1
|
Wieland S, Balmes A, Bender J, Kitzinger J, Meyer F, Ramsperger AF, Roeder F, Tengelmann C, Wimmer BH, Laforsch C, Kress H. From properties to toxicity: Comparing microplastics to other airborne microparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128151. [PMID: 35042167 DOI: 10.1016/j.jhazmat.2021.128151] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) debris is considered as a potentially hazardous material. It is omnipresent in our environment, and evidence that MP is also abundant in the atmosphere is increasing. Consequently, the inhalation of these particles is a significant exposure route to humans. Concerns about potential effects of airborne MP on human health are rising. However, currently, there are not enough studies on the putative toxicity of airborne MP to adequately assess its impact on human health. Therefore, we examined potential drivers of airborne MP toxicity. Physicochemical properties like size, shape, ζ-potential, adsorbed molecules and pathogens, and the MP's bio-persistence have been proposed as possible drivers of MP toxicity. Since their role in MP toxicity is largely unknown, we reviewed the literature on toxicologically well-studied non-plastic airborne microparticles (asbestos, silica, soot, wood, cotton, hay). We aimed to link the observed health effects and toxicology of these microparticles to the abovementioned properties. By comparing this information with studies on the effects of airborne MP, we analyzed possible mechanisms of airborne MP toxicity. Thus, we provide a basis for a mechanistic understanding of airborne MP toxicity. This may enable the assessment of risks associated with airborne MP pollution, facilitating effective policymaking and product design.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Aylin Balmes
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Julian Bender
- Institute for Biochemistry and Biotechnology, Interdisciplinary Research Center HALOmem, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jonas Kitzinger
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Felix Meyer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Anja Frm Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Franz Roeder
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Caroline Tengelmann
- Medical Faculty, University of Würzburg, Würzburg, Germany; Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | | | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
2
|
Yuan H, Kong W, Xia J. Steered molecular dynamics and stability analysis on PAH dimerisation and condensation on fullerene and soot surfaces. Phys Chem Chem Phys 2021; 23:19590-19601. [PMID: 34524285 DOI: 10.1039/d1cp01019k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of how a soot nucleus is impacted by polycyclic aromatic hydrocarbons (PAHs) and then grows through PAH condensation remains unclear. Using steered molecular dynamics (SMD), the non-bonding interaction between PAHs and soot was quantitatively studied using the free energy distribution during the dimerisation and condensation. The results showed that only two dimers (A7-A10 and 2 A10) remained stable at 1000 K. The simulations showed that PAH condensation on a fullerene should not be ignored in soot mass growth. For fullerenes with a diameter not less than 1.8 nm (C540), even A4 condenses at temperatures of 1500 K, and A10 condenses stably on the surface of fullerenes even at 2000 K. The effects of multilayers and hydrogenated fullerenes on the free energy of PAH condensation are different. The stability of PAH dimers and PAH condensation pairs was discussed through free energy and chemical equilibrium. The results show that larger dimers are more stable than small ones at flame temperatures. Condensation is far more important than nucleation in mass growth at flame temperatures. Furthermore, the larger the PAH is, the higher the transformation ratio of the PAH in condensation on soot and thus the more stable the condensation product is. Finally, both the stability analysis of an upper temperature limit for condensation and simulation results of ReaxFF-MD cross-confirm that pyrene stably condensates on a simplified nascent soot (C540) and a simulated soot (C658H319O9), respectively, at 1500 K, but not at higher temperatures over 1800 K.
Collapse
Affiliation(s)
- Hongliang Yuan
- Department of Mechanical and Aerospace Engineering & Institute of Energy Futures, Brunel University London, Uxbridge UB8 3PH, UK. .,Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenjun Kong
- School of Astronautics, Beihang University, Beijing 100191, China.
| | - Jun Xia
- Department of Mechanical and Aerospace Engineering & Institute of Energy Futures, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
3
|
Abstract
Emissions from diesel engines can be limited and potentially decreased by modifying the fuel chemical composition through additive insertion. One class of additives that have shown to be particularly efficient in the reduction of the particulates from the combustion of diesel fuels are oxygenated compounds. In the present study we investigate the effect of tripropylene glycol methyl ether (TPGME) and two polyoxymethylene dimethyl ethers (POMDME or OMEs) on soot formation in a laminar diesel diffusion flame. From the evaluation of soot volume fraction by laser-induced incandescence (LII) measurements we could observe that OME additives have a substantial capability (higher compared to TPGME) to decrease the particle concentration, which drops by up to 36% with respect to the pure diesel fuel. We also note a reduction in particle aggregate size, determined by wide-angle light scattering (WALS) measurements, which is more pronounced in the case of OME–diesel blends. The effects we observe can be correlated to the higher amount of oxygen content in the OME molecules. Moreover, both additives investigated seem to have almost no impact on the local soot temperature which could in turn play a key role in the production of soot particles.
Collapse
|
4
|
Möhner M, Wendt A. A critical review of the relationship between occupational exposure to diesel emissions and lung cancer risk. Crit Rev Toxicol 2017; 47:185-224. [PMID: 28322628 DOI: 10.1080/10408444.2016.1266598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In 2012, a working group of the International Agency for Research on Cancer classified diesel exhaust (DE) as a human carcinogen (Group 1). This decision was primarily based on the findings of the Diesel Exhaust in Miners Study (DEMS). The disparity between the results of various methodological approaches applied to the DEMS led to several critical commentaries. An expert panel was subsequently set up by the Health Effects Institute to evaluate the DEMS results, together with a large study in the trucking industry. The panel concluded that both studies provided a useful basis for quantitative risk assessments (QRAs) of DE exposure. However, the results of both studies were non-definitive as the studies suffer from several methodological shortcomings. We conducted a critical review of the studies used by the International Agency for Research on Cancer (IARC) working group to evaluate the relationship between DE and lung cancer. The aim was to assess whether the available studies support the statement of a causal relationship and, secondarily if they could be used for QRA. Our review highlights several methodological flaws in the studies, amongst them overadjustment bias, selection bias, and confounding bias. The conclusion from our review is that the currently published studies provide little evidence for a definite causal link between DE exposure and lung cancer risk. Based on two studies in miners, the DEMS and the German Potash Miners study, QRA may be conducted. However, the DEMS data should be reanalyzed in advance to avoid bias that affects the presently published risk estimates.
Collapse
Affiliation(s)
- Matthias Möhner
- a Division Work and Health , Federal Institute for Occupational Safety and Health , Berlin , Germany
| | - Andrea Wendt
- a Division Work and Health , Federal Institute for Occupational Safety and Health , Berlin , Germany
| |
Collapse
|
5
|
Claxton LD. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: Diesel and gasoline. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:30-85. [DOI: 10.1016/j.mrrev.2014.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 11/26/2022]
|
6
|
Attfield MD, Schleiff PL, Lubin JH, Blair A, Stewart PA, Vermeulen R, Coble JB, Silverman DT. The Diesel Exhaust in Miners study: a cohort mortality study with emphasis on lung cancer. J Natl Cancer Inst 2012; 104:869-83. [PMID: 22393207 PMCID: PMC3373218 DOI: 10.1093/jnci/djs035] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 10/12/2011] [Accepted: 10/21/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Current information points to an association between diesel exhaust exposure and lung cancer and other mortality outcomes, but uncertainties remain. METHODS We undertook a cohort mortality study of 12 315 workers exposed to diesel exhaust at eight US non-metal mining facilities. Historical measurements and surrogate exposure data, along with study industrial hygiene measurements, were used to derive retrospective quantitative estimates of respirable elemental carbon (REC) exposure for each worker. Standardized mortality ratios and internally adjusted Cox proportional hazard models were used to evaluate REC exposure-associated risk. Analyses were both unlagged and lagged to exclude recent exposure such as that occurring in the 15 years directly before the date of death. RESULTS Standardized mortality ratios for lung cancer (1.26, 95% confidence interval [CI] = 1.09 to 1.44), esophageal cancer (1.83, 95% CI = 1.16 to 2.75), and pneumoconiosis (12.20, 95% CI = 6.82 to 20.12) were elevated in the complete cohort compared with state-based mortality rates, but all-cause, bladder cancer, heart disease, and chronic obstructive pulmonary disease mortality were not. Differences in risk by worker location (ever-underground vs surface only) initially obscured a positive diesel exhaust exposure-response relationship with lung cancer in the complete cohort, although it became apparent after adjustment for worker location. The hazard ratios (HRs) for lung cancer mortality increased with increasing 15-year lagged cumulative REC exposure for ever-underground workers with 5 or more years of tenure to a maximum in the 640 to less than 1280 μg/m(3)-y category compared with the reference category (0 to <20 μg/m(3)-y; 30 deaths compared with eight deaths of the total of 93; HR = 5.01, 95% CI = 1.97 to 12.76) but declined at higher exposures. Average REC intensity hazard ratios rose to a plateau around 32 μg/m(3). Elevated hazard ratios and evidence of exposure-response were also seen for surface workers. The association between diesel exhaust exposure and lung cancer risk remained after inclusion of other work-related potentially confounding exposures in the models and were robust to alternative approaches to exposure derivation. CONCLUSIONS The study findings provide further evidence that exposure to diesel exhaust increases risk of mortality from lung cancer and have important public health implications.
Collapse
|
7
|
Westphal GA, Krahl J, Munack A, Ruschel Y, Schröder O, Hallier E, Brüning T, Bünger J. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6417-6424. [PMID: 22587467 DOI: 10.1021/es300399e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced mutagenic effects most effectively in the gas phase. Mutagenicity of particle extracts was less efficiently diminished. No significant differences of mutagenic effects were observed among the tested fuels. In conclusion, the benefits of the DOC concern regulated emissions except NO(X) as well as nonregulated emissions such as the mutagenicity of the exhaust. The reduction of mutagenicity was particularly observed in the condensates of the gas phase. This is probably due to better accessibility of gaseous mutagenic compounds during the passage of the DOC in contrast to the particle-bound mutagens. Concerning the particulate emissions DOC especially decreased ultrafine particles.
Collapse
Affiliation(s)
- Götz A Westphal
- German Social Accident Insurance-Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hesterberg TW, Long CM, Bunn WB, Lapin CA, McClellan RO, Valberg PA. Health effects research and regulation of diesel exhaust: an historical overview focused on lung cancer risk. Inhal Toxicol 2012; 24 Suppl 1:1-45. [PMID: 22663144 PMCID: PMC3423304 DOI: 10.3109/08958378.2012.691913] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 11/13/2022]
Abstract
The mutagenicity of organic solvent extracts from diesel exhaust particulate (DEP), first noted more than 55 years ago, initiated an avalanche of diesel exhaust (DE) health effects research that now totals more than 6000 published studies. Despite an extensive body of results, scientific debate continues regarding the nature of the lung cancer risk posed by inhalation of occupational and environmental DE, with much of the debate focused on DEP. Decades of scientific scrutiny and increasingly stringent regulation have resulted in major advances in diesel engine technologies. The changed particulate matter (PM) emissions in "New Technology Diesel Exhaust (NTDE)" from today's modern low-emission, advanced-technology on-road heavy-duty diesel engines now resemble the PM emissions in contemporary gasoline engine exhaust (GEE) and compressed natural gas engine exhaust more than those in the "traditional diesel exhaust" (TDE) characteristic of older diesel engines. Even with the continued publication of epidemiologic analyses of TDE-exposed populations, this database remains characterized by findings of small increased lung cancer risks and inconsistent evidence of exposure-response trends, both within occupational cohorts and across occupational groups considered to have markedly different exposures (e.g. truckers versus railroad shopworkers versus underground miners). The recently published National Institute for Occupational Safety and Health (NIOSH)-National Cancer Institute (NCI) epidemiologic studies of miners provide some of the strongest findings to date regarding a DE-lung cancer association, but some inconsistent exposure-response findings and possible effects of bias and exposure misclassification raise questions regarding their interpretation. Laboratory animal studies are negative for lung tumors in all species, except for rats under lifetime TDE-exposure conditions with durations and concentrations that lead to "lung overload." The species specificity of the rat lung response to overload, and its occurrence with other particle types, is now well-understood. It is thus generally accepted that the rat bioassay for inhaled particles under conditions of lung overload is not predictive of human lung cancer hazard. Overall, despite an abundance of epidemiologic and experimental data, there remain questions as to whether TDE exposure causes increased lung cancers in humans. An abundance of emissions characterization data, as well as preliminary toxicological data, support NTDE as being toxicologically distinct from TDE. Currently, neither epidemiologic data nor animal bioassay data yet exist that directly bear on NTDE carcinogenic potential. A chronic bioassay of NTDE currently in progress will provide data on whether NTDE poses a carcinogenic hazard, but based on the significant reductions in PM mass emissions and the major changes in PM composition, it has been hypothesized that NTDE has a low carcinogenic potential. When the International Agency for Research on Cancer (IARC) reevaluates DE (along with GEE and nitroarenes) in June 2012, it will be the first authoritative body to assess DE carcinogenic health hazards since the emergence of NTDE and the accumulation of data differentiating NTDE from TDE.
Collapse
|
9
|
Hoffmann B, Jöckel KH. Diesel exhaust and coal mine dust: lung cancer risk in occupational settings. Ann N Y Acad Sci 2006; 1076:253-65. [PMID: 17119207 DOI: 10.1196/annals.1371.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Conflicting evidence on the carcinogenicity of diesel exhaust (DE) and coal mine dust in occupational settings exist. Exposure measurement in most studies is inferred on the basis of job classifications and may lead to misclassification. Confounding behavioral factors (i.e., smoking) and occupational risk factors (exposure to asbestos, arsenic, radon) need to be considered. We evaluated the epidemiological evidence and current findings of the carcinogenicity of DE and coal mine dust in occupational settings. Pertaining literature was identified through Medline search and recent review articles. Strengths and limitations of recent approaches are discussed. Many epidemiological studies have addressed the question of carcinogenicity in workers exposed to DE, and most showed a low-to-medium increase in the risk of bronchial carcinoma. The pooled relative risk (RR) estimates lie between 1.33 and 1.47, and a consistent rise in risk across various job categories and study designs point to a causal relationship. Data on the carcinogenicity of coal mine dust are less consistent and the potential for confounding by unmeasured risk factors (arsenic, radon, DE) are higher. While silica as one of its components has been evaluated as carcinogenic, there is inadequate evidence for the carcinogenicity of pure coal dust according to the International Agency for Research on Cancer (IARC). There is sufficient evidence for a causal relationship between DE and lung cancer in occupational settings. The evidence for coal mine dust is less convincing, but individual studies show an increase in risk of lung cancer in exposed workers.
Collapse
Affiliation(s)
- Barbara Hoffmann
- Institute for Medical Informatics, Biometry and Epidemiology, University Clinics of Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | | |
Collapse
|
10
|
Hesterberg TW, Bunn WB, Chase GR, Valberg PA, Slavin TJ, Lapin CA, Hart GA. A critical assessment of studies on the carcinogenic potential of diesel exhaust. Crit Rev Toxicol 2006; 36:727-76. [PMID: 17050083 DOI: 10.1080/10408440600908821] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
After decades of research involving numerous epidemiologic studies and extensive investigations in laboratory animals, a causal relationship between diesel exhaust (DE) exposure and lung cancer has not been conclusively demonstrated. Epidemiologic studies of the transportation industry (trucking, busing, and railroad) show a small elevation in lung cancer incidence (relative risks [RRs] generally below 1.5), but a dose response for DE is lacking. The studies are also limited by a lack of quantitative concurrent exposure data and inadequate or lack of controls for potential confounders, particularly tobacco smoking. Furthermore, prior to dieselization, similar elevations in lung cancer incidence have been reported for truck drivers, and in-cab diesel particulate matter (DPM) exposures of truck drivers were comparable to ambient highway exposures. Taken together, these findings suggest that an unidentified occupational agent or lifestyle factor might be responsible for the low elevations in lung cancer reported in the transportation studies. In contrast, underground miners, many of whom experience the highest occupational DPM exposures, generally do not show elevations in lung cancer. Laboratory studies must be interpreted with caution with respect to predicting the carcinogenic potential of DE in humans. Tumors observed in rats following lifetime chronic inhalation of very high levels of DPM may be attributed to species-specific overload mechanisms that lack relevance to humans. Increased tumor incidence was not observed in other species (hamsters or mice) exposed to DPM at very high levels or in rats exposed at lower levels (</=2000 mug/m3). Although DPM contains mutagens, mutagenicity studies in which cells were exposed to concentrated extracts of DPM also have limited application to human risk assessment, because such extracts can be obtained from DPM only by using strong organic solvents, agitation, and heat. Most studies have shown that whole DPM itself is not mutagenic because the adsorbed organic compounds are minimally bioavailable in aqueous-based fluids. In the past two decades, dramatic changes in diesel engine technology (e.g., low-sulfur fuel and exhaust after-treatment) have resulted in >99% reduction in DPM and other quantitative and qualitative changes in the chemical and physical characteristics of diesel exhaust. Thus, the current database, which is focused almost entirely on the potential health effects of traditional diesel exhaust (TDE), has only limited utility in assessing the potential health risks of new-technology diesel exhaust (NTDE). To overcome some of the limitations of the historical epidemiologic database on TDE and to gain further insights into the potential health effects of NTDE, new studies are underway and more studies are planned.
Collapse
Affiliation(s)
- Thomas W Hesterberg
- International Truck and Engine Corporation, Warrenville, Illinois 60555, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Valberg PA, Crouch EA. Meta-analysis of rat lung tumors from lifetime inhalation of diesel exhaust. ENVIRONMENTAL HEALTH PERSPECTIVES 1999; 107:693-9. [PMID: 10464067 PMCID: PMC1566471 DOI: 10.1289/ehp.99107693] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Estimating the carcinogenic potential of exposure to diesel-engine exhaust particulates (DEPs) is problematic. In rats, high concentrations of DEPs (> 1,000 microg/m(3)) inhaled over a lifetime result in excess lung tumors. However, data for rats exposed to DEP at concentrations not associated with lung overload are consistent with no tumorigenic effect. Individual rat studies have only a limited number of exposure groups; therefore, we combined the tumor data from eight chronic inhalation studies in a meta-analysis. Statistical analysis identified a threshold of response between 200 and 600 microg/m(3) average continuous lifetime exposure, consistent with biological-effect thresholds reported by other investigators. Our exposure-response analysis of all rats with < 600 microg/m(3) average continuous lifetime exposure found no tumorigenic effect of DEP in these rats. When we evaluated all rat studies, accounted for a threshold and for inhomogeneity between experiments, and expressed the results in terms of human unit risk (UR), we found a negative maximum-likelihood human UR of -32 (times) 10(-6) per microgram per cubic meter (microg/m(3)), but this was not statistically significantly different from zero. Extrapolating the rat upper 95th percentile confidence limit to humans gave an upper-bound human UR of 9.3 (times) 10(-6) per microg/m(3)]. This upper-bound human UR, derived from all of the data points (including 1,087 animals below the estimated threshold and 1,433 in the control groups), falls entirely below the range of estimates derived from lung-overloaded rats or from epidemiology of railroad workers. Our meta-analysis of the low-exposure data in rats does not support a lung cancer risk for DEP exposure at nonoverload conditions. Average ambient concentrations of DEP (0-3 microg/m(3)) are < 1% of the concentration associated here with a threshold of tumor response in the rat bioassay.
Collapse
Affiliation(s)
- P A Valberg
- Cambridge Environmental Inc., Cambridge, Massachusetts 02141, USA.
| | | |
Collapse
|
13
|
|
14
|
Lipsett M, Campleman S. Occupational exposure to diesel exhaust and lung cancer: a meta-analysis. Am J Public Health 1999; 89:1009-17. [PMID: 10394308 PMCID: PMC1508841 DOI: 10.2105/ajph.89.7.1009] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES We undertook a meta-analysis of epidemiological studies investigating the relationship between occupational diesel exhaust exposure and lung cancer. METHODS Thirty of 47 studies initially identified as potentially relevant met specified inclusion criteria. We extracted or calculated 39 independent estimates of relative risk and derived pooled estimates of risk for all studies and for numerous study subsets by using a random-effects model. We also examined interstudy heterogeneity by using linear metaregressions. RESULTS There was substantial heterogeneity in the pooled risk estimates for all studies combined and for most subsets. Several factors consistent with higher study quality, however, contributed to increased pooled estimates of risk and lower heterogeneity, including (1) adjustment for confounding by cigarette smoking and other covariates, (2) having a lower likelihood of selection bias, and (3) having increased study power. CONCLUSION This analysis provides quantitative support for prior qualitative reviews that have ascribed an etiologic role to occupational diesel exhaust exposure in lung cancer induction. Among study populations most likely to have had substantial exposure to diesel exhaust, the pooled smoking-adjusted relative risk was 1.47 (95% confidence interval = 1.29, 1.67).
Collapse
Affiliation(s)
- M Lipsett
- California Office of Environmental Health Hazard Assessment, Oakland, CA 94612, USA.
| | | |
Collapse
|
15
|
Stayner L. Protecting public health in the face of uncertain risks: the example of diesel exhaust. Am J Public Health 1999; 89:991-3. [PMID: 10394303 PMCID: PMC1508838 DOI: 10.2105/ajph.89.7.991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Comstock ML. Diesel Exhaust in the Occupational Setting: Current Understanding of Pulmonary Health Effects. Clin Lab Med 1998. [DOI: 10.1016/s0272-2712(18)30151-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Soll-Johanning H, Bach E, Olsen JH, Tüchsen F. Cancer incidence in urban bus drivers and tramway employees: a retrospective cohort study. Occup Environ Med 1998; 55:594-8. [PMID: 9861180 PMCID: PMC1757639 DOI: 10.1136/oem.55.9.594] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the risk of cancer associated with exposure to air pollution among bus drivers and tramway employees. METHODS A retrospective cohort study of 18,174 bus drivers or tramway employees in Copenhagen in the period 1900-94. Data on employment were obtained from company files. Information on cancer was obtained from the Danish Cancer Registry. RESULTS Findings showed that bus drivers or tramway employees had an increased risk of all malignant neoplasms (standardised incidence ratio (SIR) 1.24, 95% confidence interval (95% CI) 1.19 to 1.30). The relative risk was significantly increased for both men and women (SIR 1.24, 95% CI 1.19 to 1.30 and 1.28, 1.06 to 1.53, respectively). People employed for < 3 months had no increased risk of cancer (1.04, 0.81 to 1.31). For men who were employed for > 3 months the risk of lung cancer (1.6, 1.5 to 1.8), laryngeal cancer (1.4, 1.0 to 1.9), kidney cancer (1.6, 1.3 to 2.0), bladder cancer (1.4, 1.2 to 1.6), skin cancer (1.1, 1.0 to 1.2), pharyngeal cancer (1.9, 1.2 to 2.8), rectal cancer (1.2, 1.0 to 1.5) and liver cancer (1.6, 1.2 to 2.2) was significantly increased. For women employed for > 3 months the risk of lung cancer was significantly increased (2.6, 1.5 to 4.3). CONCLUSION This cohort study shows that bus drivers and tramway employees are at an increased risk of developing several types of cancer. This might be due to the exposure to air pollution during working hours or to other risk factors, primarily smoking.
Collapse
|
18
|
Bünger J, Krahl J, Franke HU, Munack A, Hallier E. Mutagenic and cytotoxic effects of exhaust particulate matter of biodiesel compared to fossil diesel fuel. Mutat Res 1998; 415:13-23. [PMID: 9711258 DOI: 10.1016/s1383-5718(98)00039-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mutagenic and cytotoxic effects of diesel engine exhaust (DEE) from a modern passenger car using rapeseed oil methyl esters (RME, biodiesel) as fuel were directly compared to DEE of diesel fuel (DF) derived from petroleum. Combustion particulate matter was collected on glass fiber filters coated with polytetrafluoroethylene (PTFE) from an exhaust dilution tunnel using three different engine test cycles on a chassis dynamometer. Filters were extracted with dichloromethane in a soxhlet apparatus for 12 h. The mutagenicity of the extracts was tested in the Salmonella typhimurium/mammalian microsome plate-incorporation assay using strains TA97a, TA98, TA100, and TA102. The toxicity to the established cell line L929 (mouse lung fibroblasts) was investigated in the neutral red assay. In the tester strains TA98 and TA100 a significant increase of mutations resulted for the particle extracts of both fuels, but for DF the revertants were significantly higher compared to RME. The highest levels of revertants were observed in tests including a cold start phase. This was probably due to incomplete combustion in the cold engine and a lower conversion rate of the cold catalytic converter. Testing with activated liver S9 fraction induced a slightly lower increase of revertants in most experiments. TA97a and TA102 showed no significant enhancement of spontaneous mutations. In the FTP-75 test cycle RME extracts showed slightly higher toxic effects to the L929 cells than DF, whereas in the other tests no significant differences were observable. These results indicate a higher mutagenic potency of DEE of DF compared to RME. This is probably due to the lower content of polycyclic aromatic compounds (PAC) in RME exhaust, although the emitted masses of RME were higher in most test procedures applied in this study.
Collapse
Affiliation(s)
- J Bünger
- Center of Environmental and Occupational Medicine, University of Göttingen, Germany.
| | | | | | | | | |
Collapse
|