1
|
Abstract
A biosynthetic precursor of tetrapyrroles, delta-aminolevulinic acid (ALA), can be formed via two pathways: enzymatic condensation of glycine and succinyl-CoA by ALA synthase in animal mitochondria and some fungi, and the C5 pathway converting glutamate to ALA in plants, algae, archaea, and most bacteria. The two pathways are distinguishable using specifically radiolabeled compounds. The C1 of glutamate is lost during conversion to succinate in the TCA cycle, and the C2 of glycine is lost during conversion to acetyl-CoA on the way to glutamate. Desalted high-speed supernatants of Ustilago maydis sporidia extracts were assayed using specifically radiolabeled substrates. A significant amount of radiolabel was incorporated into ALA from 2-[14C]glycine. No radiolabel was incorporated into ALA from 1-[14C]glutamate. These results indicate that the basidiomycete yeast, Ustilago maydis, has active ALA synthase.
Collapse
Affiliation(s)
- Mark A Schneegurt
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA.
| |
Collapse
|
2
|
Nishikawa S, Murooka Y. 5-Aminolevulinic acid: production by fermentation, and agricultural and biomedical applications. Biotechnol Genet Eng Rev 2002; 18:149-70. [PMID: 11530687 DOI: 10.1080/02648725.2001.10648012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- S Nishikawa
- New Products & Technology Laboratory, Cosmo Research Institute, 1134-2 Gongendo, Satte, Saitama 340-01931, Japan
| | | |
Collapse
|
3
|
Kafala B, Sasarman A. Isolation of the Staphylococcus aureus hemCDBL gene cluster coding for early steps in heme biosynthesis. Gene X 1997; 199:231-9. [PMID: 9358061 DOI: 10.1016/s0378-1119(97)00372-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have recently reported [Kafala, B., Sasarman, A., 1994. Can. J. Microbiol. 40, 651 657] the cloning and sequencing of the Staphylococcus aureus hemB gene. This gene purportedly encodes the delta-aminolevulinic acid dehydratase of the heme pathway. In this present communication, we report the sequences and identities of three putative hem genes. Two of these genes are located immediately upstream from hemB. Complementation analysis of Escherichia coli and Salmonella typhimurium hemC and hemD mutants and the comparison of the Sa nucleotide sequences with those of Bacillus subtilis and Ec showed that these two open reading frames, ORF1 and ORF2, are likely to be the hemC gene coding for porphobilinogen deaminase and the hemD gene coding for uroporphyrinogen III synthase, respectively. The third hem gene, hemL, is located immediately downstream of hemB, and encodes glutamate 1-semialdehyde 2,1-aminotransferase. Sequencing of the region which extends past hemL indicates that no further hem genes are located downstream of hemL. In Sa, hemC, hemD, hemB and hemL are proposed to constitute a hem cluster encoding enzymes required for the synthesis of uroporphyrinogen III from glutamate 1-semialdehyde (GSA).
Collapse
Affiliation(s)
- B Kafala
- Department of Microbiology and Immunology, Université de Montréal, Québec, Canada.
| | | |
Collapse
|
4
|
Abstract
The KlHEM1 gene from Kluyveromyces lactis encodes a functional 5-aminolevulinate synthase (deltaALA synthase), as confirmed by complementation of a hem1 mutant Saccharomyces cerevisiae strain, homology search, and detection of a 2.3 kb transcript. The gene is highly homologous to the ScHEM1 gene, and the sequence of the promoter region contains a complex combination of putative regulatory signals. Some of them are related to phospholipid biosynthesis, glycolytic metabolism, and regulation by carbon source. Transcription of KlHEM1 increased significantly in response to limited oxygen, and only slightly with the change from repressed (glucose) to derepressed conditions (glycerol). The deltaALA synthase from K. lactis contains, in the amino-terminal region, two heme-responsive elements that are not present in the protein from Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M González-Domínguez
- Departamento de Biología Celular y Molecular, Universidad de La Coruña, A. Coruña, Spain
| | | | | |
Collapse
|
5
|
Characterization of the hemB gene encoding δ-aminolevulinic acid dehydratase from Propionibacterium freudenreichii. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)85028-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Ferreira GC, Gong J. 5-Aminolevulinate synthase and the first step of heme biosynthesis. J Bioenerg Biomembr 1995; 27:151-9. [PMID: 7592562 DOI: 10.1007/bf02110030] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to yield 5-aminolevulinate. In animals, fungi, and some bacteria, 5-aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway. Mutations on the human erythroid 5-aminolevulinate synthase, which is localized on the X-chromosome, have been associated with X-linked sideroblastic anemia. Recent biochemical and molecular biological developments provide important insights into the structure and function of this enzyme. In animals, two aminolevulinate synthase genes, one housekeeping and one erythroid-specific, have been identified. In addition, the isolation of 5-aminolevulinate synthase genomic and cDNA clones have permitted the development of expression systems, which have tremendously increased the yields of purified enzyme, facilitating structural and functional studies. A lysine residue has been identified as the residue involved in the Schiff base linkage of the pyridoxal 5'-phosphate cofactor, and the catalytic domain has been assigned to the C-terminus of the enzyme. A conserved glycine-rich motif, common to all aminolevulinate synthases, has been proposed to be at the pyridoxal 5'-phosphate-binding site. A heme-regulatory motif, present in the presequences of 5-aminolevulinate synthase precursors, has been shown to mediate the inhibition of the mitochondrial import of the precursor proteins in the presence of heme. Finally, the regulatory mechanisms, exerted by an iron-responsive element binding protein, during the translation of erythroid 5-aminolevulinate synthase mRNA, are discussed in relation to heme biosynthesis.
Collapse
Affiliation(s)
- G C Ferreira
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa 33612, USA
| | | |
Collapse
|
7
|
Drolet M, Sasarman A. Cloning and nucleotide sequence of the hemA gene of Agrobacterium radiobacter. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:250-6. [PMID: 2034217 DOI: 10.1007/bf00273610] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hemA gene of Agrobacterium radiobacter ATCC4718 was identified by hybridization with a hemA probe from Rhizobium meliloti and cloned by complementation of a hemA mutant of Escherichia coli K12. E. coli hemA transformants carrying the hemA gene of Agrobacterium showed delta-aminolevulinic acid synthetase (delta-ALAS) activity in vitro. The hemA gene was carried on a 4.4 kb EcoRI fragment which could be reduced to a 2.6 kb EcoRI-SstI fragment without affecting its complementing or delta-ALAS activity. The sequence of the hemA gene showed an open reading frame of 1215 nucleotides, which could code for a protein of 44,361 Da. This is very close to the molecular weight of the HemA protein obtained using an in vitro coupled transcription-translation system (45,000 Da). Comparison of amino acid sequences of the delta-ALAS of A. radiobacter and Bradyrhizobium japonicum showed strong homology between the two enzymes; less, but still significant, homology was observed when A. radiobacter and human delta-ALAS were compared. Primer extension experiments enabled us to identify two promoters for the hemA gene of A. radiobacter. One of these promoters shows some similarity to the first promoter of the hemA gene of R. meliloti.
Collapse
Affiliation(s)
- M Drolet
- Department of Microbiology and Immunology, Université de Montréal, Québec, Canada
| | | |
Collapse
|
8
|
Hansson M, Rutberg L, Schröder I, Hederstedt L. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J Bacteriol 1991; 173:2590-9. [PMID: 1672867 PMCID: PMC207825 DOI: 10.1128/jb.173.8.2590-2599.1991] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have recently reported (M. Petricek, L. Rutberg, I. Schröder, and L. Hederstedt, J. Bacteriol. 172: 2250-2258, 1990) the cloning and sequence of a Bacillus subtilis chromosomal DNA fragment containing hemA proposed to encode the NAD(P)H-dependent glutamyl-tRNA reductase of the C5 pathway for 5-aminolevulinic acid (ALA) synthesis, hemX encoding a hydrophobic protein of unknown function, and hemC encoding hydroxymethylbilane synthase. In the present communication, we report the sequences and identities of three additional hem genes located immediately downstreatm of hemC, namely, hemD encoding uroporphyrinogen III synthase, hemB encoding porphobilinogen synthase, and hemL encoding glutamate-1-semialdehyde 2,1-aminotransferase. The six genes are proposed to constitute a hem operon encoding enzymes required for the synthesis of uroporphyrinogen III from glutamyl-tRNA. hemA, hemB, hemC, and hemD have all been shown to be essential for heme synthesis. However, deletion of an internal 427-bp fragment of hemL did not create a growth requirement for ALA or heme, indicating that formation of ALA from glutamate-1-semialdehyde can occur spontaneously in vivo or that this reaction may also be catalyzed by other enzymes. An analysis of B. subtilis carrying integrated plasmids or deletions-substitutions in or downstream of hemL indicates that no further genes in heme synthesis are part of the proposed hem operon.
Collapse
Affiliation(s)
- M Hansson
- Department of Microbiology, University of Lund, Lund, Sweden
| | | | | | | |
Collapse
|
9
|
Chapter 7 The genes of tetrapyrrole biosynthesis. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0167-7306(08)60114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Abstract
We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae.
Collapse
Affiliation(s)
- A Tzagoloff
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | |
Collapse
|
11
|
Petricek M, Rutberg L, Schröder I, Hederstedt L. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J Bacteriol 1990; 172:2250-8. [PMID: 2110138 PMCID: PMC208856 DOI: 10.1128/jb.172.5.2250-2258.1990] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A 3.8-kilobase DNA fragment from Bacillus subtilis containing the hemA gene has been cloned and sequenced. Four open reading frames were identified. The first is hemA, encoding a protein of 50.8 kilodaltons. The primary defect of a B. subtilis 5-aminolevulinic acid-requiring mutant was identified as a cysteine-to-tyrosine substitution in the HemA protein. The predicted amino acid sequence of the B. subtilis HemA protein showed 34% identity with the Escherichia coli HemA protein, which is known to code for the NAD(P)H:glutamyl-tRNA reductase of the C5 pathway for 5-aminolevulinic acid synthesis. The B. subtilis HemA protein also complements the defect of an E. coli hemA mutant. The second open reading frame in the cloned fragment, called ORF2, codes for a protein of about 30 kilodaltons with unknown function. It is not the proposed hemB gene product porphobilinogen synthase. The third open reading frame is hemC, coding for porphobilinogen deaminase. The fourth open reading frame extends past the sequenced fragment and may be identical to hemD, coding for uroporphyrinogen III cosynthase. Analysis of deletion mutants of the hemA region suggests that (at least) hemA, ORF2, and hemC may be part of an operon.
Collapse
Affiliation(s)
- M Petricek
- Department of Microbiology, University of Lund, Sweden
| | | | | | | |
Collapse
|
12
|
Sassa S. Regulation of the genes for heme pathway enzymes in erythroid and in non-erythroid cells. INTERNATIONAL JOURNAL OF CELL CLONING 1990; 8:10-26. [PMID: 2403580 DOI: 10.1002/stem.5530080104] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There are eight enzymes in the heme biosynthetic pathway and three enzymes in the heme catabolic pathway. Enzymatic defects in heme biosynthesis lead to clinical conditions termed porphyrias. cDNAs for five of the eight enzymes in the heme biosynthetic pathway and two of the three enzymes in the heme catabolic pathway have been cloned and characterized in mammalian cells. At least two enzymes exist as isozymes between erythroid and non-erythroid tissues. One is delta-aminolevulinic acid synthase (ALAS), and the erythroid and hepatic isozymes are coded by two separate genes. The other is porphobilinogen deaminase (PBGD), and both the erythroid and the non-erythroid PBGD mRNA are transcribed from a single PBGD gene by alternate transcription and splicing. There is also a significant tissue-specific control of expression of the uroporphyrinogen decarboxylase gene which is expressed as a unique mRNA in all tissues.
Collapse
Affiliation(s)
- S Sassa
- Rockefeller University, New York, NY 10021
| |
Collapse
|
13
|
Abstract
Portions of the Rhodobacter capsulatus hemA gene have been cloned from a hemA::Tn5 insertion strain into the lambda bacteriophage derivative EMBL3. A cosmid containing the wild-type R. capsulatus hemA gene was isolated by complementation of the hemA::Tn5 mutant. The cosmid contains a 1.4-kilobase EcoRI fragment that spans the hemA::Tn5 insertion site. The entire hemA gene is contained in this fragment and the adjacent 0.6-kilobase EcoRI fragment.
Collapse
Affiliation(s)
- S W Biel
- Department of Microbiology, Louisiana State University, Baton Rouge 70803
| | | | | |
Collapse
|
14
|
Urban-Grimal D, Volland C, Garnier T, Dehoux P, Labbe-Bois R. The nucleotide sequence of the HEM1 gene and evidence for a precursor form of the mitochondrial 5-aminolevulinate synthase in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 156:511-9. [PMID: 3516694 DOI: 10.1111/j.1432-1033.1986.tb09610.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biosynthesis of yeast 5-aminolevulinate (ALA) synthase, a mitochondrial protein encoded by the nuclear HEM1 gene, has been studied in vitro in a cell-free translation system and in vivo in whole cells. In vitro translation of mRNA hybrid-selected by the cloned HEM1 gene, or of total RNA followed by immunoprecipitation with anti-(ALA synthase) antibody yielded a single polypeptide of higher molecular mass than the purified ALA synthase. This larger form, also seen in pulse-labeled cells, can be post-translationally processed by isolated mitochondria. These results show that the cytoplasmically made ALA synthase is synthesized with a cleavable extension which was estimated to be about 3.5 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The complete nucleotide sequence of the HEM1 gene and its flanking regions was determined. The 5' ends of the HEM1 mRNAs map from -76 to -63 nucleotides upstream of the translation initiation codon. The open reading frame of 1644 base pairs encodes a protein of 548 amino acids with a calculated Mr of 59,275. The predicted amino-terminal sequence of the protein is strongly basic (five basic and no acidic amino acids within the first 35 residues), rich in serine and threonine and must represent the transient presequence that targets this protein to the mitochondria. Comparison of deduced amino acid sequences indicates a clear homology between the mature yeast and chick embryo liver ALA synthases.
Collapse
|