1
|
Evensen KG, Rusin E, Robinson WE, Price CL, Kelly SL, Lamb DC, Goldstone JV, Poynton HC. Vertebrate endocrine disruptors induce sex-reversal in blue mussels. Sci Rep 2024; 14:23890. [PMID: 39396059 PMCID: PMC11470919 DOI: 10.1038/s41598-024-74212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Mollusks are the second most diverse animal phylum, yet little is known about their endocrinology or how they respond to endocrine disrupting compound (EDC) pollution. Characteristic effects of endocrine disruption are reproductive impairment, skewed sex ratios, development of opposite sex characteristics, and population decline. However, whether classical vertebrate EDCs, such as steroid hormone-like chemicals and inhibitors of steroidogenesis, exert effects on mollusks is controversial. In the blue mussel, Mytilus edulis, EDC exposure is correlated with feminized sex ratios in wild and laboratory mussels, but sex reversal has not been confirmed. Here, we describe a non-destructive qPCR assay to identify the sex of M. edulis allowing identification of males and females prior to experimentation. We exposed male mussels to 17α-ethinylestradiol and female mussels to ketoconazole, EDCs that mimic vertebrate steroid hormones or inhibit their biosynthesis. Both chemicals changed the sex of individual mussels, interfered with gonadal development, and disrupted gene expression of the sex differentiation pathway. Impacts from ketoconazole treatment, including changes in steroid levels, confirmed a role for steroidogenesis and steroid-like hormones in mollusk endocrinology. The present study expands the possibilities for laboratory and field monitoring of mollusk species and provides key insights into endocrine disruption and sexual differentiation in bivalves.
Collapse
Affiliation(s)
- K Garrett Evensen
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Emily Rusin
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - William E Robinson
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Claire L Price
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | | | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
2
|
Zhou H, Hua J, Li H, Song X, Luo S. Structurally diverse specialized metabolites of maize and their extensive biological functions. J Cell Physiol 2024; 239:e30955. [PMID: 36745523 DOI: 10.1002/jcp.30955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Maize originated in southern Mexico and various hybrid varieties have been bred during domestication. All maize tissues are rich in specialized plant metabolites (SPMs), which allow the plants to resist the stresses of herbivores and pathogens or environmental factors. To date, a total of 95 terpenoids, 91 phenolics, 31 alkaloids, and 6 other types of compounds have been identified from maize. Certain volatile sesquiterpenes released by maize plants attract the natural enemies of maize herbivores and provide an indirect defensive function. Kauralexins and dolabralexins are the most abundant diterpenoids in maize and are known to regulate and stabilize the maize rhizosphere microbial community. Benzoxazinoids and benzoxazolinones are the main alkaloids in maize and are found in maize plants at the highest concentrations at the seedling stage. These two kinds of alkaloids directly resist herbivory and pathogenic infection. Phenolics enhance the cross-links between maize cell walls. Meanwhile, SPMs also regulate plant-plant relationships. In conclusion, SPMs in maize show a large diversity of chemical structures and broad-spectrum biological activities. We use these to provide ideas and information to enable the improvement of maize resistances through breeding and to promote the rapid development of the maize industry.
Collapse
Affiliation(s)
- Huiwen Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Hongdi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Xinyu Song
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
3
|
Gan Q, Zheng H, Li X, Li J, Ma J, Zhang Y, Han J, Zhang L, Zhou W, Lu Y. Solving the Jigsaw puzzle of phytosterol diversity by a novel sterol methyltransferase from Zea mays. J Steroid Biochem Mol Biol 2024; 240:106498. [PMID: 38447903 DOI: 10.1016/j.jsbmb.2024.106498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/05/2023] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Phytosterols are vital structural and regulatory components in plants. Zea mays produces a series of phytosterols that are specific to corn. However, the underline biosynthetic mechanism remains elusive. In this study, we identified a novel sterol methyltransferase from Z. mays (ZmSMT1-2) which showed a unique feature compared with documented plant SMTs. ZmSMT1-2 showed a substrate preference for cycloartenol. Using S-adenosyl-L-methionine (AdoMet) as a donor, ZmSMT1-2 converted cycloartenol into alkylated sterols with unique side-chain architectures, including Δ25(27) (i.e., cyclolaudenol and cycloneolitsol) and Δ24(25) (i.e., cyclobranol) sterols. Cycloneolitsol is identified as a product of SMTs for the first time. Our discovery provides a previously untapped mechanism for phytosterol biosynthesis and adds another layer of diversity of sterol biosynthesis.
Collapse
Affiliation(s)
- Qinhua Gan
- School of Tropical Crops, Hainan University, Haikou 570228, China; Engineering & Research Center of Marine Bioactives and Bioproducts of Hainan Province, Haikou 570228, China; Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Haikou 570228, China
| | - Haifeng Zheng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinyu Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jing Li
- School of Biological Sciences, The University of Western Australia, Perth 6009, Australia
| | - Jingxue Ma
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Engineering & Research Center of Marine Bioactives and Bioproducts of Hainan Province, Haikou 570228, China; Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Haikou 570228, China
| | - Yuji Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jiakun Han
- Jining Academy of Agricultural Sciences, Jining 272031, China
| | - Lin Zhang
- Shandong Rongchen Pharmaceuticals Inc, Qingdao 266061, China
| | - Wenxu Zhou
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; School of Biological Sciences, The University of Western Australia, Perth 6009, Australia.
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Engineering & Research Center of Marine Bioactives and Bioproducts of Hainan Province, Haikou 570228, China; Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Haikou 570228, China; Key Laboratory of Tropical Hydrobiotechnology of Hainan Province, Haikou 570228, China.
| |
Collapse
|
4
|
Increment of Lysosomal Biogenesis by Combined Extracts of Gum Arabic, Parsley, and Corn Silk: A Reparative Mechanism in Mice Renal Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8631258. [PMID: 32733590 PMCID: PMC7369655 DOI: 10.1155/2020/8631258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/02/2020] [Indexed: 01/22/2023]
Abstract
Gum Arabic (GA), parsley, and corn silk have been traditionally used for renal failure patients worldwide. This study aimed at probing the mechanism of the combined extracts, namely, GA (3 g/kg/day), parsley (1 g/kg/day), and corn silk (200 mg/kg/day), as nephroprotective agents in mice after amikacin (1.2 g/kg) single dose through exploration of their action on G-protein coupled receptors (GPR) 41 and 43 and the ensuing lysosomal biogenesis. Western blotting was employed for renal levels of bcl-2-associated X protein (BAX) and cytosolic cathepsin D; cell death markers, nuclear transcription factor EB (TFEB), and lysosomal associated membrane protein-1 (LAMP-1); and lysosomal biogenesis indicators. Liquid chromatography–mass spectrometry (LC-MS) and docking were also employed. After amikacin treatment, BAX and cathepsin D levels were upregulated while LAMP-1 and nuclear TFEB levels were inhibited. The combined extracts inhibited BAX and cytosolic cathepsin D but upregulated LAMP-1 and nuclear TFEB levels. Docking confirmed GPR modulatory signaling. The combined extracts showed GPR signal modulatory properties that triggered lysosome synthesis and contributed to reversing the adverse effects of amikacin on renal tissues.
Collapse
|
5
|
Villette C, Berna A, Compagnon V, Schaller H. Plant Sterol Diversity in Pollen from Angiosperms. Lipids 2015; 50:749-60. [PMID: 25820807 DOI: 10.1007/s11745-015-4008-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/20/2015] [Indexed: 12/28/2022]
Abstract
Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ(5)-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.
Collapse
Affiliation(s)
- Claire Villette
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Institut de Botanique, 28 rue Goethe, 67083, Strasbourg, France,
| | | | | | | |
Collapse
|
6
|
Pilorget L, Buckner J, Lundgren JG. Sterol limitation in a pollen-fed omnivorous lady beetle (Coleoptera: Coccinellidae). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:81-87. [PMID: 19772860 DOI: 10.1016/j.jinsphys.2009.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
Nutritional constraints of non-prey foods for entomophagous arthropods are seldom investigated, yet are crucial to understanding their nutritional ecology and function within natural and managed environments. We investigated whether pollen from five maize hybrids was of variable quality for the lady beetle, Coleomegilla maculata, whether suitability of these pollens was related with their sterol profiles, and how augmenting sterols (beta-sitosterol, cholesterol, or ergosterol) affected the fitness and performance of C. maculata. Preimaginal survival, development rates, the duration of the pre-oviposition period, post-mortem adult dry weight, adult hind tibial length, sex ratio, fecundity, cohort generation time (T(c)), net replacement rate (R(0)) and intrinsic rate of increase (r) were measured. Individual sterols in the pollens were quantified using GC-MS. Pollens were of variable suitability for C. maculata; the development rate was positively correlated with the amount of 24-methylene-cholesterol and r was positively correlated with episterol and 24-methylene-lophenol found in the pollens. Performance of C. maculata was entirely unaffected by augmenting pollen meals with sterols. This research shows that pollens clearly vary in their sterol contents intraspecifically, which affects their suitability for omnivores that rely on pollen. However, sterols appear to be only one of the limiting nutrients in pollens.
Collapse
|
7
|
Abstract
Sixty-one sterols and pentacyclic triterpenes have been isolated and characterized by chromatographic and spectral methods from Zea mays (corn). Several plant parts were examined; seed, pollen, cultured hypocotyl cells, roots, coleoptiles (sheaths), and blades. By studying reaction pathways and mechanisms on plants fed radiotracers ([2-(14)C]mevalonic acid, [2-(14)C]acetate, and [2-(3)H]acetate), and stable isotopes (D2O), we discovered that hydroxymethylgutaryl CoA reductase is not "the" rate-limiting enzyme of sitosterol production. Additionally, we observed an ontogenetic shift and kinetic isotope effect in sterol biosynthesis that was associated with the C-24 alkylation of the sterol side chain. Blades synthesized mainly 24 alpha-ethyl-sterols, sheaths synthesized mainly 24-methyl-sterols, pollen possessed an interrupted sterol pathway, accumulating 24(28)-methylene-sterols, and germinating seeds were found to lack an active de novo pathway. Shoots, normally synthesizing (Z)-24(28)-ethylidine-cholesterol, after incubation with deuterated water, synthesized the rearranged double-bond isomer, stigmasta-5,23-dien-3 beta-ol. Examination of the mass spectrum and 1H nuclear magnetic resonance spectrum of the deuterated 24-ethyl-sterol indicated the Bloch-Cornforth route originating with acetyl-CoA and passing through mevalonic acid to sterol was not operative at this stage of development. An alternate pathway giving rise to sterols is proposed.
Collapse
Affiliation(s)
- D A Guo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409, USA
| | | | | |
Collapse
|
8
|
|
9
|
Knights BA, Smith AR. Sterols of male and female flowers of Cucumis sativus. PLANTA 1977; 134:115-117. [PMID: 24419688 DOI: 10.1007/bf00384959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/1976] [Accepted: 11/19/1976] [Indexed: 06/03/2023]
Abstract
Sterols of male and female flowers of Cucumis sativus L. were similar in composition. The principal compound was 24ξ-ethyl-5α-cholesta-7,22-dien-3β-ol. Five other 5α-Δ(7) were detected: 24ξ-methyl-7-ene, 24ξ-ethyl-7-ene, 24-ethyl-7,24(28)Z-diene, 24ξ-ethyl-7,25-diene and 24ξ-ethyl-7,22,25-triene. Small amounts of Δ(5) (cholesterol, 24ξ-methylcholesterol and 24ξ-ethylcholesterol) were detected. The possible significance of these sterols is discussed.
Collapse
Affiliation(s)
- B A Knights
- Department of Botany, University of Glasgow, G12 8QQ, Glasgow, U.K
| | | |
Collapse
|