1
|
Jiang B, Yang J, Zhong X, Yan S, Yin M, Shen J, Lei B, Li Z, Zhou Y, Duan L. Triacontanol delivery by nano star shaped polymer promoted growth in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108815. [PMID: 38861820 DOI: 10.1016/j.plaphy.2024.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Plant Growth Regulators (PGRs) are functional compounds known for enhancing plant growth and development. However, their environmental impact is a concern due to poor water solubility and the need for substantial organic solvents. Recently, nano-delivery systems have emerged as a solution, offering a broad range of applications for small molecule compounds. This study introduces a nano-delivery system for Triacontanol (TA), utilizing a star polymer (SPc), aimed at promoting maize growth and improving physiological indicators. The system forms nearly spherical nanoparticles through TA's hydroxyl group and SPc's tertiary amine group. The TA/SPc nano-complex notably outperforms separate TA or SPc treatments in maize, increasing biomass, chlorophyll content, and nutrient absorption. It elevates chlorophyll content by 16.4%, 10.0%, and 6.2% over water, TA, and SPc treatments, respectively, and boosts potassium and nitrate ion uptake by up to 2 and 1.6 times compared to TA alone, leading to enhanced plant height and leaf growth. qRT-PCR analysis further demonstrated that the nano-complex enhanced cellular uptake through the endocytosis pathway by up-regulating endocytosis-related gene expression. The employment of TEM to observe vesicle formation during the internalization of maize leaves furnishes corroborative evidence for the participation of the endocytosis pathway in this process. This research confirms that SPc is an effective carrier for TA, significantly enhancing biological activity and reducing TA dosage requirements.
Collapse
Affiliation(s)
- Bingyao Jiang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jia Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xingyu Zhong
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory for Monitoring and Green Management, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory for Monitoring and Green Management, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Bin Lei
- Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Liusheng Duan
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
2
|
Ahmed S, Ahmad M, Sardar R, Ismail MA. Triacontanol priming as a smart strategy to attenuate lead toxicity in Brassica oleracea L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1173-1188. [PMID: 36384370 DOI: 10.1080/15226514.2022.2143478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The most prevalent heavy metal pollutant in the environment is lead (Pb). Lead potentially contribute 10% of overall heavy metal contamination. Lead uptake by plants has been found to have an impact on their metabolic functions, photosynthetic activity, growth, and productivity. The current experiment was conducted to investigate the impact of triacontanol (Tria) for attenuating Pb stress in Brassica oleracea var. italic (broccoli). Three different Tria concentrations (10, 20 and 30 µmol L-1) were used to prime broccoli seeds. Growth of broccoli was reduced when exposed to Pb-driven toxicity. Additionally, Pb had a deleterious impact on the protein quantity, stomatal conductance, transpiration and photosynthetic rate. Nevertheless, plants grown from seeds primed with Tria2 (20 µmol L-1 Tria) exhibited improved morphological characteristics, uptake of mineral content (Mn+2, Zn+2, K+1, Na+1) along with biomass production. There was 1.6-fold increase in photosynthetic rate, the phenol (1.3 folds), and DPPH activity (1.2 folds) in seed primed with Tria2. Additionally, plants treated with Tria2 demonstrated enhanced MTI and gas exchange characteristics that improves plant stress tolerance under Pb stress. Seed priming with Tria can be used to increase plant tolerance to Pb stress as evidenced by the improved growth and biochemical characteristics of broccoli seedlings.
Collapse
Affiliation(s)
- Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Maria Ahmad
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Muhammad Amir Ismail
- Department of Information Technology, Lahore Institute of Technical Education (LITE), Lahore Cantt, Pakistan
| |
Collapse
|
3
|
El-Beltagi HS, Ismail SA, Ibrahim NM, Shehata WF, Alkhateeb AA, Ghazzawy HS, El-Mogy MM, Sayed EG. Unravelling the Effect of Triacontanol in Combating Drought Stress by Improving Growth, Productivity, and Physiological Performance in Strawberry Plants. PLANTS 2022; 11:plants11151913. [PMID: 35893617 PMCID: PMC9330780 DOI: 10.3390/plants11151913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/19/2022]
Abstract
To explore the effects of triacontanol (TR) on drought tolerance of strawberry plants (cv Fertona), two field experiments were carried out to study the effects of three supplementary foliar TR rates (0, 0.5, and 1 ppm) under the following three levels of water irrigation: 11 m3/hectare (40% of water holding capacity (WHC) severe as a drought treatment, 22 m3/hectare (80% of WHC) as moderate drought stress, and normal irrigation with 27 m3/hectare (100% of WHC) server as a control treatment. TR treatments were applied five times after 30 days from transplanting and with 15-day intervals. The results showed that drought stress (40% and 80%) markedly decreased the growth, fruit yield, and chlorophyll reading, as well as the gas exchange parameters (net photosynthetic rate, stomatal conductance, and transpiration rate). Meanwhile, drought stress at a high rate obviously increased antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT) contents in the leaves of the strawberry plants. The moderate and high drought stress rates enhanced some strawberry fruit quality parameters such as total soluble solids (TSS), vitamin C, and anthocyanin content compared to the control. Additionally, TR increased the activities of SOD, POX, and CAT. TR treatment significantly increased the chlorophyll contents, gas exchange parameters (photosynthetic rate and stomatal conductance), and water use efficiency (WUE). Plant height, fruit weight, and total biomass were increased also via TR application. Total yield per plant was increased 12.7% using 1 ppm of TR compared with the control. In conclusion, our results suggested that TR application could relieve the adverse effects of drought stress on the growth of strawberry plants by enhancing the antioxidant enzymes, photosynthesis rate, and WUE of the leaves.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (W.F.S.); (A.A.A.)
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (E.G.S.)
| | - Shadia A. Ismail
- Department of Potato and Vegetatively Propagated Crops, Horticulture Research Institute, Agriculture Research Center, Giza 12511, Egypt; (S.A.I.); (N.M.I.)
| | - Nadia M. Ibrahim
- Department of Potato and Vegetatively Propagated Crops, Horticulture Research Institute, Agriculture Research Center, Giza 12511, Egypt; (S.A.I.); (N.M.I.)
| | - Wael F. Shehata
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (W.F.S.); (A.A.A.)
- Plant Production Department, College of Environmental Agricultural Science, El-Arish University, El-Arish 45511, Egypt
| | - Abdulmalik A. Alkhateeb
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (W.F.S.); (A.A.A.)
| | - Hesham S. Ghazzawy
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Central Laboratory for Date palm Research and Development, Agriculture Research Center, Giza 12511, Egypt
| | - Mohamed M. El-Mogy
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Eman G. Sayed
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Correspondence: (H.S.E.-B.); (E.G.S.)
| |
Collapse
|
4
|
Bhandari S, Bhandari A, Shrestha J. Effect of different doses of triacontanol on growth and yield of kohlrabi ( Brassica oleracea L. var. gongylodes). Heliyon 2021; 7:e08242. [PMID: 34761134 PMCID: PMC8566756 DOI: 10.1016/j.heliyon.2021.e08242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Triacontanol (TRIA), an endogenous plant growth regulator, promotes various metabolic activities in plants, resulting in improved growth and development in kohlrabi. The objective of this study was to assess the effect of different doses of triacontanol on the growth and yield of kohlrabi. This study was carried out in a randomized complete block design (RCBD) with five replications at Purkot Daha, Gulmi, Nepal, from October 2020 to January 2021. The treatments consisted of four doses of triacontanol (Niraculan 0.05% EC) diluted in water viz 0 mL L−1 (control), 1 mL L−1, 1.5 mL L−1 and 2 mL L−1. The results showed that triacontanol application significantly increased plant height, number of leaves, leaf length, and width of the large leaf at 40 days after transplanting (DAT). Plants treated with triacontanol at the dose of 1 mL L−1 produced the highest plant height (14.61 cm), which was statistically at par with 0 mL L−1 (12.76 cm) and 2 mL L−1 (14.26 cm). Similarly, at 40 DAT, plants treated with triacontanol at the dose of 2 mL L−1 produced the highest number of leaves (5.56), which was statistically at par with 1 mL L−1 (5.4) and 1.5 mL L−1 (4.96). Likewise, at 40 DAT, the highest length of large leaf (13.95 cm) and width of the large leaf (5.09 cm) were found in plants treated with triacontanol at the dose of 1 mL L−1, which was statistically similar with 2 mL L−1. The yield was found to be higher (6.75% to 40.4%) in plants treated with triacontanol as compared to plants treated with triacontanol at the dose of 0 mL L−1. A significant difference was found in the harvest index. The highest harvest index (0.39) was found in plants treated with triacontanol at the dose of 2 mL L−1, which was statistically similar with 1 mL L−1 (0.35) and 1.5 mL L−1 (0.39). The lowest harvest index (0.31) was found in plants treated with 0 mL−1. This study suggests that farmers can apply triacontanol at the dose of 1 mL L−1 to enhance the growth and yield of kohlrabi.
Collapse
Affiliation(s)
- Santosh Bhandari
- Agriculture and Forestry University, Rampur, Chitwan, Nepal
- Corresponding author.
| | | | - Jiban Shrestha
- Nepal Agricultural Research Council, National Plant Breeding and Genetics Research Centre, Khumaltar, Lalitpur, Nepal
| |
Collapse
|
5
|
Pang Q, Chen X, Lv J, Li T, Fang J, Jia H. Triacontanol Promotes the Fruit Development and Retards Fruit Senescence in Strawberry: A Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E488. [PMID: 32290080 PMCID: PMC7238246 DOI: 10.3390/plants9040488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/23/2022]
Abstract
Triacontanol (TA) is a non-toxic, pollution-free, low-cost, high-efficiency, broad-spectrum plant growth regulator that plays an important role in plant growth and development, but its regulation mechanism of strawberry (Sweet charlie, Fragaria × ananassa Duch.) fruit development is still unclear. In this study, we showed that TA treatment (50 μM) could promote fruit development by up-regulating factors related to fruit ripening-related growth and development. TA increased fruit sugar content and anthocyanin accumulation, and many stress-related enzyme activities. In the meantime, Illumina RNA-Seq technology was used to evaluate the effect of TA treatment on strawberry fruit senescence. The results showed that 9338 differentially expressed genes (DEGs) were obtained, including 4520 up-regulated DEGs and 4818 down-regulated DEGs. We performed gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEGs. The results showed that TA treatment caused changes in transcript levels related to cellular processes, hormones and secondary metabolism, such as DNA metabolic processes, flavonoid synthesis, and plant hormone signal transduction. Bioinformatics analysis showed that many transcription factors were related to fruit maturity. Taken together, this study will provide new insights into the mechanism of strawberry development and postharvest response to TA treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China; (Q.P.); (X.C.); (J.L.); (T.L.); (J.F.)
| |
Collapse
|
6
|
Sut S, Franceschi C, Peron G, Poloniato G, Dall'Acqua S. Development and Validation of an HPLC-ELSD Method for the Quantification of 1-Triacontanol in Solid and Liquid Samples. Molecules 2018; 23:molecules23112775. [PMID: 30373135 PMCID: PMC6278271 DOI: 10.3390/molecules23112775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
1-Triacontanol (TRIA) is gaining a lot of interest in agricultural practice due to its use as bio-stimulant and different types of TRIA-containing products have been presented on the market. Up to date, TRIA determination is performed by GC analysis after chemical derivatization, but in aqueous samples containing low amounts of TRIA determination can be problematic and the derivatization step can be troublesome. Hence, there is the need for an analysis method without derivatization. TRIA-based products are in general plant extracts that can be obtained with different extraction procedures. These products can contain different ranges of concentration of TRIA from units to thousands of mg/kg. Thus, there is the need for a method that can be applied to different sample matrices like plant materials and different plant extracts. In this paper we present a HPLC-ELSD method for the analysis of TRIA without derivatization. The method has been fully validated and it has been tested analyzing the content of TRIA in different dried vegetal matrices, plant extracts, and products. The method is characterized by high sensitivity (LOD = 0.2 mg/L, LOQ = 0.6 mg/L) and good precision (intra-day: <11.2%, inter-day: 10.2%) being suitable for routine analysis of this fatty alcohol both for quality control or research purposes.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Agripolis Campus, University of Padova, 35020 Legnaro, Italy.
| | | | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo, 5, 35131 Padova, Italy.
| | - Gabriele Poloniato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo, 5, 35131 Padova, Italy.
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
7
|
|
8
|
Kumar V, Satyanarayana KV, Sarala Itty S, Indu EP, Giridhar P, Chandrashekar A, Ravishankar GA. Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype. PLANT CELL REPORTS 2006; 25:214-22. [PMID: 16331458 DOI: 10.1007/s00299-005-0045-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 07/19/2005] [Accepted: 07/23/2005] [Indexed: 05/05/2023]
Abstract
A system for genetic transformation of Coffea canephora by co-cultivation with Agrobacterium rhizogenes harbouring a binary vector has been developed. The objective of the present study was the genetic transformation and direct regeneration of transformants through secondary embryos bypassing an intervening hairy root stage. Transformants were obtained with a transformation efficiency up to 3% depending on the medium adjuvant used. A. rhizogenes strain A4 harbouring plasmid pCAMBIA 1301 with an intron uidA reporter and hygromycin phosphotransferase (hptII) marker gene was used for sonication-assisted transformation of Coffea canephora. The use of hygromycin in the secondary embryo induction medium allowed the selection of transgenic secondary embryos having Ri T-DNA along with the T-DNA from the pCAMBIA 1301 binary vector. In addition transgenic secondary embryos devoid of Ri-T-DNA but with stable integration of the T-DNA from the binary vector were obtained. The putative transformants were positive for the expression of the uidA gene. PCR and Southern blot analysis confirmed the independent, transgenic nature of the analysed plants and indicated single and multiple locus integrations. The study clearly demonstrates that A. rhizogenes can be used for delivering transgenes into tree species like Coffea using binary vectors with Agrobacterium tumefaciens T-DNA borders.
Collapse
Affiliation(s)
- Vinod Kumar
- Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore 570 020, Karnataka, India
| | | | | | | | | | | | | |
Collapse
|
9
|
Ries SK, Wert VF. Rapid elicitation of second messengers by nanomolar doses of triacontanol and octacosanol. PLANTA 1988; 173:79-87. [PMID: 24226183 DOI: 10.1007/bf00394491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/1987] [Accepted: 08/25/1987] [Indexed: 06/02/2023]
Abstract
Triacontanol (TRIA) increases the dry weight and alters the metabolism of rice (Oryza sativa L.) seedlings within 10 min of application to either the shoots or roots. This activity is prevented if octacosanol (OCTA, C28 primary alcohol) is applied with the TRIA on the roots or shoots. Triacontanol activity is also stopped if the OCTA is applied at least 1 min before the TRIA on the opposite part of the seedling.Triacontanol rapidly elicits a second messenger that moves rapidly throughout the plant resulting in stimulation of growth (dry-weight increase) and water uptake. Octacosanol also produces a second messenger that inhibits TRIA activity. We have named the putative secondary messengers elicited by TRIA and OCTA, TRIM and OCTAM, respectively. The water-soluble TRIM extracted from plants treated with TRIA increases the growth of rice seedlings about 50% more than extracts from untreated plants, within 24 h of application. Both OCTAM and OCTA inhibit the activity of TRIA but not of TRIM.The TRIA messenger was isolated from rice roots within 1 min of a foliar application of TRIA. The TRIM elicited by TRIA will pass through a 4-mm column of water connecting cut rice shoots with their roots and can also be recovered from water in which cut stems of TRIA-treated plants have been immersed. Triacontanol applied to oat (Avena sativa L.) or tomato (Lycopersicon esculentum Mill.) shoots connected to rice roots by a 4-mm water column also results in the appearance of TRIM in rice roots.
Collapse
Affiliation(s)
- S K Ries
- Department of Horticulture, Michigan State University, 48824, East Lansing, MI, USA
| | | |
Collapse
|
10
|
Bis(2,2?-bipyridine)(4,4?-diuntriacontanyl-2,2?-bipyridine)-ruthenium(II) chloride and related hydrophobic complexes. TRANSIT METAL CHEM 1986. [DOI: 10.1007/bf01386870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
|
12
|
Laughlin RG, Munyon RL, Ries SK, Wert VF. Growth Enhancement of Plants by Femtomole Doses of Colloidally Dispersed Triacontanol. Science 1983; 219:1219-21. [PMID: 17771308 DOI: 10.1126/science.219.4589.1219] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Colloidal dispersions of crystalline 1-triacontanol in water, upon foliar application to corn (Zea mays L.) seedlings, resulted in growth increases at femtomole dosages (spray concentrations as low as 1 nanogram per cubic decimeter). The maximum growth increase occurred at 100 nanograms per cubic decimeter; at both higher and lower concentrations lessened growth increase was observed. The dispersions were prepared by sonication, with control of temperature and composition. Selected surfactants, which facilitate the dispersion process, are effective at 1 percent of the 1-triacontanol composition and are nontoxic.
Collapse
|
13
|
|
14
|
Eriksen AB, Selldén G, Skogen D, Nilsen S. Comparative analyses of the effect of triacontanol on photosynthesis, photorespiration and growth of tomato (C3-plant) and maize (C 4-plant). PLANTA 1981; 152:44-49. [PMID: 24302317 DOI: 10.1007/bf00384983] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/1980] [Accepted: 11/08/1980] [Indexed: 06/02/2023]
Abstract
Tomato (C3-plants) and maize (C4-plants) were grown in a nutrient solution to which triacontanol was added twice a week. After about 4 weeks the triacontanol treatment caused a significant increase in the dry weight of the tomato plants. Leaf area and dry weight measurements of tomato leaves at different stages of development showed that the largest increase in growth was obtained when triacontanol treatment was initiated before bud formation. In maize, no effect of the triacontanol treatment on dry wieght was observed. Photosynthesis was inhibited by 27% in young leaves from triacontanol-treated tomato plants and 39% in the controls, when the oxygen concentration was raised from 2% to 21%. In maize no change in photosynthesis could be observed, neither after altered oxygen concentration nor after triacontanol treatment. The difference in the response of C3- and C4-plants to triacontanol indicates that it regulates processes related to photosynthesis.
Collapse
Affiliation(s)
- A B Eriksen
- Phytotron, University of Oslo, Blindern, P.O. Box 1066, Oslo 3, Norway
| | | | | | | |
Collapse
|
15
|
|
16
|
Ramani S, Kannan S. Effect of triacontanol on the absorption and transport of Rb+ and PO4− in plants. ACTA ACUST UNITED AC 1980. [DOI: 10.1016/s0044-328x(80)80158-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Jones J, Wert V, Ries S. Specificity of 1-triacontanol as a plant growth stimulator and inhibition of its effect by other long-chain compounds. PLANTA 1979; 144:277-282. [PMID: 24407259 DOI: 10.1007/bf00388770] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/1978] [Accepted: 09/19/1978] [Indexed: 06/03/2023]
Abstract
The effect of several analogs of 1-triacontanol (TRIA), differing in C-chain length (16-32), the position of the hydroxyl group and the terminal functional group, were tested alone and in combination with TRIA on the growth of rice (Oryza sativa L.), maize (Zea mays L.) and tomato (Lycopersicon esculentum Mill.) seedlings. Applied alone, none of the compounds caused an increase in growth; thus, chain length (30 C) and presence and position (terminal) of the hydroxyl group appear to be specific for the growth-promoting activity of TRIA. When applied simultaneously with TRIA, all analogs inhibited the response to the latter in all three test plants, whether applied in the nutrient solution, as foliar spray or by seed soaking. 1-Octacosanol inhibited the response of rice seedlings to 2.3 x 10(-8) M TRIA at concentrations as low as 2.4 x 10(-12) M. Thus preparations of TRIA and application equipment must be free from trace amounts of other long-chain compounds if they are to be used to increase plant growth.
Collapse
Affiliation(s)
- J Jones
- Department of Horticulture and Pesticide Research Center, Michigan State University, 48824, East Lansing, MI, USA
| | | | | |
Collapse
|