. In this study, we tested the value of full-length chloroplast genomes (cpDNAs) as super barcodes for distinguishing diatom species, by constructing cpDNAs of 11 strains of the class Bacillariophyceae, including Nitzschia ovalis, Nitzschia traheaformis, Cylindrotheca spp., Psammodictyon constrictum, Bacillaria paxillifer, two strains of Haslea tsukamotoi, Haslea avium, Navicula arenaria, and Pleurosigma sp. Comparative analysis of cpDNAs revealed that cpDNAs were not only adequate for resolving different species, but also for enabling recognition of high levels of genome rearrangements between cpDNAs of different species, especially for species of the genera Nitzschia, Cylindrotheca, Navicula and Haslea. Additionally, comparative analysis suggested that the positioning of species in the genus Haslea should be transferred to the genus Navicula. Chloroplast genome-based evolutionary analysis suggested that the Bacillariophyceae species first appeared during the Cretaceous period and the diversity of species rose after the mass extinction about 65 Mya. This study highlighted the value of cpDNAs in research on the biodiversity and evolution of Bacillariophyceae species, and, with the construction of more cpDNAs representing additional genera, deeper insight into the biodiversity and evolutionary relationships of Bacillariophyceae species will be gained.
Collapse
Affiliation(s)
- Yichao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yongfang Zhao
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
3
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Mohanta TK, Mishra AK, Khan A, Hashem A, Abd_Allah EF, Al-Harrasi A. Gene Loss and Evolution of the Plastome. Genes (Basel) 2020; 11:E1133. [PMID: 32992972 PMCID: PMC7650654 DOI: 10.3390/genes11101133] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Chloroplasts are unique organelles within the plant cells and are responsible for sustaining life forms on the earth due to their ability to conduct photosynthesis. Multiple functional genes within the chloroplast are responsible for a variety of metabolic processes that occur in the chloroplast. Considering its fundamental role in sustaining life on the earth, it is important to identify the level of diversity present in the chloroplast genome, what genes and genomic content have been lost, what genes have been transferred to the nuclear genome, duplication events, and the overall origin and evolution of the chloroplast genome. Our analysis of 2511 chloroplast genomes indicated that the genome size and number of coding DNA sequences (CDS) in the chloroplasts genome of algae are higher relative to other lineages. Approximately 10.31% of the examined species have lost the inverted repeats (IR) in the chloroplast genome that span across all the lineages. Genome-wide analyses revealed the loss of the Rbcl gene in parasitic and heterotrophic plants occurred approximately 56 Ma ago. PsaM, Psb30, ChlB, ChlL, ChlN, and Rpl21 were found to be characteristic signature genes of the chloroplast genome of algae, bryophytes, pteridophytes, and gymnosperms; however, none of these genes were found in the angiosperm or magnoliid lineage which appeared to have lost them approximately 203-156 Ma ago. A variety of chloroplast-encoded genes were lost across different species lineages throughout the evolutionary process. The Rpl20 gene, however, was found to be the most stable and intact gene in the chloroplast genome and was not lost in any of the analyzed species, suggesting that it is a signature gene of the plastome. Our evolutionary analysis indicated that chloroplast genomes evolved from multiple common ancestors ~1293 Ma ago and have undergone vivid recombination events across different taxonomic lineages.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Biotech and Omics Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman;
| | | | - Adil Khan
- Biotech and Omics Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Giza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Ahmed Al-Harrasi
- Natural Product Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
5
|
Plastome-Wide Nucleotide Substitution Rates Reveal Accelerated Rates in Papilionoideae and Correlations with Genome Features Across Legume Subfamilies. J Mol Evol 2017; 84:187-203. [PMID: 28397003 DOI: 10.1007/s00239-017-9792-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 04/03/2017] [Indexed: 01/08/2023]
Abstract
This study represents the most comprehensive plastome-wide comparison of nucleotide substitution rates across the three subfamilies of Fabaceae: Caesalpinioideae, Mimosoideae, and Papilionoideae. Caesalpinioid and mimosoid legumes have large, unrearranged plastomes compared with papilionoids, which exhibit varying levels of rearrangement including the loss of the inverted repeat (IR) in the IR-lacking clade (IRLC). Using 71 genes common to 39 legume taxa representing all the three subfamilies, we show that papilionoids consistently have higher nucleotide substitution rates than caesalpinioids and mimosoids, and rates in the IRLC papilionoids are generally higher than those in the IR-containing papilionoids. Unsurprisingly, this pattern was significantly correlated with growth habit as most papilionoids are herbaceous, whereas caesalpinioids and mimosoids are largely woody. Both nonsynonymous (dN) and synonymous (dS) substitution rates were also correlated with several biological features including plastome size and plastomic rearrangements such as the number of inversions and indels. In agreement with previous reports, we found that genes in the IR exhibit between three and fourfold reductions in the substitution rates relative to genes within the large single-copy or small single-copy regions. Furthermore, former IR genes in IR-lacking taxa exhibit accelerated rates compared with genes contained in the IR.
Collapse
|
6
|
Sabir J, Schwarz E, Ellison N, Zhang J, Baeshen NA, Mutwakil M, Jansen R, Ruhlman T. Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:743-54. [PMID: 24618204 DOI: 10.1111/pbi.12179] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 05/21/2023]
Abstract
Land plant plastid genomes (plastomes) provide a tractable model for evolutionary study in that they are relatively compact and gene dense. Among the groups that display an appropriate level of variation for structural features, the inverted-repeat-lacking clade (IRLC) of papilionoid legumes presents the potential to advance general understanding of the mechanisms of genomic evolution. Here, are presented six complete plastome sequences from economically important species of the IRLC, a lineage previously represented by only five completed plastomes. A number of characters are compared across the IRLC including gene retention and divergence, synteny, repeat structure and functional gene transfer to the nucleus. The loss of clpP intron 2 was identified in one newly sequenced member of IRLC, Glycyrrhiza glabra. Using deeply sequenced nuclear transcriptomes from two species helped clarify the nature of the functional transfer of accD to the nucleus in Trifolium, which likely occurred in the lineage leading to subgenus Trifolium. Legumes are second only to cereal crops in agricultural importance based on area harvested and total production. Genetic improvement via plastid transformation of IRLC crop species is an appealing proposition. Comparative analyses of intergenic spacer regions emphasize the need for complete genome sequences for developing transformation vectors for plastid genetic engineering of legume crops.
Collapse
Affiliation(s)
- Jamal Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
8
|
Haberle RC, Fourcade HM, Boore JL, Jansen RK. Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 2008; 66:350-61. [PMID: 18330485 DOI: 10.1007/s00239-008-9086-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 01/27/2008] [Accepted: 02/08/2008] [Indexed: 11/28/2022]
Abstract
Chloroplast genome organization, gene order, and content are highly conserved among land plants. We sequenced the chloroplast genome of Trachelium caeruleum L. (Campanulaceae), a member of an angiosperm family known for highly rearranged genomes. The total genome size is 162,321 bp, with an inverted repeat (IR) of 27,273 bp, large single-copy (LSC) region of 100,114 bp, and small single-copy (SSC) region of 7,661 bp. The genome encodes 112 different genes, with 17 duplicated in the IR, a tRNA gene (trnI-cau) duplicated once in the LSC region, and a protein-coding gene (psbJ) with two duplicate copies, for a total of 132 putatively intact genes. ndhK may be a pseudogene with internal stop codons, and clpP, ycf1, and ycf2 are so highly diverged that they also may be pseudogenes. ycf15, rpl23, infA, and accD are truncated and likely nonfunctional. The most conspicuous feature of the Trachelium genome is the presence of 18 internally unrearranged blocks of genes inverted or relocated within the genome relative to the ancestral gene order of angiosperm chloroplast genomes. Recombination between repeats or tRNA genes has been suggested as a mechanism of chloroplast genome rearrangements. The Trachelium chloroplast genome shares with Pelargonium and Jasminum both a higher number of repeats and larger repeated sequences in comparison to eight other angiosperm chloroplast genomes, and these are concentrated near rearrangement endpoints. Genes for tRNAs occur at many but not all inversion endpoints, so some combination of repeats and tRNA genes may have mediated these rearrangements.
Collapse
Affiliation(s)
- Rosemarie C Haberle
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
9
|
Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 2007; 45:547-63. [PMID: 17644003 DOI: 10.1016/j.ympev.2007.06.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 06/05/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.
Collapse
Affiliation(s)
- Debra R Hansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Biological Laboratories 404, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae. BMC Genomics 2007; 8:213. [PMID: 17610731 PMCID: PMC1931444 DOI: 10.1186/1471-2164-8-213] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 07/04/2007] [Indexed: 11/24/2022] Open
Abstract
Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs) deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales) is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales). Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR) but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs) account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate that the IR was lost on at least two separate occasions. The intriguing similarities of the derived features exhibited by Leptosira cpDNA and its chlorophycean counterparts suggest that the same evolutionary forces shaped the IR-lacking chloroplast genomes in these two algal lineages.
Collapse
|
11
|
Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK. Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. PLANT MOLECULAR BIOLOGY 2005; 59:309-22. [PMID: 16247559 DOI: 10.1007/s11103-005-8882-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 06/16/2005] [Indexed: 05/05/2023]
Abstract
Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.
Collapse
Affiliation(s)
- Christopher Saski
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Goulding SE, Olmstead RG, Morden CW, Wolfe KH. Ebb and flow of the chloroplast inverted repeat. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:195-206. [PMID: 8804393 DOI: 10.1007/bf02173220] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The endpoints of the large inverted repeat (IR) of chloroplast DNA in flowering plants differ by small amounts between species. To quantify the extent of this movement and define a possible mechanism for IR expansion, DNA sequences across the IR-large single-copy (IR-LSC) junctions were compared among 13 Nicotiana species and other dicots. In most Nicotiana species the IR terminates just upstream of, or somewhere within, the 5' portion of the rps19 gene. The truncated copy of this gene, rps19', varies in length even between closely related species but is of constant size within a single species. In Nicotiana, six different rps19' structures were found. A phylogenetic tree of Nicotiana species based on restriction site data shows that the IR has both expanded and contracted during the evolution of this genus. Gene conversion is proposed to account for these small and apparently random IR expansions. A large IR expansion of over 12 kb has occurred in Nicotiana acuminata. The new IR-LSC junction in this species lies within intron 1 of the clpP gene. This rearrangement occurred via a double-strand DNA break and recombination between poly (A) tracts in clpP intron 1 and upstream of rps19. Nicotiana acuminata chloroplast DNA contains a "molecular fossil' of the IR-LSC junction that existed prior to this dramatic rearrangement.
Collapse
Affiliation(s)
- S E Goulding
- Department of Genetics, University of Dublin, Trinity College, Ireland
| | | | | | | |
Collapse
|
13
|
Hipkins VD, Marshall KA, Neale DB, Rottmann WH, Strauss SH. A mutation hotspot in the chloroplast genome of a conifer (Douglas-fir: Pseudotsuga) is caused by variability in the number of direct repeats derived from a partially duplicated tRNA gene. Curr Genet 1995; 27:572-9. [PMID: 7553944 DOI: 10.1007/bf00314450] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We determined the DNA sequence of a 2.7-kb cpDNA XbaI fragment from douglas-fir [Pseudotsuga menziesii (Mirb.) Franco]. RFLPs revealed by the 2.7-kb XbaI clone were observed to vary up to 1 kb among species within the genus Pseudotsuga and up to 200 bp among trees of P. menziesii. The polymerase chain reaction (PCR) allowed the locus of polymorphism to be identified, and the variable region was then sequenced in a second Douglas-fir tree, a single tree of a related species, Japanese Douglas-fir (P. japonica), and in a species lacking a mutation hotspot in the region, Pinus radiata (Monterey pine). The locus of polymorphism is characterized by hundreds of base pairs of imperfect, tandem direct repeats flanked by a partially duplicated and an intact trn Y-GUA gene. The duplication is direct in orientation and consists of 43 bp of the 3' end of trnY and 25 bp of its 3' flanking sequence. Tandem repeats show high sequence similarity to a 27-bp region of the trnY gene that overlaps one end of the duplication. The two trees of Douglas-fir sequenced differed by a single tandem repeat unit, whereas these trees differed from the Japanese Douglas-fir sequenced by approximately 34 repeat units. Repetitive DNA in the Pseudotsuga cpDNA hotspot was most likely generated at the time of the partial trnY gene duplication and these sequences expanded by slipped-strand mispairing and unequal crossing-over.
Collapse
Affiliation(s)
- V D Hipkins
- National Forest Genetic Electrophoresis Laboratory, USDA Forest Service, Camino, CA 95709, USA
| | | | | | | | | |
Collapse
|
14
|
Park J, Breitenberger C. Both chloroplast and mitochondrial NADH dehydrogenase subunit 5 genes are transcribed in pea. Biochem Genet 1992; 30:437-42. [PMID: 1445185 DOI: 10.1007/bf01037584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J Park
- Department of Biochemistry, Ohio State University, Columbus 43210-1292
| | | |
Collapse
|
15
|
Stein DB, Conant DS, Ahearn ME, Jordan ET, Kirch SA, Hasebe M, Iwatsuki K, Tan MK, Thomson JA. Structural rearrangements of the chloroplast genome provide an important phylogenetic link in ferns. Proc Natl Acad Sci U S A 1992; 89:1856-60. [PMID: 1542683 PMCID: PMC48552 DOI: 10.1073/pnas.89.5.1856] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The chloroplast genome of most land plants is highly conserved. In contrast, physical and gene mapping studies have revealed a highly rearranged chloroplast genome in species representing four families of ferns. In all four, there has been a rare duplication of the psbA gene and the order of the psbA, 16S, and 23S rRNA genes has been inverted. Our analysis shows that the described rearrangement results from a minimum of two inversions within the inverted repeat. This chloroplast DNA structure provides unambiguous evidence that phylogenetically links families of ferns once thought to belong to different major evolutionary lineages.
Collapse
Affiliation(s)
- D B Stein
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M. Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:206-14. [PMID: 1557027 DOI: 10.1007/bf00279998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A physical map of black pine (Pinus thunbergii) chloroplast DNA (120 kb) was constructed and two separate portions of its nucleotide sequence were determined. One portion contains trnQ-UUG, ORF510, ORF83, trnK-UUU (ORF515 in the trnK intron), ORF22, psbA, trnI-CAU (on the opposing strand) and trnH-GUG, in that order. Sequence analysis of another portion revealed the presence of a 495 bp inverted repeat containing trnI-CAU and the 3' end of psbA but lacking rRNA genes. The position of trnI-CAU is unique because most chloroplast DNAs have no gene between psbA and trnH (trnI-CAU is usually located further downstream). Black pine chloroplast DNA lacks rps16, which has been found between trnQ and trnK in angiosperm chloroplast DNAs, but possesses ORF510 instead. This ORF is highly homologous to ORF513 found in the corresponding region of liverwort chloroplast DNA and ORF563 located downstream from trnT in Chlamydomonas moewusii chloroplast DNA. A possible pathway for the evolution of black pine chloroplast DNA is discussed.
Collapse
Affiliation(s)
- J Tsudzuki
- Sugiyama Jogakuen University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Herdenberger F, Pillay DT, Steinmetz A. Sequence of the trnH gene and the inverted repeat structure deletion site of the broad bean chloroplast genome. Nucleic Acids Res 1990; 18:1297. [PMID: 2320425 PMCID: PMC330459 DOI: 10.1093/nar/18.5.1297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- F Herdenberger
- Institut de Biologie Moléculaire des Plantes, Strasbourg, France
| | | | | |
Collapse
|