1
|
Ferroni L, Baldisserotto C, Giovanardi M, Pantaleoni L, Morosinotto T, Pancaldi S. Revised assignment of room-temperature chlorophyll fluorescence emission bands in single living cells of Chlamydomonas reinhardtii. J Bioenerg Biomembr 2011; 43:163-73. [PMID: 21336619 DOI: 10.1007/s10863-011-9343-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Room temperature (RT) microspectrofluorimetry in vivo of single cells has a great potential in photosynthesis studies. In order to get new information on RT chlorophyll fluorescence bands, we analyzed the spectra of Chlamydomonas reinhardtii mutants lacking fundamental proteins of the thylakoid membrane and spectra of photoinhibited WT cells. RT spectra of single living cells were characterized thorough derivative analyses and Gaussian deconvolution. The results obtained suggest that the dynamism in LHCII assembly could be sufficient to explain the variations in amplitudes of F680 (free LHCII), F694 (LHCII-PSII) and F702 (LHCII aggregates); F686 was assigned to the PSII core. Based on the revised assignments and on the variations observed, we discuss the meaning of the two fluorescence emission ratios F680/(F686 + F694) and F702/(F686 + F694), showing that these are sensitive parameters under moderate photoinhibition. In the most photoinhibited samples, the RT spectra tended to degenerate, showing characteristics of mutants that are partly depleted in PSII.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Laboratory of Plant Cytophysiology, Department of Biology and Evolution, University of Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
2
|
Klinkert B, Schwarz C, Pohlmann S, Pierre Y, Girard-Bascou J, Nickelsen J. Relationship between mRNA levels and protein accumulation in a chloroplast promoter-mutant of Chlamydomonas reinhardtii. Mol Genet Genomics 2005; 274:637-43. [PMID: 16244871 DOI: 10.1007/s00438-005-0056-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
The photosynthetic chloroplast mutant G64 of Chlamydomonas reinhardtii was shown to contain a single point mutation within the 5' region of the psbD gene encoding the D2 protein of the photosystem II reaction center. The mutation affects the sequence element TATAATAT which has previously been hypothesized to function as the psbD promoter. Run-on analysis confirmed that transcription of psbD in the mutant was reduced to approximately 10% of the wild-type level. However, psbD mRNA accumulated to approximately 35%, despite the prominent decrease in RNA synthesis. This suggests that RNA-stabilization effects can compensate to some extent for a reduction in transcriptional activity. Interestingly, a direct correlation between transcript levels and the accumulation of the psbD gene product, the D2-protein, was observed in G64. The data suggest that posttranscriptionally acting regulatory factors determine the rate-limiting steps of chloroplast psbD gene expression.
Collapse
Affiliation(s)
- Birgit Klinkert
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
3
|
de Vitry C, Vallon O. Mutants of Chlamydomonas: tools to study thylakoid membrane structure, function and biogenesis. Biochimie 1999; 81:631-43. [PMID: 10433117 DOI: 10.1016/s0300-9084(99)80120-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a model system for the study of photosynthesis and chloroplast biogenesis. C. reinhardtii has a photosynthesis apparatus similar to that of higher plants and it grows at rapid rate (generation time about 8 h). It is a facultative phototroph, which allows the isolation of mutants unable to perform photosynthesis and its sexual cycle allows a variety of genetic studies. Transformation of the nucleus and chloroplast genomes is easily performed. Gene transformation occurs mainly by homologous recombination in the chloroplast and heterologous recombination in the nucleus. Mutants are precious tools for studies of thylakoid membrane structure, photosynthetic function and assembly. Photosynthesis mutants affected in the biogenesis of a subunit of a protein complex usually lack the entire complex; this pleiotropic effect has been used in the identification of the other subunits, in the attribution of spectroscopic signals and also as a 'genetic cleaning' process which facilitates both protein complex purification, absorption spectroscopy studies or freeze-fracture analysis. The cytochrome b6f complex is not required for the growth of C. reinhardtii, unlike the case of photosynthetic prokaryotes in which the cytochrome complex is also part of the respiratory chain, and can be uniquely studied in Chlamydomonas by genetic approaches. We describe in greater detail the use of Chlamydomonas mutants in the study of this complex.
Collapse
Affiliation(s)
- C de Vitry
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, CNRS-UPR 1261, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
4
|
Redding K, Cournac L, Vassiliev IR, Golbeck JH, Peltier G, Rochaix JD. Photosystem I is indispensable for photoautotrophic growth, CO2 fixation, and H2 photoproduction in Chlamydomonas reinhardtii. J Biol Chem 1999; 274:10466-73. [PMID: 10187837 DOI: 10.1074/jbc.274.15.10466] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Certain Chlamydomonas reinhardtii mutants deficient in photosystem I due to defects in psaA mRNA maturation have been reported to be capable of CO2 fixation, H2 photoevolution, and photoautotrophic growth (Greenbaum, E., Lee, J. W., Tevault, C. V., Blankinship, S. L. , and Mets, L. J. (1995) Nature 376, 438-441 and Lee, J. W., Tevault, C. V., Owens, T. G.; Greenbaum, E. (1996) Science 273, 364-367). We have generated deletions of photosystem I core subunits in both wild type and these mutant strains and have analyzed their abilities to grow photoautotrophically, to fix CO2, and to photoevolve O2 or H2 (using mass spectrometry) as well as their photosystem I content (using immunological and spectroscopic analyses). We find no instance of a strain that can perform photosynthesis in the absence of photosystem I. The F8 strain harbored a small amount of photosystem I, and it could fix CO2 and grow slowly, but it lost these abilities after deletion of either psaA or psaC; these activities could be restored to the F8-psaADelta mutant by reintroduction of psaA. We observed limited O2 photoevolution in mutants lacking photosystem I; use of 18O2 indicated that this O2 evolution is coupled to O2 uptake (i.e. respiration) rather than CO2 fixation or H2 evolution. We conclude that the reported instances of CO2 fixation, H2 photoevolution, and photoautotrophic growth of photosystem I-deficient mutants result from the presence of unrecognized photosystem I.
Collapse
Affiliation(s)
- K Redding
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
5
|
Hippler M, Redding K, Rochaix JD. Chlamydomonas genetics, a tool for the study of bioenergetic pathways. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1367:1-62. [PMID: 9784589 DOI: 10.1016/s0005-2728(98)00136-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M Hippler
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva-4, Switzerland
| | | | | |
Collapse
|
6
|
Armstrong GA. Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1998. [DOI: 10.1016/s1011-1344(98)00063-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Remacle C, Colin M, Matagne RF. Genetic mapping of mitochondrial markers by recombinational analysis in Chlamydomonas reinhardtii. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:185-90. [PMID: 7500940 DOI: 10.1007/bf00290365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk- mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome b) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (+/- 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (+/- 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% +/- 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.
Collapse
Affiliation(s)
- C Remacle
- Département de Botanique, Université de Liège, Belgium
| | | | | |
Collapse
|
8
|
Ketchner SL, Drapier D, Olive J, Gaudriault S, Girard-Bascou J, Wollman FA. Chloroplasts can accommodate inclusion bodies. Evidence from a mutant of Chlamydomonas reinhardtii defective in the assembly of the chloroplast ATP synthase. J Biol Chem 1995; 270:15299-306. [PMID: 7797517 DOI: 10.1074/jbc.270.25.15299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We identified two neighboring missense mutations in the chloroplast atpA gene which are responsible for the defect of ATP synthase assembly in the FUD16 mutant from Chlamydomonas reinhardtii. The two corresponding amino acid substitutions, Ile184-->Asn and Asn186-->Tyr, occurred at strictly conserved sites among the alpha and beta subunits of (C)F1 complexes from bacteria, mitochondria, and chloroplasts. The altered region in the alpha polypeptide chain is located 7 amino acids downstream of the P-loop, which forms most of the conserved nucleotide binding site. Although the resulting chloroplast mutant fails to accumulate most of the ATP synthase subunits, it displays an increased intracellular content in both the alpha and beta subunits. We demonstrate that the two subunits do not bind to the thylakoid membranes but associate and overaccumulate in the chloroplast stroma as inclusion bodies. Increased rates of synthesis of the two subunits in the mutant point to an early interaction between the two subunits during their biogenesis.
Collapse
Affiliation(s)
- S L Ketchner
- Service de Photosynthèse, URA/CNRS 1187, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | |
Collapse
|
9
|
Webber AN, Bingham SE, Lee H. Genetic engineering of thylakoid protein complexes by chloroplast transformation in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 1995; 44:191-205. [PMID: 24307038 DOI: 10.1007/bf00018309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/1994] [Accepted: 03/01/1995] [Indexed: 06/02/2023]
Abstract
Chloroplast transformation of Chlamydomonas reinhardtii has developed into a powerful tool for studying the structure, function and assembly of thylakoid protein complexes in a eukaryotic organism. In this article we review the progress that is being made in the development of procedures for efficient chloroplast transformation. This focuses on the development of selectable markers and the use of Chlamydomonas mutants, individually lacking thylakoid protein complexes, as recipients. Chloroplast transformation has now been used to engineer all four major thylakoid protein complexes, photosystem II, photosystem I, cytochrome b 6/f and ATP synthase. These results are discussed with an emphasis on new insights into assembly and function of these complexes in chloroplasts as compared with their prokaryotic counterparts.
Collapse
Affiliation(s)
- A N Webber
- Department of Botany and Center for the Study of Early Events in Photosynthesis, Arizona State University, Box 871601, 85287-1601, Tempe, AZ, USA
| | | | | |
Collapse
|
10
|
Danon A, Mayfield SP. Light-regulated translation of chloroplast messenger RNAs through redox potential. Science 1994; 266:1717-9. [PMID: 7992056 DOI: 10.1126/science.7992056] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Translation of key proteins in the chloroplast is regulated by light. Genetic and biochemical studies in the unicellular alga Chlamydomonas reinhardtii suggest that light may regulate translation by modulating the binding of activator proteins to the 5' untranslated region of chloroplast messenger RNAs. In vitro binding of the activator proteins to psbA messenger RNA and in vivo translation of psbA messenger RNA is regulated by the redox state of these proteins, suggesting that the light stimulus is transduced by the photosynthesis-generated redox potential.
Collapse
Affiliation(s)
- A Danon
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
11
|
Xu R, Bingham SE, Webber AN. Increased mRNA accumulation in a psaB frame-shift mutant of Chlamydomonas reinhardtii suggests a role for translation in psaB mRNA stability. PLANT MOLECULAR BIOLOGY 1993; 22:465-474. [PMID: 8329685 DOI: 10.1007/bf00015976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Regulation of mRNA stability is an important control in the differential accumulation of chloroplast mRNAs that occurs in response to developmental and environmental signals. The mechanism by which differential mRNA accumulation is achieved is unknown. We have examined mRNA accumulation in a chloroplast mutant of Chlamydomonas reinhardtii previously shown to contain a single AT base-pair deletion in the psaB gene. In this mutant, steady-state levels of mRNA from psaB accumulate to a level more than twice that found in cells that have had the mutation repaired by chloroplast transformation. In vivo pulse labeling of RNA shows that increased mRNA accumulation is due to a more stable transcript. We show that inhibitors of chloroplast protein synthesis also increase mRNA accumulation from the psaB gene. The results are consistent with a link between polysome association, active synthesis and stability of psaB transcripts.
Collapse
Affiliation(s)
- R Xu
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | | | |
Collapse
|
12
|
Quinn J, Li H, Singer J, Morimoto B, Mets L, Kindle K, Merchant S. The plastocyanin-deficient phenotype of Chlamydomonas reinhardtii Ac-208 results from a frame-shift mutation in the nuclear gene encoding preapoplastocyanin. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53033-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Smart LB, McIntosh L. Genetic inactivation of the psaB gene in Synechocystis sp. PCC 6803 disrupts assembly of photosystem I. PLANT MOLECULAR BIOLOGY 1993; 21:177-180. [PMID: 8425045 DOI: 10.1007/bf00039628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The reaction center of photosystem (PS) I is comprised of a heterodimer of homologous polypeptides, PsaA and PsaB. In order to investigate the biogenesis of PS I, the psaB gene was inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis 6803. This mutation resulted in disruption of stable PS I assembly, but PSI II assembled normally. Expression of the psaA gene was not affected by the mutation, but PsaA protein was not detected, indicating that stable PsaA homodimers did not form. The ability to inactivate psaB makes it a viable target for site-directed mutagenesis.
Collapse
Affiliation(s)
- L B Smart
- M.S.U.-D.O.E. Plant Research Laboratory and Genetics Program, East Lansing 48824-1312
| | | |
Collapse
|
14
|
Spano AJ, He Z, Timko MP. NADPH : protochlorophyllide oxidoreductases in white pine (Pines strobes) and loblolly pine (P. taeda). ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf00279646] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Affiliation(s)
- J D Rochaix
- Department of Molecular Biology, University of Geneva, Switzerland
| |
Collapse
|
16
|
|
17
|
|
18
|
Identification of mitochondrial proteins in membrane preparations from Chlamydomonas reinhardtii. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48483-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
|
20
|
Bingham SE, Xu RH, Webber AN. Transformation of chloroplasts with the psaB gene encoding a polypeptide of the photosystem I reaction center. FEBS Lett 1991; 292:137-40. [PMID: 1959594 DOI: 10.1016/0014-5793(91)80851-s] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A chloroplast photosystem I reaction center mutation, ac-u-g-2.3, of Chlamydomonas reinhardtii has been complemented with a wild type psaB gene to restore photosynthetic competence. The mutation was mapped in the psaB coding sequence by chloroplast transformation using subcloned restriction fragments of psaB. The mutation was found to be a single base pair deletion resulting in a reading frame shift and premature termination of the polypeptide. Transformants were verified by insertion of a site-directed mutation which created a new restriction enzyme site. These transformations demonstrate the feasibility of insertion of site-directed mutations into the psaB gene in order to elucidate amino acid residues involved in photosystem I assembly and function.
Collapse
Affiliation(s)
- S E Bingham
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | | | |
Collapse
|
21
|
Goldschmidt-Clermont M, Choquet Y, Girard-Bascou J, Michel F, Schirmer-Rahire M, Rochaix JD. A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell 1991; 65:135-43. [PMID: 1707343 DOI: 10.1016/0092-8674(91)90415-u] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In C. reinhardtii, the mature psaA mRNA is assembled by a process involving trans-splicing of three separate transcripts encoded at three widely scattered loci of the chloroplast genome. At least one additional chloroplast locus (tscA) is required for trans-splicing of exons 1 and 2. We have mapped this gene by transformation of a deletion mutant with a particle gun. The 0.7 kb region of the chloroplast genome that is sufficient to rescue tscA function has been subjected to insertion mutagenesis, showing that it does not contain significant open reading frames. We suggest from these experiments that the product of the tscA gene may be a small chloroplast RNA that acts in trans in the first trans-splicing reaction of psaA. A model for the mode of action of this RNA is presented, in which the characteristic structure of group II introns is assembled from three separate transcripts.
Collapse
|
22
|
Goldschmidt-Clermont M, Girard-Bascou J, Choquet Y, Rochaix JD. Trans-splicing mutants of Chlamydomonas reinhardtii. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:417-25. [PMID: 2270082 DOI: 10.1007/bf00264448] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Chlamydomonas reinhardtii the three exons of the psaA gene are widely scattered on the chloroplast genome: exons 1 and 2 are in opposite orientations and distant from each other and from exon 3. The mature mRNA, encoding a core polypeptide of photosystem I, is thus probably assembled from separate precursors by splicing in trans. We have isolated and characterized a set of mutants that are deficient in the maturation of psaA mRNA. The mutants belong to 14 nuclear complementation groups and one chloroplast locus that are required for the assembly of psaA mRNA. The chloroplast locus, tscA, is remote from any of the exons and must encode a factor required in trans. The mutants all show one of only three phenotypes that correspond to defects in one or other or both of the joining reactions. These phenotypes, and those of double mutants, are consistent with the existence of two alternative splicing pathways.
Collapse
|
23
|
Localization of two novel chloroplast genome functions: trans-splicing of RNA and protochlorophyllide reduction. Curr Genet 1990. [DOI: 10.1007/bf00312860] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
|
25
|
Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kück U, Bennoun P, Rochaix JD. Mutant phenotypes support a trans-splicing mechanism for the expression of the tripartite psaA gene in the C. reinhardtii chloroplast. Cell 1988; 52:903-13. [PMID: 3280139 DOI: 10.1016/0092-8674(88)90432-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chloroplast psaA gene of the green unicellular alga Chlamydomonas reinhardtii consists of three exons that are transcribed from different strands. Analysis of numerous nuclear and chloroplast mutants that are deficient in photosystem I activity reveals that roughly one-quarter of them are specifically affected in psaA mRNA maturation. These mutants can be grouped into three phenotypic classes, based on their inability to perform either one or both splicing reactions. The data indicate that the three exons are transcribed independently as precursors which are normally assembled in trans and that the splicing reactions can occur in either order. While some chloroplast mutations could act in cis, the nuclear mutations that fall into several complementation groups probably affect factors specifically required for assembling psaA mRNA.
Collapse
Affiliation(s)
- Y Choquet
- Department of Molecular Biology, Genève, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Girard-Bascou J, Choquet Y, Schneider M, Delosme M, Dron M. Characterization of a chloroplast mutation in the psaA2 gene of Chlamydomonas reinhardtii. Curr Genet 1987; 12:489-95. [PMID: 2834098 DOI: 10.1007/bf00419557] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis of polypeptides related to the CPI chlorophyll-protein complex of photosystem I has been studied by pulse-labeling experiments in twenty chloroplast mutants of Chlamydomonas reinhardtii. Three mutations of the same locus (Girard-Bascou 1987) result in the absence of these CPI-related polypeptides. Among these mutations one, (FUD26) leads to the synthesis of a new polypeptide presumed to be a truncated CPI apoprotein. The molecular characterization of this mutation in the psaA2 gene has been achieved by DNA sequencing the 3' end of this gene. The FUD26 mutation is a 4 base pair deletion resulting in frameshift and premature termination of the protein.
Collapse
|