Kang JJ, Cheng YW, Ko FN, Kuo ML, Lin CN, Teng CM. Induction of calcium release from sarcoplasmic reticulum of skeletal muscle by xanthone and norathyriol.
Br J Pharmacol 1996;
118:1736-42. [PMID:
8842439 PMCID:
PMC1909844 DOI:
10.1111/j.1476-5381.1996.tb15599.x]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Effects of xanthone and its derivative, 1,3,6,7-tetrahydroxyxanthone (norathyriol), on Ca2+ release and ryanodine binding were studied in isolated sarcoplasmic reticulum (SR) vesicles from rabbit skeletal muscle. 2. Both xanthone and norathyriol dose-dependently induced Ca2+ release from the actively loaded SR vesicles which was blocked by ruthenium red, a specific Ca2+ release inhibitor, and Mg2+. 3. Xanthone and norathyriol also dose-dependently increased apparent [3H]-ryanodine binding. Norathyriol, but not xanthone, produced a synergistic effect on binding activation when added concurrently with caffeine. 4. In the presence of Mg2+, which inhibits ryanodine binding, both caffeine and norathyriol, but not xanthone, could restore the binding to the level observed in the absence of Mg2+. 5. Xanthone activated the Ca(2+)-ATPase activity of isolated SR vesicles dose-dependently reaching 70% activation at 300 microM. 6. When tested in mouse diaphragm, norathyriol potentiated the muscle contraction followed by twitch depression and contracture in either a Ca(2+) -free bathing solution or one containing 2.5 mM Ca2+. These norathyriol-induced effects on muscle were inhibited by pretreatment with ruthenium red or ryanodine. 7. These data suggest that xanthone and norathyriol can induce Ca2+ release from the SR of skeletal muscle through a direct interaction with the Ca2+ release channel, also known as the ryanodine receptor.
Collapse