1
|
Abstract
ABSTRACT
The number and diversity of known prokaryotic insertion sequences (IS) have increased enormously since their discovery in the late 1960s. At present the sequences of more than 4000 different IS have been deposited in the specialized ISfinder database. Over time it has become increasingly apparent that they are important actors in the evolution of their host genomes and are involved in sequestering, transmitting, mutating and activating genes, and in the rearrangement of both plasmids and chromosomes. This review presents an overview of our current understanding of these transposable elements (TE), their organization and their transposition mechanism as well as their distribution and genomic impact. In spite of their diversity, they share only a very limited number of transposition mechanisms which we outline here. Prokaryotic IS are but one example of a variety of diverse TE which are being revealed due to the advent of extensive genome sequencing projects. A major conclusion from sequence comparisons of various TE is that frontiers between the different types are becoming less clear. We detail these receding frontiers between different IS-related TE. Several, more specialized chapters in this volume include additional detailed information concerning a number of these.
In a second section of the review, we provide a detailed description of the expanding variety of IS, which we have divided into families for convenience. Our perception of these families continues to evolve and families emerge regularly as more IS are identified. This section is designed as an aid and a source of information for consultation by interested specialist readers.
Collapse
|
2
|
Garcillán-Barcia MP, de la Cruz F. Distribution of IS91 family insertion sequences in bacterial genomes: evolutionary implications. FEMS Microbiol Ecol 2012; 42:303-13. [PMID: 19709290 DOI: 10.1111/j.1574-6941.2002.tb01020.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
IS91 is the prototype element of a family of bacterial insertion sequences that transpose by a rolling-circle mechanism. Although previously considered a rarity among IS elements, many new examples have been identified by sequence analysis of bacterial genomes. In this work we provide a summary of occurrences of IS91-like sequences in the GenBank database, characterise the genetic organisation of adjacent sequences, and analyse IS91 ecological significance under the light of current transposition mechanisms. Interestingly, IS91 family elements were usually found adjacent to pathogenicity- and virulence-related genes. Thus, this might constitute the niche for IS91 and IS91 family elements to play an important role in the dissemination and evolution of virulence and pathogenicity types of genes.
Collapse
Affiliation(s)
- M Pilar Garcillán-Barcia
- Departamento de Biología Molecular (Unidad Asociada al C.I.B., C.S.I.C.), Universidad de Cantabria, C/Herrera Oria s/n, 39011 Santander, Spain
| | | |
Collapse
|
3
|
Antibiotics shaping bacterial genome: deletion of an IS91 flanked virulence determinant upon exposure to subinhibitory antibiotic concentrations. PLoS One 2011; 6:e27606. [PMID: 22096603 PMCID: PMC3214074 DOI: 10.1371/journal.pone.0027606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/20/2011] [Indexed: 11/19/2022] Open
Abstract
The nucleoid-associated proteins Hha and YdgT repress the expression of the toxin α-hemolysin. An Escherichia coli mutant lacking these proteins overexpresses the toxin α-hemolysin encoded in the multicopy recombinant plasmid pANN202-312R. Unexpectedly, we could observe that this mutant generated clones that no further produced hemolysin (Hly(-)). Generation of Hly(-) clones was dependent upon the presence in the culture medium of the antibiotic kanamycin (km), a marker of the hha allele (hha::Tn5). Detailed analysis of different Hly(-) clones evidenced that recombination between partial IS91 sequences that flank the hly operon had occurred. A fluctuation test evidenced that the presence of km in the culture medium was underlying the generation of these clones. A decrease of the km concentration from 25 mg/l to 12.5 mg/l abolished the appearance of Hly(-) derivatives. We considered as a working hypothesis that, when producing high levels of the toxin (combination of the hha ydgT mutations with the presence of the multicopy hemolytic plasmid pANN202-312R), the concentration of km of 25 mg/l resulted subinhibitory and stimulated the recombination between adjacent IS91 flanking sequences. To further test this hypothesis, we analyzed the effect of subinhibitory km concentrations in the wild type E. coli strain MG1655 harboring the parental low copy number plasmid pHly152. At a km concentration of 5 mg/l, subinhibitory for strain MG1655 (pHly152), generation of Hly(-) clones could be readily detected. Similar results were also obtained when, instead of km, ampicillin was used. IS91 is flanking several virulence determinants in different enteric bacterial pathogenic strains from E. coli and Shigella. The results presented here evidence that stress generated by exposure to subinhibitory antibiotic concentrations may result in rearrangements of the bacterial genome. Whereas some of these rearrangements may be deleterious, others may generate genotypes with increased virulence, which may resume infection.
Collapse
|
4
|
Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev 2006; 70:296-316. [PMID: 16760305 PMCID: PMC1489542 DOI: 10.1128/mmbr.00048-05] [Citation(s) in RCA: 438] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
"Common regions" (CRs), such as Orf513, are being increasingly linked to mega-antibiotic-resistant regions. While their overall nucleotide sequences show little identity to other mobile elements, amino acid alignments indicate that they possess the key motifs of IS91-like elements, which have been linked to the mobility ent plasmids in pathogenic Escherichia coli. Further inspection reveals that they possess an IS91-like origin of replication and termination sites (terIS), and therefore CRs probably transpose via a rolling-circle replication mechanism. Accordingly, in this review we have renamed CRs as ISCRs to give a more accurate reflection of their functional properties. The genetic context surrounding ISCRs indicates that they can procure 5' sequences via misreading of the cognate terIS, i.e., "unchecked transposition." Clinically, the most worrying aspect of ISCRs is that they are increasingly being linked with more potent examples of resistance, i.e., metallo-beta-lactamases in Pseudomonas aeruginosa and co-trimoxazole resistance in Stenotrophomonas maltophilia. Furthermore, if ISCR elements do move via "unchecked RC transposition," as has been speculated for ISCR1, then this mechanism provides antibiotic resistance genes with a highly mobile genetic vehicle that could greatly exceed the effects of previously reported mobile genetic mechanisms. It has been hypothesized that bacteria will surprise us by extending their "genetic construction kit" to procure and evince additional DNA and, therefore, antibiotic resistance genes. It appears that ISCR elements have now firmly established themselves within that regimen.
Collapse
Affiliation(s)
- Mark A Toleman
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
5
|
Delgado MA, Salomón RA. Molecular characterization of a DNA fragment carrying the basic replicon of pTUC100, the natural plasmid encoding the peptide antibiotic microcin J25 system. Plasmid 2005; 53:258-62. [PMID: 15848229 DOI: 10.1016/j.plasmid.2004.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 08/25/2004] [Accepted: 09/27/2004] [Indexed: 11/22/2022]
Abstract
The Escherichia coli plasmid pTUC100 encodes production of, and immunity to, the peptide antibiotic microcin J25. In the present study, an approximately 8-kb fragment immediately adjacent to the previously sequenced microcin region was isolated and its DNA sequence was determined. The main features of the newly characterized region are: (i) a basic replicon which is almost identical to that of the RepFIIA plasmid R100; (ii) two ORFs with 96% identity to two ORFs of unknown function on pO157, a large plasmid harbored by enterohemorragic E. coli, and a large ORF which does not show significant homology to any other reported nucleotide or protein sequence; and (iii) two intact insertion sequences, IS1294 and IS1. Sequence analysis, as well as that of the G+C content of both the 8-kb fragment and the previously sequenced microcin locus, lead us to propose that plasmid pTUC100 is a composite structure assembled from DNA elements from various sources.
Collapse
Affiliation(s)
- Mónica A Delgado
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas ,Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán, Tucumán, Argentina
| | | |
Collapse
|
6
|
del Pilar Garcillán-Barcia M, Bernales I, Mendiola MV, de la Cruz F. Single-stranded DNA intermediates in IS91 rolling-circle transposition. Mol Microbiol 2001; 39:494-501. [PMID: 11136468 DOI: 10.1046/j.1365-2958.2001.02261.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IS91 displays a number of characteristics unique among insertion sequence (IS) elements, suggesting that it transposes by a novel mechanism called rolling-circle (RC) transposition. We reported previously that IS91 transposase (TnpA) amino acid sequence shares a series of five conserved signatures with A proteins of RC replicating phages, including a pair of invariant tyrosines that catalyse two successive transesterification reactions during replication initiation and termination. To analyse their role in IS91 transposition, we constructed a series of TnpA derivatives in which the invariant Tyr-249 and/or Tyr-253 were mutated to either phenylalanine or serine. Mutation of either tyrosine resulted in complete loss of transposition activity in vivo. This result was taken as a first new line of evidence that TnpA is a functional analogue of phiX174 phage A protein. Secondly, RC replication plasmids and phages accumulate single-stranded DNA (ssDNA) intermediates as a result of uncoupled leading and lagging DNA strand synthesis. Using a plasmid carrying an IS91-derived IRLkan-IRR transposable cassette, in which the left (IRL)- and right (IRR)-terminal sequences of IS91 flank a kanamycin resistance gene (kan), we demonstrated the in vivo formation of two new DNA species after induction of transposase expression. The first was a circular ssDNA that contained the transposable cassette covalently joined at its exact termini, whereas the second was a double-stranded circle of the same element. When this experiment was repeated using the mutant transposases described above, the ssDNA and dsDNA intermediates could not be observed, indicating that the integrity of both Y249 and Y253 was essential for their appearance. The presence of ssDNA intermediate products is the first biochemical evidence for a RC mechanism of IS91 transposition.
Collapse
Affiliation(s)
- M del Pilar Garcillán-Barcia
- Departamento de Biología Molecular (Unidad Asociada al CIB, CSIC), Universidad de Cantabria, C/Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | |
Collapse
|
7
|
Albiger B, Comanducci A, Dodd HM, Tavakoli N, Lett MC, Bennett P. pUB2380: characterization of a ColD-like resistance plasmid. Plasmid 2000; 44:54-65. [PMID: 10873527 DOI: 10.1006/plas.1999.1459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A detailed analysis of the mobilizable, ColE1-like resistance plasmid, pUB2380, is reported. The 8.5-kb genome encodes six (possibly seven) major functions: (1) a ColD-like origin of replication, oriV, with associated replication functions, RNAI and RNAII; (2) a set of active mobilization functions highly homologous to that of ColE1, including the origin of transfer, oriT; (3) a ColE1-like multimer resolution site (cer); (4) a kanamycin-resistance determinant, aph, encoding an aminoglycoside-3'-phosphotransferase type 1; (5) an insertion sequence, IS1294; and (6) two genes, probably cotranscribed, of unknown function(s). The GC content of the various parts of the genome indicates that the plasmid is a hybrid structure assembled from DNA from at least three different sources, of which the replication region, the mobilization functions, and the resistance gene are likely to have originated in the enterobacteriaceae.
Collapse
Affiliation(s)
- B Albiger
- Laboratoire de Microbiologie et de Génétique, UPRES A 7010-CNRS, 28, rue Goethe, Strasbourg Cedex, 67083, France
| | | | | | | | | | | |
Collapse
|
8
|
Tavakoli N, Comanducci A, Dodd HM, Lett MC, Albiger B, Bennett P. IS1294, a DNA element that transposes by RC transposition. Plasmid 2000; 44:66-84. [PMID: 10873528 DOI: 10.1006/plas.1999.1460] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IS1294, found on the ColD-like resistance plasmid pUB2380, is IS91-like. It is an active 1.7-kb insertion sequence that lacks terminal inverted repeats, displays insertion-site specificity, and does not generate direct repeats of the target site. The element has one large open reading frame, tnp(1294), encoding a transposase of 351 amino acids, related to members of the REP family of replication proteins used by RC-plasmids of gram-positive bacteria. IS1294 transposes using rolling-circle replication, initiated at one end of the element, oriIS, and terminated at the other, terIS. oriIS and terIS are highly conserved among like IS elements. oriIS resembles the leading strand replication origins of RC-plasmids; terIS resembles a rho-independent transcription terminator. IS1294 mediates not only its own transposition, but also sequences adjacent to terIS. A transposition model for IS1294 and related elements, involving rolling-circle replication and single-strand DNA intermediates, is presented.
Collapse
Affiliation(s)
- N Tavakoli
- Laboratoire de Microbiologie et de Génétique, UPRES A 7010-CNRS, 28, rue Goethe, Strasbourg Cedex, 67083, France
| | | | | | | | | | | |
Collapse
|
9
|
Mendiola MV, Bernales I, de la Cruz F. Differential roles of the transposon termini in IS91 transposition. Proc Natl Acad Sci U S A 1994; 91:1922-6. [PMID: 8127907 PMCID: PMC43276 DOI: 10.1073/pnas.91.5.1922] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Insertion sequence 91 (IS91) inserts specifically at GTTC or CTTG target sequences without duplication of the target. After insertion, the right inverted repeat (IRR) lies adjacent to the 3' end of the target sequences (or 5' to the complementary sequence CAAG or GAAC). We have analyzed the effects of alteration of each terminus of IS91 on transposition activity in Escherichia coli. IRR is absolutely required for transposition. Deletion analysis indicates that a 14-bp segment is not sufficient, but an 81-bp sequence within the IRR region is sufficient. Furthermore, the GTTC/CTTG target site is also required. The left inverted repeat (IRL) of IS91 is dispensable. Plasmid fusions originated by one-ended transposition of IS91 derivatives lacking IRL occur at about the same frequency as cointegrate formation observed for the wild-type element. In the one-ended-type fusions, the inserted fragment of donor DNA is flanked at one end (constant end) by IRR and at the other end by a GTTC or CTTG sequence present in the donor (variable end) in a way that usually results in multiple tandem insertions of the donor plasmid in the target site. These results are easily accommodated by a rolling-circle replicative transposition mechanism. This model also draws support from the finding that the IS91 transposase is related in sequence to the superfamily of rolling-circle replication proteins and the observation that IRR shows some conservation in sequence and secondary structure with the origins of replication of some rolling-circle replication plasmids.
Collapse
Affiliation(s)
- M V Mendiola
- Departmento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | |
Collapse
|
10
|
Mendiola MV, Jubete Y, de la Cruz F. DNA sequence of IS91 and identification of the transposase gene. J Bacteriol 1992; 174:1345-51. [PMID: 1310503 PMCID: PMC206431 DOI: 10.1128/jb.174.4.1345-1351.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
IS91 is a 1,830-bp insertion sequence that inserts specifically at the sequence CAAG or GAAC of the target and does not duplicate any sequence upon insertion (23). By transposon mutagenesis, we have identified open reading frame 426 (ORF426; bp 454 to 1731) as the putative ORF for the transposase. It displays a cysteine-rich, potential metal-binding domain in its N-terminal region. Adjacent to ORF426, there is an ORF (ORF121) which precedes and terminally overlaps ORF426 by one amino acid. Tn1732 insertions in ORF121 do not affect the transposition frequency. IS91 has sequence similarities to IS801 from Pseudomonas syringae. Their putative transposases are 36% identical, including conservation of the cysteine-rich cluster. The information concerning IS801 insertion specificity and target duplication has been reevaluated in the light of our results.
Collapse
Affiliation(s)
- M V Mendiola
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | |
Collapse
|
11
|
Mendiola MV, de la Cruz F. Specificity of insertion of IS91, an insertion sequence present in alpha-haemolysin plasmids of Escherichia coli. Mol Microbiol 1989; 3:979-84. [PMID: 2552258 DOI: 10.1111/j.1365-2958.1989.tb00247.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have determined the DNA sequences of eight different insertions of IS91 in a specifically engineered recipient plasmid of known DNA sequence (pSU300). The sequences at the termini of IS91 are 5'-CGAGTAGG...CCTATCGAT. IS91 inserts specifically 5' to either one of the tetranucleotides 5'-GAAC or 5'-CAAG, and always in the same relative orientation with respect to the sequence of the target. Except in one special case, no duplications of the recipient DNA were produced at the site of insertion.
Collapse
Affiliation(s)
- M V Mendiola
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | |
Collapse
|
12
|
Affiliation(s)
- P Avila
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | |
Collapse
|
13
|
Avila P, Grinsted J, de la Cruz F. Analysis of the variable endpoints generated by one-ended transposition of Tn21. J Bacteriol 1988; 170:1350-3. [PMID: 2830239 PMCID: PMC210914 DOI: 10.1128/jb.170.3.1350-1353.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
One-ended transposition of Tn21 generates recombinants usually containing a whole copy of the donor replicon plus a short duplication of it (S. Mötsch, R. Schmitt, P. Avila, F. de la Crue, E. Ward, and J. Grinsted, Nucleic Acids Res. 13:3335-3342, 1985). This work shows that recombinants containing less than a whole copy of the donor replicon (hereafter called short recombinants) could also be detected when plasmid donors which contained two selectable genetic markers were used. Short recombinants were produced at the same frequency from TnpR+ donor molecules as from TnpR- donor molecules in a RecA- background. Therefore, they were not resolution products of larger recombinants. This result invalidates a previous hypothesis to explain one-ended transposition, that is, that one-ended transposition arises from the use of secondary ends by the transposition apparatus. On the other hand, it suggests that one-ended transposition of Tn21 occurs via a simple insertion mechanism.
Collapse
Affiliation(s)
- P Avila
- Departamento de Bioquímica, Facultad de Medicina, Polígono de Cazoña s/n, Santander, Spain
| | | | | |
Collapse
|
14
|
Diaz-Aroca E, Mendiola MV, Zabala JC, de la Cruz F. Transposition of IS91 does not generate a target duplication. J Bacteriol 1987; 169:442-3. [PMID: 3025186 PMCID: PMC211791 DOI: 10.1128/jb.169.1.442-443.1987] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We determined the DNA sequences surrounding the junctions of IS91 in two insertion derivatives: pSU234 (pACYC184::IS91) and pSU240 (pBR322::IS91). The termini of IS91 consist of two imperfect inverted repeats eight base pairs long. Their sequence is 5'-TCGAGTAGG. . . CCTATCGA-3'. Insertion of IS91 did not generate direct repetitions in the target DNAs.
Collapse
|
15
|
|
16
|
Cavalieri SJ, Bohach GA, Snyder IS. Escherichia coli alpha-hemolysin: characteristics and probable role in pathogenicity. Microbiol Rev 1984; 48:326-43. [PMID: 6394977 PMCID: PMC373222 DOI: 10.1128/mr.48.4.326-343.1984] [Citation(s) in RCA: 150] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Zabala JC, García-Lobo JM, Diaz-Aroca E, de la Cruz F, Ortiz JM. Escherichia coli alpha-haemolysin synthesis and export genes are flanked by a direct repetition of IS91-like elements. MOLECULAR & GENERAL GENETICS : MGG 1984; 197:90-7. [PMID: 6096676 DOI: 10.1007/bf00327927] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A revised physical map of the alpha-haemolysin plasmid pHly152 has been constructed. The known position of the hly genes in the restriction map of pHly152 allowed us to locate in it a direct repeat of IS elements flanking the hly genes of pHly152. These elements are IS92L, which is a derivative of the previously characterised element IS91 (1.85 kb) by insertion of a sequence of 1.2 kb, and IS92R, an element related to IS91 by a deletion of 0.7 kb and substitution of a 0.2 kb sequence of IS91 by a 1.2 kb heterologous sequence. IS92L is, in turn, flanked by an inverted repetition of sequences of 1.4 kb. These and previously published data strongly suggest that the hly genes spread at some time in evolution by means of the recombinational activity of IS91-like elements.
Collapse
|
18
|
Avila P, de la Cruz F, Ward E, Grinsted J. Plasmids containing one inverted repeat of Tn21 can fuse with other plasmids in the presence of Tn21 transposase. MOLECULAR & GENERAL GENETICS : MGG 1984; 195:288-93. [PMID: 6092854 DOI: 10.1007/bf00332761] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the presence of the Tn21 transposase, plasmids that contain a single Tn21 inverted repeat sequence fuse efficiently with other plasmids. This reaction occurs in recA strains, is independent of the transposon-encoded resolution system, and results in insertions into different sites in the recipient plasmid. All fusion products studied contained at least one complete copy of the donor plasmid; most also contained some duplication of it as well. The data are consistent with processive models of transposition.
Collapse
|