1
|
Masuda Y, Sakagami H, Yokose S, Udagawa N. Effect of Small-molecule GSK3 Antagonist on Differentiation of Rat Dental Pulp Cells into Odontoblasts. In Vivo 2021; 34:1071-1075. [PMID: 32354894 DOI: 10.21873/invivo.11877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND It has been reported that glycogen synthase kinase 3 (GSK3) antagonist promoted the reparative formation of dentin. The aim of the present study was to evaluate whether treatment schedule of Tidegrusib® (TG), a small-molecule GSK3 antagonist, affected in vitro differentiation of dental pulp cells toward odontoblast-like cells. MATERIALS AND METHODS Pulp cells isolated from rat incisors were repeatedly exposed to TG for the first 6 h (intermittent exposure) or the full 48 h (continuous exposure) of each 48-h incubation cycle. Histological analysis of alkaline phosphatase and von Kossa staining were performed. The expression of dentin sialophosphoprotein (Dspp) and osteocalcin (Ocn) mRNA were examined by real-time polymerase chain reaction. Western blotting assays were used to monitor the expression of β-catenin and its phosphorylated form. RESULTS When pulp cells were intermittently exposed to TG for only the first 6 h of each incubation cycle, pulp cells differentiated into odontoblast-like cells, characterized by an increase in alkaline phosphatase activity, nodule formation, and mRNA expression of Dspp. and Ocn; this did not occur under the continuous exposure. Phosphorylation of β-catenin was enhanced by continuous exposure to TG compared with intermittent exposure. CONCLUSION These results suggest that the TG-induced odontoblast-like cell differentiation reflects in vivo reparative dentin formation and depends on the exposure time.
Collapse
Affiliation(s)
- Yoshiko Masuda
- Department of Operative Dentistry, Matsumoto Dental University, Nagano, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Saitama, Japan
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, Meikai University School of Dentistry, Saitama, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, Japan
| |
Collapse
|
2
|
Yukata K, Kanchiku T, Egawa H, Nakamura M, Nishida N, Hashimoto T, Ogasa H, Taguchi T, Yasui N. Continuous infusion of PTH 1-34 delayed fracture healing in mice. Sci Rep 2018; 8:13175. [PMID: 30181648 PMCID: PMC6123430 DOI: 10.1038/s41598-018-31345-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 08/17/2018] [Indexed: 01/19/2023] Open
Abstract
Hyperparathyroidism, which is increased parathyroid hormone (PTH) levels in the blood, could cause delayed or non-union of bone fractures. But, no study has yet demonstrated the effects of excess continuous PTH exposure, such as that seen in hyperparathyroidism, for fracture healing. Continuous human PTH1–34 (teriparatide) infusion using an osmotic pump was performed for stabilized tibial fractures in eight-week-old male mice to determine the relative bone healing process compared with saline treatment. Radiographs and micro-computed tomography showed delayed but increased calcified callus formation in the continuous PTH1–34 infusion group compared with the controls. Histology and quantitative histomorphometry confirmed that continuous PTH1–34 treatment significantly increased the bone callus area at a later time point after fracture, since delayed endochondral ossification occurred. Gene expression analyses showed that PTH1–34 resulted in sustained Col2a1 and reduced Col10a1 expression, consistent with delayed maturation of the cartilage tissue during fracture healing. In contrast, continuous PTH1–34 infusion stimulated the expression of both Bglap and Acp5 through the healing process, in accordance with bone callus formation and remodeling. Mechanical testing showed that continuously administered PTH1–34 increased the maximum load on Day 21 compared with control mice. We concluded that continuous PTH1–34 infusion resulted in a delayed fracture healing process due to delayed callus cell maturation but ultimately increased biomechanical properties.
Collapse
Affiliation(s)
- Kiminori Yukata
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan. .,Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.
| | - Tsukasa Kanchiku
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroshi Egawa
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Norihiro Nishida
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takahiro Hashimoto
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroyoshi Ogasa
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Toshihiko Taguchi
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Natsuo Yasui
- Department of Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
3
|
Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology (Bethesda) 2017; 31:233-45. [PMID: 27053737 DOI: 10.1152/physiol.00061.2014] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bone remodeling is essential for adult bone homeostasis. It comprises two phases: bone formation and resorption. The balance between the two phases is crucial for sustaining bone mass and systemic mineral homeostasis. This review highlights recent work on physiological bone remodeling and discusses our knowledge of how systemic and growth factors regulate this process.
Collapse
Affiliation(s)
- Jawed A Siddiqui
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Nicola C Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| |
Collapse
|
4
|
Kashiwagi A, Fein MJ, Shimada M. Calpain modulates cyclin-dependent kinase inhibitor 1B (p27(Kip1)) in cells of the osteoblast lineage. Calcif Tissue Int 2011; 89:36-42. [PMID: 21544553 PMCID: PMC3111891 DOI: 10.1007/s00223-011-9491-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/15/2011] [Indexed: 02/05/2023]
Abstract
The ubiquitously expressed calpains-1 and -2 belong to a family of calcium-dependent intracellular cysteine proteases. Both calpains are heterodimers consisting of a large catalytic subunit and a small regulatory subunit encoded by the gene Capn4. Ablation of the calpain small subunit eliminates calpain activity and leads to embryonic lethality. We previously created osteoblast-specific Capn4 knockout mice to investigate a physiological role for the calpain small subunit in cells of the osteoblast lineage. Deletion of Capn4 reduced trabecular and cortical bone, mainly due to impaired proliferation and differentiation of cells of the osteoblast lineage. To further investigate an underlining mechanism by which osteoblast-specific Capn4 knockout mice develop an osteoporotic bone phenotype, we established osteoblastic cell lines stably expressing either control or Capn4 RNA interference for this study. Capn4 knockdown cells showed reduced cell proliferation, accumulation of total and phosphorylated cyclin-dependent kinase inhibitor 1B (p27(Kip1)) on serine 10, and reduced phosphorylation of retinoblastoma protein on threonine 821. Moreover, ablation of Capn4 increased 27 ( Kip1 ) mRNA levels, likely due to stabilized binding of Akt to protein phosphatase 2A, which presumably results in reduced phosphorylation of Akt on S473 and forkhead Box O (FoxO) 3A on T32. Collectively, calpain regulates cell proliferative function by modulating both transcription and degradation of p27(Kip1) in osteoblasts. In conclusion, calpain is a critical modulator for regulation of p27(Kip1) in cells of the osteoblast lineage.
Collapse
Affiliation(s)
| | | | - Masako Shimada
- Address correspondence to: Masako Shimada, MD, Ph.D, Thier 10, 50 Blossom Street, Boston, MA 02114, USA, Phone: 1-(617) 726-3966, Fax: 1-(617) 726-1703,
| |
Collapse
|
5
|
Jeon JH, Puleo DA. Formulations for intermittent release of parathyroid hormone (1-34) and local enhancement of osteoblast activities. Pharm Dev Technol 2009; 13:505-12. [PMID: 18720235 DOI: 10.1080/10837450802282488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of these studies was to develop simple, implantable devices that intermittently release PTH(1-34) and thus could be used for locally stimulating bone formation. The formulations were based on the association polymer system of cellulose acetate phthalate and Pluronic F-127. Release profiles for intermittent devices showed five discrete peaks, whereas sustained devices exhibited zero-order kinetics. Osteoblastic activity was greater for cells intermittently treated with PTH(1-34) compared to sustained exposure. These controlled release devices delivering PTH(1-34) in an intermittent manner may be useful for affecting osteoblast activities in a localized area.
Collapse
Affiliation(s)
- J H Jeon
- Center for Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506-0070, USA
| | | |
Collapse
|
6
|
Jeon JH, Puleo DA. Alternating release of different bioactive molecules from a complexation polymer system. Biomaterials 2008; 29:3591-8. [PMID: 18514812 DOI: 10.1016/j.biomaterials.2008.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/12/2008] [Indexed: 11/16/2022]
Abstract
Regeneration of bone is driven by the action of numerous biomolecules. However, most osteobiologic devices mainly depend on delivery of a single molecule. The present studies were directed at investigating a polymeric system that enables localized, alternating delivery of two or more biomolecules. The osteotropic biomolecules studied were simvastatin hydroxyacid (Sim) and parathyroid hormone (1-34) (PTH(1-34)), and the antimicrobial peptide cecropin B (CB) was also incorporated. Loaded microspheres were made using the complexation polymer system of cellulose acetate phthalate and Pluronic F-127 (blend ratio, 7:3). By alternating layers of the different types of microspheres, 10-layer devices were made to release CB and Sim, CB and PTH, or Sim and PTH. In vitro experiments showed five discrete peaks for each molecule over a release period of approximately two weeks. MC3T3-E1 osteoblastic cells alternately exposed to the osteotropic biomolecules showed enhanced proliferation and early osteoblastic activity. Alternating delivery of 10nm Sim and either 500pg/ml or 5ng/ml PTH showed additive effects compared to the CB/Sim or CB/PTH devices. These implantable formulations may be useful for alternating delivery of different biomolecules to stimulate concurrent biological effects in focal tissue regeneration applications.
Collapse
Affiliation(s)
- Ju Hyeong Jeon
- Center for Biomedical Engineering, University of Kentucky, Lexington, KY 40506-0070, USA
| | | |
Collapse
|
7
|
Datta NS, Pettway GJ, Chen C, Koh AJ, McCauley LK. Cyclin D1 as a target for the proliferative effects of PTH and PTHrP in early osteoblastic cells. J Bone Miner Res 2007; 22:951-64. [PMID: 17501623 DOI: 10.1359/jbmr.070328] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED PTHrP induced a proliferative cyclin D1 activation in low-density osteoblastic cells. The process was PKA and MAPK dependent and involved both AP-1 and CRE sites. In ectopic ossicles generated from implanted bone marrow stromal cells, PTH upregulated cyclin D1 after acute or intermittent anabolic treatment. These data suggest a positive role of PTH and PTHrP in the cell cycle of early osteoblasts. INTRODUCTION The mechanisms underlying the actions of PTH and its related protein (PTHrP) in osteoblast proliferation, differentiation, and bone remodeling remain unclear. The action of PTH or PTHrP on the cell cycle during osteoblast proliferation was studied. MATERIALS AND METHODS Mouse calvarial MC3T3-E1 clone 4 cells were synchronized by serum starvation and induced with 100 nM PTHrP for 2-24 h under defined low serum conditions. Western blot, real-time PCR, EMSAs, and promoter/luciferase assays were performed to evaluate cyclin D1 expression. Pharmacological inhibitors were used to determine the relevant signaling pathways. Ectopic ossicles generated from implanted bone marrow stromal cells were treated with acute (a single 8- or 12-h injection) or intermittent anabolic PTH treatment for 7 days, and RNA and histologic analysis were performed. RESULTS PTHrP upregulated cyclin D1 and CDK1 and decreased p27 expression. Cyclin D1 promoter/luciferase assays showed that the PTHrP regulation involved both activator protein-1 (AP-1) and cyclic AMP response element binding protein (CRE) sites. AP-1 and CRE double mutants completely abolished the PTHrP effect of cyclin D1 transcription. Upregulation of cyclin D1 was found to be protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) dependent in proliferating MC3T3-E1 cells. In vivo expression of cyclin D1 in ectopic ossicles was upregulated after a single 12-h PTH injection or intermittent anabolic PTH treatment for 7 days in early developing ossicles. CONCLUSIONS These data indicate that PTH and PTHrP induce cyclin D1 expression in early osteoblastic cells and their action is developmental stage specific.
Collapse
Affiliation(s)
- Nabanita S Datta
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, Michigan 48109-1078,, USA.
| | | | | | | | | |
Collapse
|
8
|
Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 2007; 40:1434-46. [PMID: 17517365 PMCID: PMC1995599 DOI: 10.1016/j.bone.2007.03.017] [Citation(s) in RCA: 498] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 03/14/2007] [Accepted: 03/20/2007] [Indexed: 12/24/2022]
Abstract
Intermittent administration of parathyroid hormone (PTH) stimulates bone formation by increasing osteoblast number, but the molecular and cellular mechanisms underlying this effect are not completely understood. In vitro and in vivo studies have shown that PTH directly activates survival signaling in osteoblasts; and that delay of osteoblast apoptosis is a major contributor to the increased osteoblast number, at least in mice. This effect requires Runx2-dependent expression of anti-apoptotic genes like Bcl-2. PTH also causes exit of replicating progenitors from the cell cycle by decreasing expression of cyclin D and increasing expression of several cyclin-dependent kinase inhibitors. Exit from the cell cycle may set the stage for pro-differentiating and pro-survival effects of locally produced growth factors and cytokines, the level and/or activity of which are known to be influenced by PTH. Observations from genetically modified mice suggest that the anabolic effect of intermittent PTH requires insulin-like growth factor-I (IGF-I), fibroblast growth factor-2 (FGF-2), and perhaps Wnts. Attenuation of the negative effects of PPAR gamma may also lead to increased osteoblast number. Daily injections of PTH may add to the pro-differentiating and pro-survival effects of locally produced PTH related protein (PTHrP). As a result, osteoblast number increases beyond that needed to replace the bone removed by osteoclasts during bone remodeling. The pleiotropic effects of intermittent PTH, each of which alone may increase osteoblast number, may explain why this therapy reverses bone loss in most osteoporotic individuals regardless of the underlying pathophysiology.
Collapse
Affiliation(s)
- Robert L Jilka
- Division of Endocrinology and Metabolism, Slot 587 Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA.
| |
Collapse
|
9
|
Lossdörfer S, Götz W, Rath-Deschner B, Jäger A. Parathyroid hormone(1-34) mediates proliferative and apoptotic signaling in human periodontal ligament cells in vitro via protein kinase C-dependent and protein kinase A-dependent pathways. Cell Tissue Res 2006; 325:469-79. [PMID: 16670921 DOI: 10.1007/s00441-006-0198-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 03/17/2006] [Indexed: 01/12/2023]
Abstract
Periodontal ligament (PDL) cells exhibit several osteoblastic traits and are parathyroid hormone (PTH)-responsive providing evidence for a role of these cells in dental hard-tissue repair. To examine the hypothesis that PDL cells respond to PTH stimulation with changes in proliferation and apoptotic signaling through independent but convergent signaling pathways, PDL cells were cultured from human bicuspids obtained from six patients. PDL cells at different states of maturation were challenged with PTH(1-34) intermittently for 0, 1, or 24 h/cycle or exposed continuously. Specific inhibitors to protein kinases A and C (PKA, PKC) and the mitogen-activated protein kinase cascade (MAPK) were employed. At harvest, the cell number, BrdU incorporation, and DNA fragmentation were determined by means of cell counting and immunoassays. Intermittent PTH(1-34) caused a significant increase in cell number in confluent cells as opposed to a reduction in pre-confluent cells. In confluent cells, the effect resulted from a significant increase in proliferation, whereas DNA fragmentation was reduced when PTH(1-34) was administered for 1 h/cycle but increased after PTH(1-34) for 24 h/cycle. Inhibition of PKC inhibited PTH(1-34)-induced proliferation but enhanced apoptosis. Inhibition of PKA enhanced proliferation and DNA fragmentation. Similar results were obtained in less mature cells, although, in the presence of the PKA inhibitor, the PTH(1-34)-induced changes were more pronounced than in confluent cells. In the presence of the MAPK inhibitor, all of the parameters examined were reduced significantly in both maturation states. Thus, PTH(1-34) mediates proliferative and apoptotic signaling in human PDL cells in a maturation-state-dependent manner via PKC-dependent and PKA-dependent pathways.
Collapse
Affiliation(s)
- S Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany.
| | | | | | | |
Collapse
|
10
|
Qin L, Li X, Ko JK, Partridge NC. Parathyroid hormone uses multiple mechanisms to arrest the cell cycle progression of osteoblastic cells from G1 to S phase. J Biol Chem 2004; 280:3104-11. [PMID: 15513917 DOI: 10.1074/jbc.m409846200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) plays a major role in bone remodeling and has the ability to increase bone mass if administered daily. In vitro, PTH inhibits the growth of osteoblastic cell lines, arresting them in G(1) phase. Here, we demonstrate that PTH regulates the expression of at least three genes to achieve the following: inducing expression of MAPK phosphatase 1 (MKP-1) and p21(Cip1) and decreasing expression of cyclin D1 at both mRNA and protein levels. The induction of MKP-1 causes the dephosphorylation of extracellular signal-regulated kinase and therefore the decrease in cyclin D1. Overexpression of MKP-1 arrests UMR cells in G(1) phase. The mechanisms involved in PTH regulation of these genes were studied. Most importantly, PTH administration produces similar effects on expression of these genes in rat femoral metaphyseal primary spongiosa. Analyses of p21(Cip1) expression levels in bone indicate that repeated daily PTH injections make the osteoblast more sensitive to successive PTH treatments, and this might be an important feature for the anabolic functions of PTH. In summary, our data suggest that one mechanism for PTH to exert its anabolic effect is to arrest the cell cycle progression of the osteoblast and hence increase its differentiation.
Collapse
Affiliation(s)
- Ling Qin
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
11
|
Sowa H, Kaji H, Iu MF, Tsukamoto T, Sugimoto T, Chihara K. Parathyroid hormone-Smad3 axis exerts anti-apoptotic action and augments anabolic action of transforming growth factor beta in osteoblasts. J Biol Chem 2003; 278:52240-52. [PMID: 14517210 DOI: 10.1074/jbc.m302566200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although several studies indicated that parathyroid hormone (PTH) exerted anabolic action on bone, its precise mechanisms have been unknown. On the other hand, transforming growth factor beta (TGF-beta), abundantly stored in bone matrix, stimulates bone formation with a local injection in rodents. Although our previous study suggested that Smad3 is an important molecule for the stimulation of bone formation, no reports have been available about the effects of PTH on Smad3. In this present study, we examined the effects of PTH on Smad3 and the physiological significance in mouse osteoblastic cells. PTH promoted the expression of Smad3 mRNA within 10 min and the protein level in a dose-dependent manner in MC3T3-E1 and rat osteoblastic UMR-106 cells. Protein kinase A (PKA) activator as well as protein kinase C (PKC) activators increased Smad3 protein level, and both PKA and PKC inhibitors antagonized PTH-induced Smad3, indicating that PTH promotes the production of Smad3 through both PKA and PKC pathways. Next, we examined anti-apoptotic effects of PTH and Smad3 in these cells, employing trypan blue, transferase-mediated nick end labeling, and Hoechst staining. Pretreatment with PTH or overexpression of Smad3 decreased the number of apoptotic cells induced by dexamethasone and etoposide. Moreover, a dominant negative mutant, Smad3DeltaC, abrogated PTH-induced anti-apoptotic effects. On the other hand, PTH augmented TGF-beta-induced transcriptional activity. Furthermore, PTH enhanced TGF-beta-induced production of type I collagen, whereas it did not affect TGF-beta-reduced proliferation in MC3T3-E1 cells. These observations indicated that PTH amplified the anabolic effects of TGF-beta by accelerating the transcriptional activity of Smad3. In conclusion, we first demonstrated that PTH-Smad3 axis exerts anti-apoptotic effects in osteoblasts and reinforces the anabolic action by TGF-beta in osteoblasts. Hence, PTH-Smad3 axis might be involved in the bone anabolic action of PTH.
Collapse
Affiliation(s)
- Hideaki Sowa
- Division of Endocrinology/Metabolism, Neurology and Hematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Adelina Costa M, Helena Fernandes M. Long-term effects of parathyroid hormone, 1,25-dihydroxyvitamin d(3), and dexamethasone on the cell growth and functional activity of human osteogenic alveolar bone cell cultures. Pharmacol Res 2000; 42:345-53. [PMID: 10987995 DOI: 10.1006/phrs.2000.0697] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The proliferation-differentiation behaviour of human alveolar bone cell cultures grown for 32 days in conditions that allowed the complete expression of the osteoblastic phenotype was significantly affected by the continuous presence of parathyroid hormone, 1, 25-dihydroxyvitamin D(3), or dexamethasone. Parathyroid hormone and, in particular, dexamethasone significantly induced the differentiation of osteoblastic cells. Moreover, cultures exposed to these hormones presented an earlier appearance and higher levels of alkaline phosphatase, and an increased ability to form calcium phosphate deposits in the extracellular matrix.
Collapse
Affiliation(s)
- M Adelina Costa
- Faculdade de Medicina Dentária, Rua Dr Manuel Pereira da Silva, Porto, 4200, Portugal
| | | |
Collapse
|
13
|
Onishi T, Zhang W, Cao X, Hruska K. The mitogenic effect of parathyroid hormone is associated with E2F-dependent activation of cyclin-dependent kinase 1 (cdc2) in osteoblast precursors. J Bone Miner Res 1997; 12:1596-605. [PMID: 9333120 DOI: 10.1359/jbmr.1997.12.10.1596] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Injections of parathyroid hormone (PTH) have been reported to stimulate skeletal accretion through increased bone formation in several species, and osteoblast proliferation is a critical component of bone formation. However, the biological mechanisms of PTH-stimulated bone cell proliferation are largely unknown. In this study, we demonstrated that PTH stimulates proliferation of the osteoblast precursor cell line, TE-85, in association with increasing cdc2 protein levels and its kinase activity. cdc2 antisense oligonucleotides blocked PTH-induced DNA synthesis and cell cycle progression. Analysis of the time course of PTH-stimulated cdc2 message levels demonstrated that cdc2 mRNA levels were increased 1.5- to 4-fold between 3-18 h following release from cell synchronization. Transfections of TE-85 cells with a series of cdc2 promoter-luciferase deletion constructs revealed PTH stimulation of the cdc2 promoter. Promoter constructs containing a mutation in the E2F binding site were not stimulated by PTH. Gel mobility shift assays demonstrated increased free E2F levels in TE-85 nuclear extracts in response to PTH. Furthermore, the ratios of hyperphosphorylated to hypophosphorylated forms of Rb protein were increased by PTH treatment. These results demonstrate that PTH-stimulated cdc2 expression was associated with TE-85 cell proliferation and that the mechanism of stimulating cdc2 gene expression involved increasing the levels of free E2F.
Collapse
Affiliation(s)
- T Onishi
- Renal Division, Barnes-Jewish Hospital/Washington University, St. Louis, Missouri 63110, U.S.A
| | | | | | | |
Collapse
|
14
|
Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S, Yamaguchi A. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest 1997; 99:2961-70. [PMID: 9185520 PMCID: PMC508148 DOI: 10.1172/jci119491] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has been reported that PTH exerts bone-forming effects in vivo when administered intermittently. In the present study, the anabolic effects of PTH(1-34) on osteoblast differentiation were examined in vitro. Osteoblastic cells isolated from newborn rat calvaria were cyclically treated with PTH(1-34) for the first few hours of each 48-h incubation cycle. When osteoblastic cells were intermittently exposed to PTH only for the first hour of each 48-h incubation cycle and cultured for the remainder of the cycle without the hormone, osteoblast differentiation was inhibited by suppressing alkaline phosphatase activity, bone nodule formation, and mRNA expression of alkaline phosphatase, osteocalcin, and PTH/PTHrP receptor. Experiments using inhibitors and stimulators of cAMP/protein kinase A (PKA) and Ca2+/PKC demonstrated that cAMP/PKA was the major signal transduction system in the inhibitory action of PTH. In contrast, the intermittent exposure to PTH for the first 6 h of each 48-h cycle stimulated osteoblast differentiation. Both cAMP/ PKA and Ca2+/PKC systems appeared to be involved cooperatively in this anabolic effect. Continuous exposure to PTH during the 48-h incubation cycle strongly inhibited osteoblast differentiation. Although both cAMP/PKA and Ca2+/PKC were involved in the effect of continuous exposure to PTH, they appeared to act independently. A neutralizing antibody against IGF-I blocked the stimulatory effect on alkaline phosphatase activity and the expression of osteocalcin mRNA induced by the 6-h intermittent exposure. The inhibitory effect induced by the 1-h intermittent exposure was not affected by anti-IGF-I antibody. These results suggest that PTH has diverse effects on osteoblast differentiation depending on the exposure time in vitro mediated through different signal transduction systems. These in vitro findings explain at least in part the in vivo action of PTH that varies with the mode of administration.
Collapse
Affiliation(s)
- T Ishizuya
- Department of Oral Pathology, School of Dentistry, Showa University, Tokyo 142, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Onishi T, Hruska K. Expression of p27Kip1 in osteoblast-like cells during differentiation with parathyroid hormone. Endocrinology 1997; 138:1995-2004. [PMID: 9112398 DOI: 10.1210/endo.138.5.5146] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PTH is a major systemic regulator of bone metabolism and plays an important role in both bone formation and resorption. PTH either inhibits or stimulates osteoblastic cell proliferation depending on the model that is studied. We analyzed the cell cycle of the UMR-106 cell line, a relatively differentiated osteoblastic osteogenic sarcoma line in which PTH is known to inhibit proliferation but the mechanism of action is unknown. PTH decreased the proportion of cells in S phase and increased the number of G1 phase cells. We examined the effect of PTH on the regulators of the G1 phase cyclin-dependent kinases and found that PTH increased p27Kip1, but not p21Cip1, levels. This effect was mimicked by 8-bromo-cAMP, but not by phorbol 12-myristate 13-acetate. The protein kinase A inhibitor KT5720 abolished the effect of PTH on the increase in p27Kip1 expression. PTH increased CDK2-associated p27Kip1 without affecting the levels of CDK2. CDK2 activity was down-regulated by both PTH and 8-bromo-cAMP treatment. These data suggest that PTH blocks entry of cells into S phase and inhibits cell proliferation as the consequence of an increase in p27Kip1, which is mediated through the protein kinase A pathway. The inhibition of G1 cyclin-dependent kinases by p27Kip1 could cause a reduction of phosphorylation of key substrates and inactivation of transcription factors essential for entry into S phase. The inhibition of cell cycle progression through PKA-mediated p27Kip1 induction might play an important role in PTH-induced differentiation of osteoblasts.
Collapse
Affiliation(s)
- T Onishi
- Renal Division, Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
16
|
Thorsen K, Kristoffersson AO, Lerner UH, Lorentzon RP. In situ microdialysis in bone tissue. Stimulation of prostaglandin E2 release by weight-bearing mechanical loading. J Clin Invest 1996; 98:2446-9. [PMID: 8958205 PMCID: PMC507700 DOI: 10.1172/jci119061] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study we describe, to our knowledge, the first experiment using the microdialysis technique for studying the release of prostaglandin E2 (PGE2) in the proximal tibia metaphysis secondary to mechanical loading. Nine healthy females, six in the loading group and three controls, mean age 34+/-2 (years+/-SEM), participated. A standard microdialysis catheter was inserted into the tibia metaphyseal bone under local anesthesia. Samplings were done every 15 min under a 2-h equilibration period. Thereafter, heel-drops (one impact per second) with as hard impact of the heels into the floor as possible, were done for 5 min by the subjects in the loading group. The control group performed no exercise. Sampling continued after this for another 2-h period. Basal levels of PGE2 in the proximal tibial metaphysis were determined to a mean of 45+/-10 pg/ml (mean+/-SEM, n = 6). The major finding was a 2.5-3.5-fold increase in the release of PGE2 after mechanical loading. The increase was statistically significant (P < 0.05 compared with basal levels) 1 h after the mechanical loading and persisted for the rest of the experimental period. No major alterations were observed in the control group. In conclusion, our data demonstrate that in situ microdialysis is a useful method for studying the PGE2 production in human bone. Furthermore, a rapid and significant increase in PGE2 levels was noticed in response to dynamic mechanical loading.
Collapse
Affiliation(s)
- K Thorsen
- Department of Orthopedics, University of Umeå, Sweden
| | | | | | | |
Collapse
|
17
|
Mayer H, Scutt AM, Ankenbauer T. Subtle differences in the mitogenic effects of recombinant human bone morphogenetic proteins -2 to -7 on DNA synthesis on primary bone-forming cells and identification of BMP-2/4 receptor. Calcif Tissue Int 1996; 58:249-55. [PMID: 8661956 DOI: 10.1007/bf02508644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The bone morphogenetic proteins (BMPs) are a group of related proteins capable of inducing the formation of new cartilage and bone. We report here a direct comparison of members of the BMP family in their capability to induce DNA synthesis in bone cell cultures. The promotion of DNA synthesis was determined in periosteal cells and epiphyseal and sternal chondrocytes of embryonic chick. We demonstrate that structurally homologous BMP-2 and BMP-4 exhibit the highest specific activity in the three tested cell types, whereas BMP-5, BMP-6 activity is moderately reduced in periosteal cells and highly reduced in epiphyseal and sternal chondrocytes. The specific activity of BMP-7 is the lowest in the three tested cell cultures. Receptor binding characteristics demonstrate a binding of BMP-2 with high affinity (KD = 0.45 nM) on periosteal cells, and excess of TGF-beta 1 does not displace BMP-4 binding. Chemical cross-linking with iodinated BMP-2 generates an affinity complex of 90 kDa. These findings suggest the presence of a BMP-2/BMP-4 receptor that discriminates subtle differences in function among homologous members of the BMP family.
Collapse
Affiliation(s)
- H Mayer
- Gesellschaft für Biotechnologische Forschung mbH, Braunschweig
| | | | | |
Collapse
|
18
|
Whitfield JF, Morley P, Willick GE, Ross V, Barbier JR, Isaacs RJ, Ohannessian-Barry L. Stimulation of the growth of femoral trabecular bone in ovariectomized rats by the novel parathyroid hormone fragment, hPTH-(1-31)NH2 (Ostabolin). Calcif Tissue Int 1996; 58:81-7. [PMID: 8998682 DOI: 10.1007/bf02529728] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human parathyroid hormone, hPTH-(1-84), and its hPTH-(1-34) fragment are promising anabolic agents for treating osteoporosis because they can strongly stimulate the production of biomechanically effective cortical and trabecular bone in osteopenic ovariectomized (OVX) rats and trabecular bone in osteoporotic postmenopausal humans. The ideal PTH fragment for treating osteoporosis would be the smallest and functionally simplest fragment that activates only one signal mechanism and still strongly stimulates trabecular bone growth. A new PTH fragment, hPTH-(1-31)NH2, which only stimulates adenylyl cyclase instead of stimulating both adenylyl cyclase and phospholipase-C as do hPTH-(1-84) and hPTH-(1-34), is this minimum, high-potency anabolic fragment. hPTH-(1-31)NH2 (which we have named Ostabolin) can greatly thicken trabeculae and increase the dry weight and calcium content of trabecular bone in the distal femurs of osteopenic, young, sexually mature OVX Sprague-Dawley rats when injected subcutaneously each day for 6 weeks at doses between 0.4 and 1.6 nmole/100 g of body weight.
Collapse
Affiliation(s)
- J F Whitfield
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | | | | | | | | | | | |
Collapse
|
19
|
Duvos C, Scutt A, Mayer H. The (18-48)-fragment of human parathyroid hormone is a partial agonist for cAMP-dependent actions with retained mitogenic function. Bone 1995; 17:403-6. [PMID: 8573415 DOI: 10.1016/s8756-3282(95)00266-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the search of PTH agonists, PTH fragments were examined for both cAMP-dependent and -independent actions on bone-derived assay systems. In a periosteal cell culture system from the embryonic chick, hPTH (18-48) was capable of inducing cell proliferation in a similar manner to hPTH (1-34) and hPTH (28-48) at picomolar concentrations, whereas hPTH (53-84) was inactive. Near physiological concentrations were needed for the proliferative action of PTH which seems to argue against a role for cAMP as a main mediator for growth response. In the tibiae organ culture system of embryonic chick cAMP stimulation and calcium mobilization requires micromolar concentrations. hPTH (18-48) produced, at a concentration of 10(-6) mol/L, a 14-fold increase in cAMP synthesis and an 11-fold increase in calcium mobilization and was 100-fold less active than hPTH (1-34). hPTH (28-48) and hPTH (53-84) had no significant effect. These results demonstrate that hPTH (18-48) retains the ability to induce cell proliferation and exhibits partial agonist activity in the cAMP/PKA signal transduction pathway.
Collapse
Affiliation(s)
- C Duvos
- Gesellschaft für Biotechnologische Forschung mbH, Department of Gene Regulation and Differentiation, Braunschweig, Germany
| | | | | |
Collapse
|
20
|
Kasugai S, Oida S, Iimura T, Arai N, Takeda K, Ohya K, Sasaki S. Expression of prostaglandin E receptor subtypes in bone: expression of EP2 in bone development. Bone 1995; 17:1-4. [PMID: 7577151 DOI: 10.1016/8756-3282(95)00134-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prostaglandin (PG) E2 displays physiological and pharmacological action in various tissues including bone. It increases intracellular Ca, and stimulates or inhibits cAMP production through the PGE receptor subtypes EP1, EP2, and EP3, respectively. These receptor subtypes have been recently cloned. In the present study, we investigate the expression of these receptor subtypes in bone tissue. RT-PCR revealed that EP1, EP2, and EP3 were expressed in rat calvariae and that osteoblastic cells (MC3T3-E1) expressed EP1 and EP2. In situ hybridization analysis using cryosection of neonatal calvariae revealed that EP2 was expressed by osteoblasts and cells not in contact with bone, probably including preosteoblasts. EP2 expression was observed at an early stage in calvarial development, at 14 days prenatal. EP2 expression was also observed at day 3 in rat bone marrow cell culture in which bone-like mineralized nodules are formed at day 8. It has been established that PGE2 response accompanying cAMP production is one of the characteristics of osteoblasts. The present results indicate that this phenotype appears at an early stage of osteoblastic differentiation and bone development.
Collapse
Affiliation(s)
- S Kasugai
- Department of Pharmacology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Scutt A, Zeschnigk M, Bertram P. PGE2 induces the transition from non-adherent to adherent bone marrow mesenchymal precursor cells via a cAMP/EP2-mediated mechanism. PROSTAGLANDINS 1995; 49:383-95. [PMID: 7480806 DOI: 10.1016/0090-6980(95)00070-q] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
When mesenchymal precursor cells from bone marrow are cultured in the presence of dexamethasone, the existence of distinct non-adherent and adherent populations can be demonstrated. The addition of PGE2, forskolin, or dibutyryl-cAMP can induce a transition from the former to the latter and this may be an important mechanism in the bone anabolic effects of PGE2. On the other hand, phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, and sulprostone, an agonist for the PGE2 receptor EP1/EP3 subtypes, had no effect. The phosphodiesterase inhibitor, isobutylmethylxanthine (IBMX), had a synergistic effect in combination with PGE2, whereas neomycin, an inhibitor of inositol phosphate activity, had no effect, and LiC1, an inhibitor of inositol triphosphate metabolism, had an inhibitory effect on the PGE2-induced transition. Consistent with this, the addition of PGE2 to non-adherent bone marrow cells caused a 100% increase in cAMP synthesis. These results suggest that the induction of the transition from non-adherent to adherent osteoblast precursor is mediated by the EP2-PGE2 receptor subtype via an increase in intracellular cAMP synthesis.
Collapse
Affiliation(s)
- A Scutt
- Schering Research Laboratories, Berlin, Germany
| | | | | |
Collapse
|